Announcements

• Reminder:
 – Send in project groups by the 25th
 – If you haven't started on the project -- start now.

• Some of today's slides are adapted from slides by John Mitchell
Recap from last time

- We've been studying Access Control Mechanisms
 - Access control lists
 - Capabilities
 - Unix/Windows OS access control
 - Stack inspection

- Today:
 - Discretionary access control (DAC)
 - Mandatory access control (MAC)
 - Information-flow security
Access Control

- **Discretionary**: The individual user may, at his own discretion, determine who is authorized to access the objects he creates.

- **Mandatory**: The creator of an object does not necessarily have the ability to determine who has authorized access to it.
 - Typically policy is governed by some central authority
 - The policy on an object in the system depends on what object/information was used to create the object.
 - Examples?
Multilevel Security

• Multiple levels of confidentiality ratings
• Military security policy
 • Classification involves sensitivity levels, compartments
 • Do not let classified information leak to unclassified files
• Group individuals and resources
 – Use some form of hierarchy to organize policy
• Trivial example: Public \leq Secret

• Information flow
 – Regulate how information is used throughout entire system
 – A document generated from both Public and Secret information must be rated Secret.
 – Intuition: "Secret" information should not flow to "Public" locations.
Military security policy

- Sensitivity levels
 - Top Secret
 - Secret
 - Confidential
 - Restricted
 - Unclassified

- Compartments
 - Satellite data
 - Afghanistan
 - Middle East
 - Israel
Military security policy

- Classification of personnel and data
 - Class D = \langle \text{rank, compartment} \rangle

- Dominance relation
 - \(D_1 \leq D_2 \) if \(\text{rank}_1 \leq \text{rank}_2 \)
 and \(\text{compartment}_1 \subseteq \text{compartment}_2 \)

 - Example: \(\langle \text{Restricted, Israel} \rangle \leq \langle \text{Secret, Middle East} \rangle \)

- Applies to
 - Subjects – users or processes: \(C(S) = \text{"clearance of S"} \)
 - Objects – documents or resources: \(C(O) = \text{"classification of O"} \)
Bell-LaPadula Confidentiality Model

• “No read up, no write down.”
 – Subjects are assigned clearance levels drawn from the lattice of security labels.
 \[C(S) = "\text{clearance of the subject } S" \]
 – A principal may read objects with lower (or equal) security label.
 • Read: \(C(O) \leq C(S) \)
 – A principal may write objects with higher (or equal) security label.
 • Write: \(C(S) \leq C(O) \)

• Example:
 A user with Secret clearance can:
 – Read objects with label Public and Secret
 – Write/create objects with label Secret
Picture: Confidentiality

Read below, write above

Read above, write below
Picture: Integrity

Read below, write above

Untainted → Tainted

Read above, write below

Tainted → Untainted

S

Untainted

Tainted

S

Untainted
Multilevel Security Policies

• In general, security levels form a "join semi-lattice"
 – There is an ordering ≤ on security levels
 – For any pair of labels L1 and L2 there is an "join" operation:

 \[L_1 \oplus L_2 \text{ is a label in the lattice such that:} \]
 \[(1) \ L_1 \leq L_1 \oplus L_2 \quad \text{and} \quad L_2 \leq L_1 \oplus L_2 \quad "\text{upper bound}" \]
 \[(2) \ \text{If} \ L_1 \leq L_3 \ \text{and} \ L_2 \leq L_3 \ \text{then} \ L_1 \oplus L_2 \leq L_3 \quad "\text{least bound}" \]

• For example: Public ⊕ Secret = Secret

• Labeling rules:
 – Classification is a function \(C : \text{Object} \rightarrow \text{Lattice} \)
 – If some object \(O \) is "created from" objects \(O_1, \ldots, O_n \)
 then \(C(O) = C(O_1) \oplus \ldots \oplus C(O_n) \)
Implementing Multilevel Security

• Dynamic:
 – Tag all values in memory with their security level
 – Operations propagate security levels
 – Must be sure that tags can’t be modified
 – Expensive, and approximate

• Classic result: Information-flow policies cannot be enforced purely by a reference monitor!
 – Problem arises from implicit flows

• Static:
 – Program analysis
 – May be more precise
 – May have less overhead
Information Flows through Software

Explicit Flows:

```c
int{Secret} X = f();
int{Public} Y = 0;
Y = X;
```

Implicit Flows:

```c
int{Secret} X = f();
int{Public} Y = 0;
int{Public} Z = 0;
int{Public} W = 0;
if (X > 0) then {
  Y = 1;
} else {
  Z = 1;
}
W = 3;
```
Perl's Solution (for Integrity)

• The problem: need to track the source of data
• Examples: Format string, SQL injection, etc.

```perl
$arg = shift;
system ("echo $arg");
```

• Give this program the argument "; rm *"
• Perl offers a *taint checking* mode
 – Tracks the source of data (trusted vs. tainted)
 – Ensure that tainted data is not used in system calls
 – Tainted data can be converted to trusted data by pattern matching
 – Doesn't check implicit flows
SELinux

- Security-enhanced Linux system (NSA)
 - Enforce separation of information based on confidentiality and integrity requirements
 - Mandatory access control incorporated into the major subsystems of the kernel
 - Limit tampering and bypassing of application security mechanisms
 - Confine damage caused by malicious applications

http://www.nsa.gov/selinux/
SELinux Security Policy Abstractions

- **Security-Encanced Linux**
 - Built by NSA

- **Type enforcement**
 - Each process has an associated domain
 - Each object has an associated type (label)
 - Configuration files specify
 - How domains are allowed to access types
 - Allowable interactions and transitions between domains

- **Role-based access control**
 - Each process has an associated role
 - Separate system and user processes
 - Configuration files specify
 - Set of domains that may be entered by each role
Two Other MAC Policies

- "Chinese Wall" policy: [Brewer & Nash '89]
 - Object labels are classified into "conflict classes"
 - If subject accesses one object with label L1 in a conflict class, all access to objects labeled with other labels in the conflict class are denied.
 - Policy changes dynamically

- "Separation of Duties":
 - Division of responsibilities among subjects
 - Example: Bank auditor cannot issue checks.
Covert Channels & Information Hiding

- A **covert channel** is a means by which two components of a system that are not permitted to communicate do so anyway by affecting a shared resource.

- **Information hiding**: Two components of the system that are permitted to communicate about one set of things, exchange information about disallowed topics by encoding contraband information in the legitimate traffic.

- Not that hard to leak a small amount of data
 - A 64 bit encryption key is not that hard to transmit
 - Even possible to encode relatively large amounts of data!

- Example channels / information hiding strategies
 - Program behavior
 - Adjust the formatting of output:
 - use the “\t” character for “1” and 8 spaces for “0”
 - Vary timing behavior based on key
 - Use "low order" bits to send signals
 - Power consumption
 - Grabbing/releasing a lock on a shared resource
Watermarking Basic Idea

- Pictures, Video, and Sound
 - Human perception is imperfect
 - There are a lot of “least significant bits”
 - Modifying the least significant bits doesn’t change the picture much

\[(R,G,B) = (182,54,89) \quad (R,G,B) = (182,54,90)\]

- Encode a signal in the least significant bits.
Watermarking Example

Original Image

Watermarked Image
Differential Power Analysis

- Read the value of a DES password off of a smart card by watching power consumption!

- This figure shows simple power analysis of DES encryption. The 16 rounds are clearly visible.
TEMPEST Security

• Transient Electromagnetic Pulse Emanation Standard
 – (Or?) Temporary Emanation and Spurious Transmission
 – Emission security (Van Eck phreaking)
 – computer monitors and other devices give off electromagnetic radiation
 – With the right antenna and receiver, these emanations can be intercepted from a remote location, and then be redisplayed (in the case of a monitor screen) or recorded and replayed (such as with a printer or keyboard).

• Policy is set in National Communications Security Committee Directive 4

• Guidelines for preventing EM reception
 – Shield the device (expensive)
 – Shield a location (inconvenient?)
Defenses for Covert Channels

- Well specified security policies at the human level
- Auditing mechanisms at the human level
 - Justify prosecution if the attacker is caught
- Code review
 - This is a form of audit
- Automated program analysis
 - Type systems that let programmers specify confidentiality labels
 - Transform programs so that both branches of a conditional statement take the same amount of time
 - Disallow branches on "secret" information
Countermeasures

- Against timing attacks:
 - Make all operations run in same amount of time
 - Hard to implement!
 - Can’t design platform-independent algorithms
 - All operations take as long as slowest one
 - Add random delays
 - Can take more samples to remove randomness

- Against power analysis attacks:
 - Make all operations take the same amount of power
 - Again, hard to implement
 - Add randomness