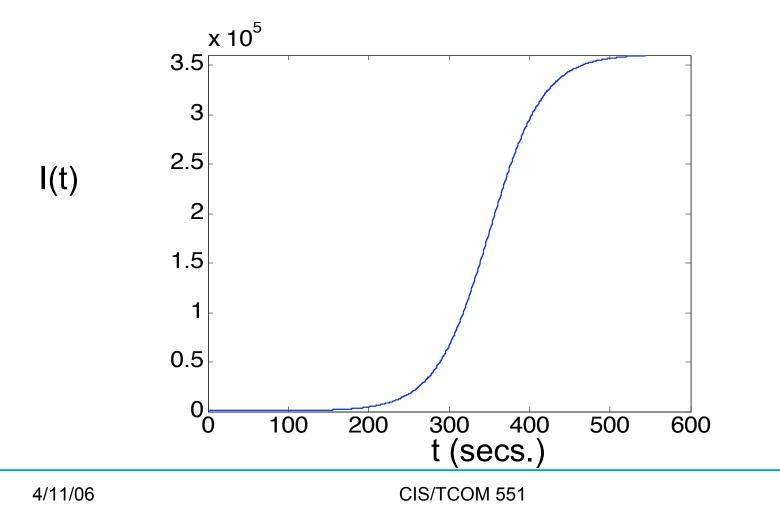
CIS 551 / TCOM 401 Computer and Network Security

Spring 2006 Lecture 21

Outline for Today (and Next Time)

- Containing worms and viruses
- Detecting viruses and worms
- Intrusion detection in general
- Defenses against viruses/worms/general intruders
 - Tools for determining system vulnerability

- Research Paper: "Automated Worm Fingerprinting"
 - Singh, Estan, Varghese, and Savage
 - (may not cover until next time)


Infection rate over time

• Change in infection rate is expressed as:

Exponential growth, tapers off

- Example curve of I(t) (which is i(t) * N)
- Here, N = 3.5×10^5 (β affects steepness of slope)

What can be done? Reduce the number of infected hosts - **Treatment**, reduce I(t) while I(t) is still small e.g. shut down/repair infected hosts Reactive Reduce the contact rate - **Containment**, reduce ß while I(t) is still small – e.g. filter traffic Reduce the number of susceptible hosts - **Prevention**, reduce S(0) Proactive e.g. use type-safe languages

Containment

• Reduce contact rate β

Oblivious defense

- Consume limited worm resources
- Throttle traffic to slow spread
- Possibly important capability, but worm still spreads...

Targeted defense

Detect and block worm

Design Space

- Design Issues for Reactive Defense
 [Moore et al 03]
- Any reactive defense is defined by:
 - *Reaction time* how long to detect, propagate information, and activate response
 - Containment strategy how malicious behavior is identified and stopped
 - Deployment scenario who participates in the system
- Savage et al. evaluate the requirements for these parameters to build **any** effective system for worm propagation.

Methodology

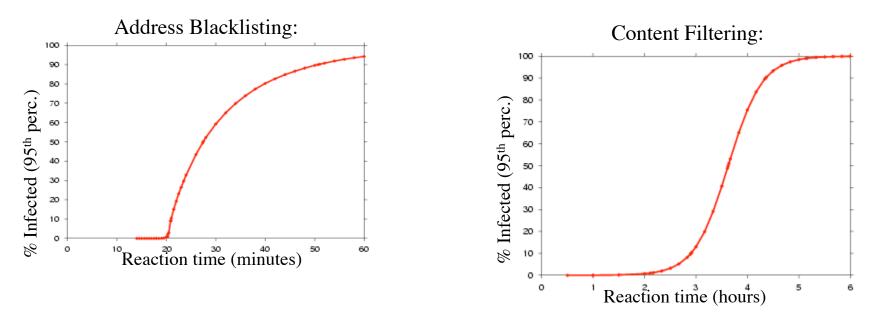
- Moore et al., "Internet Quarantine:..." paper
- Simulate spread of worm across Internet topology:
 - infected hosts attempt to spread at a fixed rate (probes/sec)
 - target selection is uniformly random over IPv4 space

• Simulation of defense:

- system detects infection within reaction time
- subset of network nodes employ a containment strategy

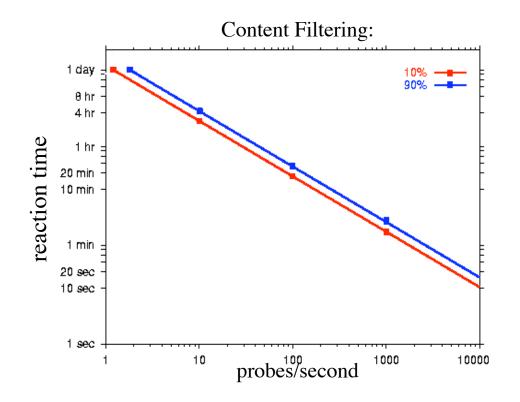
• Evaluation metric:

- % of vulnerable hosts infected in 24 hours
- 100 runs of each set of parameters (95th percentile taken)
 - Systems must plan for reasonable situations, **not** the average case


• Source data:

- vulnerable hosts: 359,000 IP addresses of CodeRed v2 victims
- Internet topology: AS routing topology derived from RouteViews

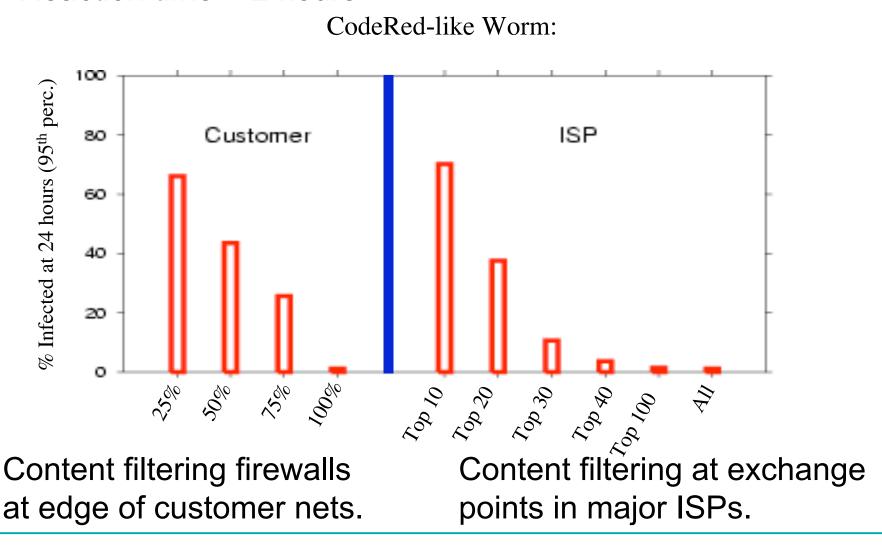
Initial Approach: Universal Deployment


- Assume every host employs the containment strategy
- Two containment strategies they tested:
 - Address blacklisting:
 - block traffic from malicious source IP addresses
 - reaction time is relative to each infected host
 - Content filtering:
 - block traffic based on signature of content
 - reaction time is from first infection
- How quickly does each strategy need to react?
- How sensitive is reaction time to worm probe rate?

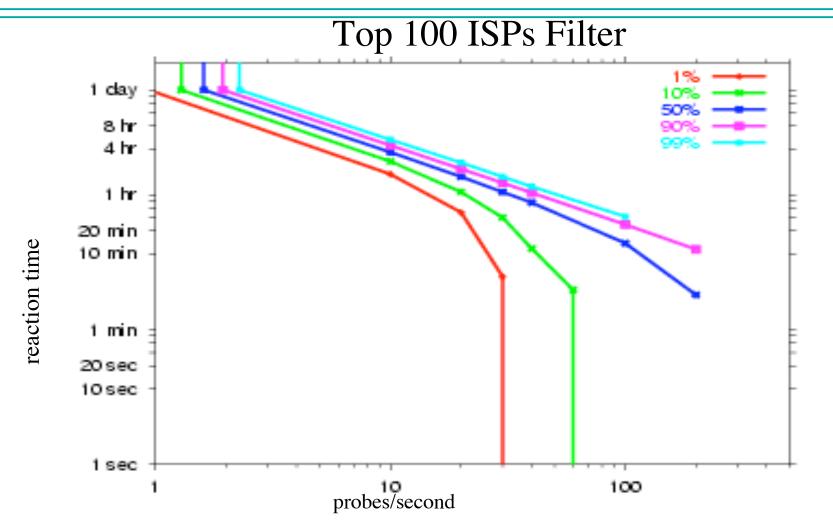
Reaction times?

- To contain worms to 10% of vulnerable hosts after 24 hours of spreading at 10 probes/sec (CodeRed):
 - Address blacklisting: reaction time must be < 25 minutes.
 - Content filtering: reaction time must be < 3 hours

Probe rate vs. Reaction Time


- Reaction times must be fast when probe rates get high:
 - 10 probes/sec: reaction time must be < 3 hours
 - 1000 probes/sec: reaction time must be < 2 minutes

Limited Network Deployment


- Depending on <u>every</u> **host** to implement containment is not feasible:
 - installation and administration costs
 - system communication overhead
- A more realistic scenario is <u>limited</u> deployment in the **network**:
 - Customer Network: firewall-like inbound filtering of traffic
 - ISP Network: traffic through border routers of large transit ISPs
- How effective are the deployment scenarios?
- How sensitive is reaction time to worm probe rate under limited network deployment?

Deployment Scenario Effectiveness?

Reaction time = 2 hours

Reaction Time vs. Probe Rate (II)

• Above 60 probes/sec, containment to 10% hosts within 24 hours is impossible even with *instantaneous* reaction.

Summary: Reactive Defense

- Reaction time:
 - required reaction times are a couple minutes or less (far less for bandwidth-limited scanners)
- Containment strategy:
 - content filtering is more effective than address blacklisting
- Deployment scenarios:
 - need nearly all customer networks to provide containment
 - need at least top 40 ISPs provide containment

Virus & Worm Signatures

- Viruses & worms can't be completely invisible:
 - Code must be stored somewhere
 - They must do something (e.g. propagate) when they run
- Fragments of the virus/worm code itself
 - Strings "kindly check the attached LOVELETTER"
- Effects on the computing environment
 - Changes to the Windows registry
- Propagation Behavior
 - Copying/modifying system files.
- (More generally, any attack will have some observable effect...)

Example Signatures

 The "Code Red" worm can be identified on victim machines by the presence of the following string in IIS log files:

 Slammer Worm can be identified by packets of size > 100 bytes sent to port 1434.

Detecting Viruses & Worms

- How do you even know there's a problem?
 - System administrators/users notice unusual behavior
 - Automatic intrusion/anomaly detection
 - Internet "telescopes"
 - Lure in an attack: honeypots / honeynets

- Techniques:
 - Integrity checks
 - Heuristic detection
 - Signature checking
 - System auditing

Virus Scanners

- Search the system for virus signatures
 - Main memory
 - All files in file system
 - Should also check boot sector
- Where to scan?
 - At each host (e.g. Norton Antivirus)
 - At the firewall
 - At the mail server
- When to scan?
 - On access (when a program is run)
 - On demand (at user's request, or scheduled)
 - When e-mail is received?
 - Before web content is displayed?
- How to scan?
 - Potentially large database of signatures
 - Need to match against all software on the system => Use Merkle Hash trees

Virus/Worm Scanning

- Pros
 - Effectively detects *known* viruses/worms before they can cause harm
 - Few false alarms
- Cons
 - Can detect only viruses/worms with known signatures
 - Performance penalty (due to scanning)
 - Signature set must be kept up to date
 - Virus/worm writers can easily change signatures
- ==> Generate signatures automatically
 - Automated Worm Fingerprinting (more in a bit)

Software Integrity Checks

- Compute a hash or checksum of executable files
 - Merkle Hash trees
 - Assumes the software to be virus free!
 - Store the hash information for later verification
- Verify new hash vs. saved one during scan
 - Also used for ensuring that software is not corrupted/modified when shipped over the network.
- Pros:
 - Can detect corruption of executables too
 - Reliable
 - Doesn't require virus signatures
- Cons:
 - False positives (i.e. recompilation)
 - Can't use it on documents (they change too often)
 - Not supported by most vendors

Heuristic Detection

- Collection of ad hoc rules that identifies virus behavior or virus-like programs
 - Modification of system executables
 - Modification of "template documents" like normal.doc
 - Self-modifying and self-referential code
 - Atypical or abnormal behavior
- Pros
 - Perhaps able to detect unknown viruses/worms
 - Can build tools to look for these features
- Cons
 - Heuristics are expensive and hard to develop.
 - Too may false positives?

Detecting Attacks

- Attacks (against computer systems) usually consist of several stages:
 - Finding software vulnerabilities
 - Exploiting them
 - Hiding/cleaning up the exploit
- Attackers care about finding vulnerabilities:
 - What machines are available?
 - What OS / version / patch level are the machines running?
 - What additional software is running?
 - What is the network topology?
- Attackers care about not getting caught:
 - How detectible will the attack be?
 - How can the attacker cover her tracks?
- Programs can automate the process of finding/exploiting vulnerabilities.
 - Same tools that sys. admins. use to audit their systems...
 - A worm is just an automatic vulnerability finder/exploiter...

Attacker Reconnaissance

- Network Scanning
 - Existence of machines at IP addresses
 - Attempt to determine network topology
 - ping, tracert
- Port scanners
 - Try to detect what processes are running on which ports, which ports are open to connections.
 - Typical machine on the internet gets 10-20 port scans per day!
 - Can be used to find hit lists for flash worms
- Web services
 - Use a browser to search for CGI scripts, Javascript, etc.

Determining OS information

- Gives a lot of information that can help an attacker carry out exploits
 - Exact version of OS code can be correlated with vulnerability databases
- Sadly, often simple to obtain this information:
 - Just try telnet

```
playground~> telnet hpux.u-aizu.ac.jp
Trying 163.143.103.12 ...
Connected to hpux.u-aizu.ac.jp.
Escape character is '^]'.
HP-UX hpux B.10.01 A 9000/715 (ttyp2)
login:
```

Determining OS

• Or ftp:

```
$ ftp ftp.netscape.com 21
Connected to ftp.gftp.netscape.com.
220-36
220 ftpnscp.newaol.com FTP server (SunOS 5.8) ready.
Name (ftp.netscape.com:stevez):
331 Password required for stevez.
Password:
530 Login incorrect.
ftp: Login failed.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> system
215 UNIX Type: L8 Version: SUNOS
ftp>
```

Determining OS

- Exploit different implementations of protocols
 - Different OS's have different behavior in some cases
- Consider TCP protocol, there are many flags and options, and some unspecified behavior
 - Reply to bogus FIN request for TCP port (should not reply, but some OS's do)
 - Handling of invalid flags in TCP packets (some OS's keep the invalid flags set in reply)
 - Initial values for RWS, pattern in random sequence numbers, etc.
 - Can narrow down the possible OS based on the combination of implementation features
- Tools can automate this process

Auditing: Remote auditing tools

- Several utilities available to "attack" or gather information about services/daemons on a system.
 - SATAN (early 1990's):
 Security Administrator Tool for Analyzing Networks
 - SAINT Based on SATAN utility
 - SARA Also based on SATAN
 - Nessus Open source vulnerability scanner
 - <u>http://www.nessus.org</u>
 - Nmap
- Commercial:
 - ISS scanner
 - Cybercop

Nmap screen shot

Nmap Front End v3	49 🔽
<u>F</u> ile <u>V</u> iew	Help
Target(s): www.insecure.org	Scan Exit
Scan Discover Timing Files Options	
Scan Type	Scanned Ports
SYN Stealth Scan	🛫 Most Important [fast] 👱
Relay Host:	Range:
Scan Extensions	on Probe
Starting nmap 3.49 (http://www.insecure.org/nmap/ Interesting ports on www.insecure.org (205.217.153 (The 1212 ports scanned but not shown below are in PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 3.1p1 (protocol 1.99 25/tcp open smtp qmail smtpd 53/tcp open domain ISC Bind 9.2.1 80/tcp open http Apache httpd 2.0.39 ((Unix) 113/tcp closed auth Device type: general purpose Running: Linux Z.4.X12.5.X OS details: Linux Kernel 2.4.0 - 2.5.20 Uptime 212.119 days (since Wed May 21 12:38:26 2003	53): state: filtered)) mod_per1/1.99_07-dev Per1/v5.6.1)
Interesting ports on www.insecure.org (205.217.153. (The 1212 ports scanned but not shown below are in PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 3.1p1 (protocol 1.99 25/tcp open sntp qmail sntpd 53/tcp open domain ISC Bind 9.2.1 80/tcp open http Apache httpd 2.0.39 ((Unix) 113/tcp closed auth Device type: general purpose Running: Linux 2.4.XI2.5.X OS details: Linux Kernel 2.4.0 - 2.5.20	53): state: filtered)) mod_per1/1.99_07-dev Per1/v5.6.1)
Interesting ports on www.insecure.org (205.217.153. (The 1212 ports scanned but not shown below are in PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 3.1p1 (protocol 1.99 25/tcp open domain ISC Bind 9.2.1 80/tcp open http Apache httpd 2.0.39 ((Unix)) 113/tcp closed auth Device type: general purpose Running: Linux 2.4.X12.5.X OS details: Linux Kernel 2.4.0 - 2.5.20 Uptime 212.119 days (since Wed May 21 12:38:26 2003) Nmap run completed 1 IP address (1 host up) scar Command http://www.insecure.org/	53): state: filtered)) mod_per1/1.99_07-dev Per1/v5.6.1)) ned in 33.792 seconds

Kinds of Auditing done

- Nessus web pages:
 - Backdoors
 - CGI abuses
 - Denial of Service
 - Finger abuses
 - Firewalls
 - FTP
 - Gain a shell remotely
 - Gain root remotely
 - Netware
 - NIS

- Port scanners
- Remote file access
- RPC
- Settings
- SMTP problems
- SNMP
- Useless services
- Windows
- Windows : User management

- Doing this kind of auditing by hand is complex and error prone
- These tools aren't fool proof or complete.