Announcements

• Project 2 is available on the web.
 – Due: March 14, 2006

• Project 1 has been graded
 – You should have received e-mail.
 – We will be putting up the grading guidelines on the web shortly

• Midterm 1 has been graded
Midterm 1 distribution

High: 89
Low: 44
Project 1 Distribution

High: 87
Low: 16
General Definition of “Protocol”

- A protocol is a multi-party algorithm
 - A sequence of steps that precisely specify the actions required of the parties in order to achieve a specified objective.

- Important that there are multiple participants
- Typically a situation of heterogeneous trust
 - Alice may not trust Bart
 - Bart may not trust the network
Cryptographic Protocols

- Consider communication over a network...
- What is the threat model?
 - What are the vulnerabilities?

Sender Transmission Medium Receiver

S T R

Interceptor
What Can the Attacker Do?

- Intercept them (confidentiality)
- Modify them (integrity)
- Fabricate other messages (integrity)
- Replay them (integrity)
- Block the messages (availability)
- Delay the messages (availability)
- Cut the wire (availability)
- Flood the network (availability)
Dolev-Yao Model

- Treat cryptographic operations as "black box"
- Simplifies reasoning about protocols (doesn't require reduction to computational complexity)

- Given a message $M = (c_1, c_2, c_3, \ldots)$ attacker can deconstruct message into components c_1, c_2, c_3
- Given a collection of components c_1, c_2, c_3, attacker can forge message (c_1, c_2, c_3)
- Given an encrypted object $K\{c\}$, attacker can learn c only if attacker knows decryption key corresponding to K
- Attacker can encrypt components by using:
 - fresh keys, or
 - keys they have learned during the attack
Characteristics of Protocols

• Every participant must know the protocol and the steps in advance.
• Every participant must agree to follow the protocol
 – Honest participants

• Big problem: How to deal with bad participants?
 – 3 basic kinds of protocols
Arbitrated Protocols

• Tom is an *arbiter*
 – Disinterested in the outcome (doesn’t play favorites)
 – Trusted by the participants (Trusted 3rd party)
 – Protocol can’t continue without T’s participation
Arbitrated Protocols (Continued)

• Real-world examples:
 – Lawyers, Bankers, Notary Public

• Issues:
 – Finding a trusted 3rd party
 – Additional resources needed for the arbitrator
 – Delay (introduced by arbitration)
 – Arbitrator might become a bottleneck
 – Single point of vulnerability: attack the arbitrator!
Adjudicated Protocols

- Alice and Bard record an *audit log*
- Only in exceptional circumstances do they contact a trusted 3rd party. (3rd party is not always needed.)
- Tom as the *adjudicator* can inspect the evidence and determine whether the protocol was carried out fairly
Self-Enforcing Protocols

- No trusted 3rd party involved.
- Participants can determine whether other parties cheat.
- Protocol is constructed so that there are no possible disputes of the outcome.
Authentication

• For honest parties, the claimant A is able to authenticate itself to the verifier B. That is, B will complete the protocol having accepted A’s identity.
Shared-Key Authentication

- Assume Alice & Bart already share a key K_{AB}.
 - The key might have been decided upon in person or obtained from a trusted 3rd party.
- Alice & Bart now want to communicate over a network, but first wish to authenticate to each other
Solution 1: Weak Authentication

- Alice sends Bart K_{AB}.
 - K_{AB} acts as a password.
- The secret (key) is revealed to passive observers.
- Only works one-way.
 - Alice doesn’t know she’s talking to Bart.
Solution 2: Strong Authentication

- Protocol doesn’t reveal the secret.
- **Challenge/Response**
 - Bart requests proof that Alice knows the secret
 - Alice requires proof from Bart
 - R_A and R_B are randomly generated numbers
(Flawed) Optimized Version

• Why not send more information in each message?
• This seems like a simple optimization.
• But, it’s broken… how?
Attack: Marvin can Masquerade as Alice

- Marvin pretends to take the role of Alice in two runs of the protocol.
 - Tricks Bart into doing Alice’s part of the challenge!
 - Interleaves two instances of the same protocol.
Lessons

• Protocol design is tricky and subtle
 – “Optimizations” aren’t necessarily good

• Need to worry about:
 – Multiple instances of the same protocol running in parallel
 – Intruders that play by the rules, mostly

• General principle:
 – Don’t do anything more than necessary until confidence is built.
 – Initiator should prove identity before responder takes action (like encryption)