CIS 551 / TCOM 401 Computer and Network Security

Spring 2006 Lecture 22

Nmap screen shot

<u>F</u> ile ⊻iew	<u>H</u> elp
Target(s): www.insecure.org	Scan Exit
Scan Discover Timing Files Options	
Scan Type	Scanned Ports
SYN Stealth Scan	👻 Most Important [fast] 👱
Relay Host:	Range:
Scan Extensions	
🗌 🗖 RPC Scan 🔄 Identd Info 📝 OS Detection 📝 Versi	on Probe
Starting nmap 3.49 (http://www.insecure.org/nmap/) at 2003-12-19 14:28 PST
Starting nmap 3.49 (http://www.insecure.org/nmap/ Interesting ports on www.insecure.org (205.217.153, (The 1212 ports scanned but not shown below are in PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 3.1p1 (protocol 1.99 25/tcp open domain ISC Bind 9.2.1 80/tcp open http Apache httpd 2.0.39 ((Unix) 113/tcp closed auth Device type: general purpose Running: Linux 2.4.X12.5.X OS details: Linux Kernel 2.4.0 - 2.5.20 Uptime 212.119 days (since Wed May 21 12:38:26 2003 Nmap run completed 1 IP address (1 host. up) scar) at 2003-12-19 14:28 PST 53): state: filtered) mod_per1/1.99_07-dev Per1/v5.6.1) () () () () () () () () () (
Starting nmap 3.49 (http://www.insecure.org/nmap/ Interesting ports on www.insecure.org (205.217.153. (The 1212 ports scanned but not shown below are in PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 3.1p1 (protocol 1.99 25/tcp open domain ISC Bind 9.2.1 80/tcp open http Apache httpd 2.0.39 ((Unix) 113/tcp closed auth Device type: general purpose Running: Linux 2.4.X12.5.X OS details: Linux Kernel 2.4.0 - 2.5.20 Uptime 212.119 days (since Wed May 21 12:38:26 2003 Nmap run completed 1 IP address (1 host up) scar) at 2003-12-19 14:28 PST 53): state: filtered) mod_per1/1.99_07-dev Per1/v5.6.1) ined in 33.792 seconds
Starting nmap 3.49 (http://www.insecure.org/nmap/ Interesting ports on www.insecure.org (205.217.153. (The 1212 ports scanned but not shown below are in PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 3.1p1 (protocol 1.99 25/tcp open domain ISC Bind 9.2.1 80/tcp open http Apache httpd 2.0.39 ((Unix) 113/tcp closed auth Device type: general purpose Running: Linux 2.4.X12.5.X OS details: Linux Kernel 2.4.0 - 2.5.20 Uptime 212.119 days (since Wed May 21 12:38:26 2003 Nmap run completed 1 IP address (1 host up) scar) at 2003-12-19 14:28 PST 53): state: filtered) mod_per1/1.99_07-dev Per1/v5.6.1) ined in 33.792 seconds
Starting nmap 3.49 (http://www.insecure.org/nmap/ Interesting ports on www.insecure.org (205.217.153. (The 1212 ports scanned but not shown below are in PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 3.1p1 (protocol 1.99 25/tcp open domain ISC Bind 9.2.1 80/tcp open http Apache httpd 2.0.39 ((Unix) 113/tcp closed auth Device type: general purpose Running: Linux 2.4.X12.5.X OS details: Linux Kernel 2.4.0 - 2.5.20 Uptime 212.119 days (since Wed May 21 12:38:26 2003 Nmap run completed 1 IP address (1 host up) scar http://www.insecure.org/ http://www.insecure.org/) at 2003-12-19 14:28 PST 53): state: filtered) mod_per1/1.99_07-dev Per1/v5.6.1) med in 33.792 seconds nmap nmap/nmap-fingerprinting-article.htn

Kinds of Auditing done

- Nessus web pages:
 - Backdoors
 - CGI abuses
 - Denial of Service
 - Finger abuses
 - Firewalls
 - FTP
 - Gain a shell remotely
 - Gain root remotely
 - Netware
 - NIS

- Port scanners
- Remote file access
- RPC
- Settings
- SMTP problems
- SNMP
- Useless services
- Windows
- Windows : User management

- Doing this kind of auditing by hand is complex and error prone
- These tools aren't fool proof or complete.

Defenses

- Disable ping service, unneeded ports
 - Not always possible (you do want some connectivity!)
- Firewalls and NATs
 - Filter out inappropriate packets
 - Scanners use broadcast, multicast packets, clever port/flag combinations to thwart firewall filters
- Keep audit logs of requests
 - Generates a lot of data, hard to sift through
 - Clever port scan packages use a "drip scan" approach, sprinkling their scan packets sparsely across several hours or days
- Intrusion detection

Intrusion Detection

- The process of monitoring computers and networks to analyze and detect signs of security threats.
- Layered security is good
 - More layers means more chances to thwart attacks and more places where the attack might be discovered
- Basic detection alone is insufficient
 - Localization (i.e. What machines are infected.)
 - Identification (i.e. What is the nature of the attack.)
 - Assessment (i.e. What is the extent of the damage, what action to take.)
- Evaluation of intrusion detection scheme based on:
 - False positives: alerts to situations that aren't attacks
 - False negatives: attacks that are missed

Intrusion Detection Systems

- Network-based IDSs:
 - Use raw packet data to look for possible attacks
 - Run network adapter in promiscuous mode
- Host-based IDSs:
 - Log OS specific events (e.g. system calls)
- Looking for:
 - Known attack patterns (e.g. versus SMTP or port scans)
 - Frequency statistics (to detect DoS)
 - Anomalous behavior (based on some profile of "usual" behavior)

• Example: ZoneAlarm software can detect port scans.

Intrusion Detection

- Known attack signatures
 - As for worms and viruses
- Anomaly detection:
 - Build a profile of "typical" or "normal" behavior
 - What programs are usually running
 - Where do people usually log in from
 - What is the normal timing behavior of your keystrokes
 - How do you arrange your computer desktop...

State Transition Analysis Techniques

- STAT: developed by Eckmann, Vigna, and Kemmerer.
- Defines attack scenarios as sequence of transitions in the security state
 - "state" captures information relevant to security
 - e.g. file ownership, userids, protocol stack states, etc.
- Transitions are the necessary actions that lead to compromise

STAT state diagram example

Snort

- Snort is a lightweight intrusion detection system:
 - Real-time traffic analysis
 - Packet logging (of IP networks)
- Rules based logging to perform content pattern matching to detect a variety of attacks and probes:
 - such as buffer overflows, stealth port scans, CGI attacks, SMB probes, etc.
- Example Rule:

```
alert tcp any any -> 192.168.1.0/24 143 (content:"|E8C0 FFFF
FF|/bin/sh"; msg:"New IMAP Buffer Overflow detected!";)
```

- Generates an alert on all inbound traffic for port 143 with contents containing the specified attack signature.
- The Snort web site:
 - http://www.snort.org/docs/
- Question: How do you come up with the filter rules?

Detection & Prevention Recap

- Many strategies for intrusion detection
 - So far, the techniques we've seen are local to a machine or local network.
- What about large scale behavior?
- Virus/worm scanners work well if known signatures are available
 - Constructing signatures can be hard
 - Reaction time must be very quick

Internet Telescopes

• Can be used to detect large-scale, wide-spread attacks on the internet.

Internet Telescopes

• Can be used to detect large-scale, wide-spread attacks on the internet.

Internet Telescopes

• Can be used to detect large-scale, wide-spread attacks on the internet.

Automated Worm Fingerprinting

- Paper by Singh, Estan, Varghese, and Savage
- Assumptions:
 - All worms have invariant content
 - Invariant packets will appear frequently on the network
 - Worms are trying to propagate, after all
 - Packet sources and destinations will show high variability
 - Sources: over time number of distinct infected hosts will grow
 - Destinations: worms scan randomly
 - Distribution will be roughly uniform (unlike regular traffic that tends to be clustered)

High-prevalence strings are rare

Naïve Content Sifting

- ProcessTraffic(packet, srcIP, dstIP) {
 count[packet]++;
 Insert(srcIP, dispersion[packet].sources);
 Insert(dstIP, dispersion[packet].dests);
 if (count[packet] > countThresh
 && size(dispersion[packet].sources) > srcThresh
 && size(dispersion[packet].dests) > dstThresh) {
 Alarm(packet)
 }
 }
- Tables count and dispersion are indexed by entire packet content.

Problems with Naïve approach

- Frequency count is inaccurate:
 - Misses common substrings
 - Misses shifted content
 - Ideally, would index count and dispersion by all substrings of packet content (of some length)
- Counting every source and destination is expensive.
- Too much data to process every packet.
 - Most packets are going to be uninteresting.
 - Tables count and dispersion will be huge!

Engineering Challenges

- To support 1Gbps line rate have 12us to process each packet.
- Naïve implementation can easily use 100MB/sec for tables.
- Don't want to just do naïve sampling
 - E.g. don't want to just look at 1/N of the packets because detecting the worm will take N times as long

Practical Content Sifting

- Reduce size of count table by:
 - Hashing the packet content to a fixed size (*not* cryptographic hashes)
 - Hash collisions may lead to false positives
 - So, do multiple different hashes (say 3) -- worm content is flagged only if counts along all hashes exceed a threshold
- Include the destination port in the hash of the packet content
 - Current worms target specific vulnerabilities, so they usually aim for a particular port.
- To check for substring matches they propose to use a Rabin fingerprint
 - Probabilistic, incrementally computable hash of substrings of a fixed length.

Multistage Filters, Pictorially

Tracking Address Dispersion

- In this case, we care about the number of distinct source (or destination) addresses in packets that contain suspected worm data.
- Could easily keep an exact count by using a hash table, but that becomes too time and memory intensive.
 - In the limit, need one bit per address to mark whether it has been seen or not.
- Instead: Keep an *approximate* count
- Scalable bitmap counters
 - Reduce memory requirements by 5x

Scalable Bitmap Counters

- Suppose there are 64 possible addresses and you want to use only 32 bits to keep track of them.
- High-level idea:
 - Hash the address into a value between 0 and 63
 - Use only the lower 5 bits (yielding 32)
 - To estimate actual number of addresses, multiply the number of bits set in the bitmap by 2.

Multiple Bitmaps, Pictorially

- Recycle bitmaps after they fill up
- Adjust the scale factors on the counts accordingly

Results

- Earlybird successfully detects and extracts virus signatures from every known recent worm (CodeRed, MyDoom, Sasser, Kibvu.B,...)
- Tool generates content filter rules suitable for use with Snort

PACKET HEADER SRC: 11.12.13.14.3920 DST: 132.239.13.24.5000 PROT: TCP				
PACKET PAYLOAD (CONTENT)				
00F0	90	90	90 IV. I	
0100	90	90	Solution Representation Representatio Representatio Representation Representation Representatio	
0110	90	90	⁹ Earlybird on May 14 th 2004	
0120	90	90	90 90 90 90 90 90 90 90 90 90 90 90 90 9	
0130	90	90	90 90 90 90 90 90 EB 10 5A 4A 33 C9 66 B9	
0140	66	01	80 34 0A 99 E2 FA EB 05 E8 EB FF FF FF 70 f4	

Analysis

- False Positives:
 - SPAM
 - BitTorrent
 - Common protocol headers
 - HTTP and SMTP
 - Some P2P system headers
 - Solution: whitelist by hand
- False Negatives:
 - Hard (impossible?) to prove absence of worms
 - Over 8 months Earlybird detected all worm outbreaks reported on security mailing lists

Broader View of Defenses

- Prevention -- make the monoculture hardier
 - Get the code right in the first place ...
 - ... or figure out what's wrong with it and fix it
 - Lots of active research (static & dynamic methods)
 - Security reviews now taken seriously by industry
 - E.g., ~\$200M just to *review* Windows Server 2003
 - But very expensive
 - And very large Installed Base problem
- Prevention -- *diversify the monoculture*
 - Via exploiting existing heterogeneity
 - Via creating artificial heterogeneity

Broader View of Defenses, con't

- Prevention -- keep vulnerabilities inaccessible
 - Cisco's Network Admission Control
 - Examine hosts that try to connect, block if vulnerable
 - Microsoft's Shield
 - Shim-layer blocks network traffic that fits known *vulnerability* (rather than known *exploit*)
- What about violating the assumptions?
 - Invariant content
 - Worm propagates randomly
 - Worm propagates quickly

Polymorphic Viruses/Worms

- Virus/worm writers know that signatures are the most effective way to detect such malicious code.
- Polymorphic viruses mutate themselves during replication to prevent detection
 - Virus should be capable of generating many different descendents
 - Simply embedding random numbers into virus code is not enough

Strategies for Polymorphic Viruses

- Change data:
 - Use different subject lines in e-mail
- Encrypt most of the virus with a random key
 - Virus first decrypts main body using random key
 - Jumps to the code it decrypted
 - When replicating, generate a new key and encrypt the main part of the replica
- Still possible to detect decryption portion of the virus using virus signatures
 - This part of the code remains unchanged
 - Worm writer could use a standard self-decompressing executable format (like ZIP executables) to cause confusion (many false positives)

Advanced Evasion Techniques

- Randomly modify the *code* of the virus/worm by:
 - Inserting no-op instructions: subtract 0, move value to itself
 - Reordering independent instructions
 - Using different variable/register names
 - Using equivalent instruction sequences:

y = x + x vs. y = 2 * x

- These viruses are sometimes called "metamorphic" viruses in the literature.
- There exist C++ libraries that, when linked against an appropriate executable, automatically turn it into a metamorphic program.
- Sometimes vulnerable software itself offers opportunities for hiding bad code.
 - Example: ssh or SSL vulnerabilities may permit worm to propagate over encrypted channels, making content filtering impossible.
 - If IPSEC becomes popular, similar problems may arise with it.

Other Evasion Techniques

- Observation: worms don't need to scan randomly
 - They won't be caught by internet telescopes
- Meta-server worm: ask server for hosts to infect (e.g., Google for "powered by php")
- *Topological* worm: fuel the spread with local information from infected hosts (web server logs, email address books, config files, SSH "known hosts")
 - No scanning signature; with rich interconnection topology, potentially very fast.
- Propagate slowly: "trickle" attacks
 - Also a very subtle form of denial of service attacks

Witty Worm

- Released March 19, 2004.
- Single UDP packet exploits flaw in the *passive analysis* of Internet Security Systems products.
- "Bandwidth-limited" UDP worm ala' Slammer.
- Vulnerable pop. (12K) attained in 75 minutes.
- Payload: *slowly corrupt random disk blocks*.

Witty, con't

- Flaw had been announced the *previous day*.
- Telescope analysis reveals:
 - Initial spread seeded via a *hit-list*.
 - In fact, targeted a U.S. military base.
 - Analysis also reveals "Patient Zero", a European retail ISP.
- Written by a Pro.