Midterm II graded

Average: 79
Median: 80
Std. Dev: 10
High: 96
Low: 58
Midpoint Grade Estimates

Midterm I 15/40
Midterm II 15/40
Project I 10/40

Note: This does not count:
Projects II and III,
Final
Class participation

C B-/B B+/A
Worm Research Sources

• "Inside the Slammer Worm"
 – Moore, Paxson, Savage, Shannon, Staniford, and Weaver

🌟 "How to Own the Internet in Your Spare Time"
 – Staniford, Paxson, and Weaver

• "The Top Speed of Flash Worms"
 – Staniford, Moore, Paxson, and Weaver

🌟 "Internet Quarantine: Requirements for Containing Self-Propagating Code"
 – Moore, Shannon, Voelker, and Savage

• "Automated Worm Fingerprinting"
 – Singh, Estan, Varghese, and Savage

• Links on the course web pages.
Morris Internet Worm

- November 2, 1988
- Infected around 6,000 major Unix machines
- Cost of the damage at $10m - $100m
- Robert T. Morris Jr. unleashed Internet worm
 - Graduate student at Cornell University
 - Convicted in 1990 of violating Computer Fraud and Abuse Act
 - $10,000 fine, 3 yr. Suspended jail sentence, 400 hours of community service
 - Son of the chief scientist at the National Computer Security Center -- part of the National Security Agency
 - Today he’s a professor at MIT
The Morris Worm Did Not:

- Alter or destroy files
- Save or transmit the passwords which it cracked
- Make special attempts to gain root or superuser access in a system (and didn't utilize the privileges if it managed to get them).
- Place copies of itself or other programs into memory to be executed at a later time. (Such programs are commonly referred to as timebombs.)
- Attack machines other than Sun 3 systems and VAX computers running 4 BSD Unix (or equivalent).
- Attack machines that were not attached to the internet.
- Travel from machine to machine via disk.
- Cause physical damage to computer systems.
Morris Worm Transmission

• Find user accounts on the target machine
 – Dictionary attack on /etc/passwd
 – If it found a match, it would log in and try the same username/password on other local machines

• Exploit bug in fingerd
 – Classic buffer overflow attack

• Exploit *trapdoor* in sendmail
 – Programmer left DEBUG mode in sendmail, which allowed sendmail to execute an arbitrary shell command string.
Morris Worm Infection

- Sent a small loader to target machine
 - 99 lines of C code
 - It was compiled on the remote platform (cross platform compatibility)
 - The loader program transferred the rest of the worm from the infected host to the new target.
 - Used authentication! To prevent sys admins from tampering with loaded code.
 - If there was a transmission error, the loader would erase its tracks and exit.
Morris Worm Stealth/DoS

- When loader obtained full code
 - It put into main memory and encrypted
 - Original copies were deleted from disk
 - (Even memory dump wouldn’t expose worm)
- Worm periodically changed its name and process ID
- Resource exhaustion
 - Denial of service
 - There was a bug in the loader program that caused many copies of the worm to be spawned per host
- System administrators cut their network connections
 - Couldn’t use internet to exchange fixes!
Code Red Worm (July 2001)

- Exploited buffer overflow vulnerability in IIS Indexing Service DLL

- Attack Sequence:
 - The victim host is scanned for TCP port 80.
 - The attacking host sends the exploit string to the victim.
 - The worm, now executing on the victim host, checks for the existence of c:\notworm. If found, the worm ceases execution.
 - If c:\notworm is not found, the worm begins spawning threads to scan random IP addresses for hosts listening on TCP port 80, exploiting any vulnerable hosts it finds.
 - If the victim host's default language is English, then after 100 scanning threads have started and a certain period of time has elapsed following infection, all web pages served by the victim host are defaced with the message,
Code Red Analysis

- In less than 14 hours, 359,104 hosts were compromised.
 - Doubled population in 37 minutes on average
- Attempted to launch a Denial of Service (DoS) attack against www1.whitehouse.gov,
 - Attacked the IP address of the server, rather than the domain name
 - Checked to make sure that port 80 was active before launching the denial of service phase of the attack.
 - These features made it trivially easy to disable the Denial of Service (phase 2) portion of the attack.
 - We cannot expect such weaknesses in the design of future attacks.
Code Red Worm

• The "Code Red" worm can be identified on victim machines by the presence of the following string in IIS log files:

/default.ida?NNN
Slammer Worm

- Saturday, 25 Jan. 2003 around 05:30 UTC
- Exploited buffer overflow in Microsoft's SQL Server or MS SQL Desktop Engine (MSDE).
 - Port 1434 (not a very commonly used port)
- Infected > 75,000 hosts (likely more)
 - Less than 10 minutes!
 - Reached peak scanning rate (55 million scans/sec) in 3 minutes.
- No malicious payload

- Used a single UDP packet with buffer overflow code injection to spread.

- Bugs in the Slammer code slowed its growth
 - The author made mistakes in the random number generator
Internet Worm Trends

- **Code Red, Code Red II, Nimda** *(TCP 80, Win IIS)*
 - Code Red infected more than 350,000 on July 19, 2001 by several hours
 - Uniformly scans the entire IPv4 space
 - Code Red II (local scan), Nimda (multiple ways)

- **SQL Slammer** *(UDP 1434, SQL server)*
 - Infected more than 75,000 on Jan 25, 2003
 - Infected 90% of vulnerable hosts in 10 minutes.

- **Blaster** *(TCP 135, Win RPC)*
 - Sequential scan; infected 300,000 to more than 1 million hosts on August 11, 2003.
But it gets worse: Flash Worms

- Paper: "The Top Speed of Flash Worms"
- Idea: Don't do random search
 - Instead, partition the search space among instances of the worm
 - Permutation scanning
 - Or, keep a tailored "hit list" of vulnerable hosts and distribute this initial set to the first worms spawned

- Simulations suggest that such a worm could saturate 95% of 1,000,000 vulnerable hosts on the Internet in 510 milliseconds.
 - Using UDP
 - For TCP it would take 1.3 seconds
Analysis: Random Constant Spread Model

- IP address space = 2^{32}
- N = size of the total vulnerable population
- $S(t)$ = susceptible/non-infected hosts at time t
- $I(t)$ = infective/infected hosts at time t
- β = Contact likelihood
- $s(t) = \frac{S(t)}{N}$ proportion of susceptible population
- $i(t) = \frac{I(t)}{N}$ proportion of infected population

- Note: $S(t) + I(t) = N$
Infection rate over time

- Change in infection rate is expressed as:

\[
\frac{dl}{dt} = l(t) \times \beta \times s(t)
\]

\# of infected hosts \hspace{1cm} \text{rate of contact} \hspace{1cm} \text{likelihood that contacted hosts is susceptible}

Rewrite to obtain:

\[
\frac{di}{dt} = \beta \times i(t) \times (1-i(t))
\]

Integrate to get this closed form:

\[
i(t) = \frac{e^{\beta(t-T)}}{1 + e^{\beta(t-T)}}
\]

\[T = \text{integration constant}\]
Exponential growth, tapers off

- Example curve of $I(t)$ (which is $i(t) \times N$)
- Here, $N = 3.5 \times 10^5$ (β affects steepness of slope)
What about the constants?

- \(N \) = estimated \# of hosts running vulnerable software
 - e.g. Apache or mail servers
 - In 2002 there were roughly 12.6M web servers on the internet
- Reasonable choice for \(\beta \) is \(r \times N / 2^{32} \)
 - Where \(r \) = probing rate (per time unit)

- For Code Red I:
 - \(\beta \) was empirically measured at about 1.8 hosts/hour.
 - \(T \) was empirically measured at about 11.9 (= time at which half the vulnerable hosts were infected)
- Code Red I was programmed to shut itself off at midnight UTC on July 19th
 - But incorrectly set clocks allowed it to live until August
 - Second outbreak had \(\beta \) of approximately 0.7 hosts/hour
 - Implies that about 1/2 of the vulnerable hosts had been patched
Predictions vs. Reality

• Port 80 scans due to Code Red I

courtesy Paxson, Staniford, Weaver
What can be done?

- Reduce the number of infected hosts
 - **Treatment**, reduce \(I(t) \) while \(I(t) \) is still small
 - e.g. shut down/repair infected hosts

- Reduce the contact rate
 - **Containment**, reduce \(\beta \) while \(I(t) \) is still small
 - e.g. filter traffic

- Reduce the number of susceptible hosts
 - **Prevention**, reduce \(S(0) \)
 - e.g. use type-safe languages

Reactive

Proactive
Treatment

• Reduce # of infected hosts

• Disinfect infected hosts
 – Detect infection in real-time
 – Develop specialized “vaccine” in real-time
 – Distribute “patch” more quickly than worm can spread
 • Anti-worm? (CRClean written)
 • Bandwidth interference…
Effects of "patching" infected hosts

- Kermack-McKendrick Model
- State transition:
 \[U(t) = \text{# of removed from infectious population} \]
 \[\gamma = \text{removal rate} \]

\[
\frac{di}{dt} = \beta \cdot i(t) \cdot (1-i(t)) - \frac{du}{dt}
\]

\[
\frac{du}{dt} = \gamma \cdot i(t)
\]
Containment

• Reduce contact rate β

• **Oblivious defense**
 – Consume limited worm resources
 – Throttle traffic to slow spread
 – Possibly important capability, but worm still spreads…

• **Targeted defense**
 – Detect and block worm
Design Space

• Design Issues for Reactive Defense
 [Moore et al 03]

• Any reactive defense is defined by:
 – **Reaction time** – how long to detect, propagate information, and activate response
 – **Containment strategy** – how malicious behavior is identified and stopped
 – **Deployment scenario** - who participates in the system

• Savage et al. evaluate the requirements for these parameters to build any effective system for worm propagation.
Methodology

• **Moore et al., "Internet Quarantine:..." paper**

• **Simulate spread of worm across Internet topology:**
 – infected hosts *attempt* to spread at a fixed rate (probes/sec)
 – target selection is uniformly random over IPv4 space

• **Simulation of defense:**
 – system detects infection within reaction time
 – subset of network nodes employ a containment strategy

• **Evaluation metric:**
 – % of vulnerable hosts infected in 24 hours
 – 100 runs of each set of parameters (95th percentile taken)
 • Systems must plan for reasonable situations, not the average case

• **Source data:**
 – vulnerable hosts: 359,000 IP addresses of CodeRed v2 victims
 – Internet topology: AS routing topology derived from RouteViews
Initial Approach: Universal Deployment

• Assume every host employs the containment strategy

• Two containment strategies they tested:
 – Address blacklisting:
 • block traffic from malicious source IP addresses
 • reaction time is relative to each infected host
 – Content filtering:
 • block traffic based on signature of content
 • reaction time is from first infection

• How quickly does each strategy need to react?
• How sensitive is reaction time to worm probe rate?
To contain worms to 10% of vulnerable hosts after 24 hours of spreading at 10 probes/sec (CodeRed):
 - Address blacklisting: reaction time must be < 25 minutes.
 - Content filtering: reaction time must be < 3 hours
• Reaction times must be fast when probe rates get high:
 – 10 probes/sec: reaction time must be < 3 hours
 – 1000 probes/sec: reaction time must be < 2 minutes
Limited Network Deployment

- Depending on *every host* to implement containment is not feasible:
 - installation and administration costs
 - system communication overhead

- A more realistic scenario is limited deployment in the *network*:
 - Customer Network: firewall-like inbound filtering of traffic
 - ISP Network: traffic through border routers of large transit ISPs

- How effective are the deployment scenarios?
- How sensitive is reaction time to worm probe rate under limited network deployment?
Deployment Scenario Effectiveness?

Reaction time = 2 hours

CodeRed-like Worm:

Content filtering firewalls at edge of customer nets.

Content filtering at exchange points in major ISPs.
Above 60 probes/second, containment to 10% hosts within 24 hours is impossible even with *instantaneous* reaction.
Summary: Reactive Defense

• Reaction time:
 – required reaction times are a couple minutes or less
 (far less for bandwidth-limited scanners)

• Containment strategy:
 – content filtering is more effective than address
 blacklisting

• Deployment scenarios:
 – need nearly all customer networks to provide containment
 – need at least top 40 ISPs provide containment