CIS 551 / TCOM 401 Computer and Network Security

Spring 2006 Lecture 25

Announcements

- Project 3 due TOMORROW
 - Updated web pages now have a UDP trace for testing
 - Unfortunately, no course staff available for last-minute help.
- Final exam:
 - May 5th.
 - 9:00 11:00 a.m.
 - Moore 216.
 - Cumulative, but concentrated on material since Midterm II.

Plan for today

- Wrap up digital cash (briefly)
- General course overview & conclusions
 - discussion
- Course evaluations

Digital Cash (1)

- Alice prepares 100 anonymous money orders for \$1000 each. Each includes a different nonce.
- Alice puts all 100 anonymous money orders, and a piece of carbon paper, into 100 different envelopes. She sends all of them to the bank.
- The bank opens 99 envelopes and verifies that each is a money order for \$1000.
- The bank signs the remaining unopened envelope and the signature is copied on to the money order. The bank hands the money order back to Alice and deducts \$1000 from her account.

Digital Cash (2)

- Alice opens the envelope and sends the (signed) money order to the merchant.
- The merchant verifies the bank's signature to make sure the money order is legititmate.
- The merchant takes the money order to the bank.
- The bank also verifies the signature and checks a database to make sure that a previous money order with the same nonce has not been used. If it hasn't the bank credits \$1000 to the merchant and records the nonce.
- If the nonce is present, the bank rejects the order.

Main Take-away Ideas (1)

- Security is about Tradeoffs
 - Balance risk vs. expense
- Principles of Secure System Design:
- Security is a process
- Least privileges
- Complete Mediation
- System Design
 - Economy of mechanism
 - Open standards
 - Failsafe Defaults

Main Take-away Ideas (2)

- Cryptography is important...
 - Can be used for more than just hiding information
 - Authentication and integrity
- ... but not the only facet of security
 - Other risks
 - Social engineering is effective
 - Cryptography applied inappropriately is useless
- So: use it where necessary, and use it correctly
 - See Schneier's book Applied Cryptography

Main Take-away Ideas (3)

- Concepts of security:
 - Confidentiality
 - Integrity
 - Availability
- General Mechanisms
 - Authentication
 - Challenge / Response
 - Authorization
 - Reference monitors
 - Access control matrices
 - Audit
 - Logs

Main Take-away Ideas (4)

- Cryptography & Protocol Design
 - Shared vs. Public key cryptography
- Cryptographic protocols can be used for:
 - Authentication, privacy, confidentiality
- Challenge—Response is the fundamental method of authentication
- Nonces, Time stamps, Sequence numbers prevent replay attacks

Main Take-away Ideas (5)

- Malicious Code
 - Viruses & Worms
 - Defense in depth: patching, firewalls, proper configuration, auditing
- Buffer overflows are the #1 vulnerability
 - Choose safe languages:
 - Java, C#, Scheme, ML
 - Be aware of format string and input errors, take care when writing programs and scripts.
 - Software audit and design is important.
 - If you must use C or C++, use StackGuard, ProPolice, or another bufferoverflow preventative measure.

Further study

- Advanced cryptography & cryptographic protocols
 - Elliptic curves
 - Protocol analysis logic and model checkers
 - Secret sharing, voting
- Systems security
 - Fault tolerance: replication, consensus algorithms
- Additional sources of information (research literature):
 - IEEE Symposium on Security & Privacy ("Oakland conference")
 - ACM Conference on Computer and Communications Security
 - Computer Security Foundations Workshop
 - CRYPTO, EUROCRYPT

Thanks!

