
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2006
Lecture 10



2/22/06 CIS/TCOM 551 2

Announcements
• Project 2 is available on the web.

– Due: March 14, 2006

• A new mail alias has been set up.  Send all course-related
e-mail to:  cis551staff@seas.upenn.edu



2/22/06 CIS/TCOM 551 3

Recap
• Last time:

– RSA

• Today:
– Diffie Hellman key exchange
– Cryptographic Hashes
– Start Digital Signatures



2/22/06 CIS/TCOM 551 4

Diffie-Hellman Key Exchange
• Problem with shared-key systems: Distributing the shared

key
• Suppose that Alice and Bart want to agree on a secret

(i.e. a key)
– Communication link is public
– They don’t already share any secrets

• First public key protocol developed
• Proposed by Whitfield Diffie and Martin Hellman in 1976

– (Although, again, was known by the British intelligence agency!)



2/22/06 CIS/TCOM 551 5

Diffie-Hellman by Analogy: Paint
Alice Bart

“Let’s use yellow”
“OK, yellow.”

1. Alice & Bart decide on a public color, and mix one
liter of that color.

2. They each choose a random secret color, and mix two 
liters of their secret color.

2. They each choose a random secret color, and mix two 
liters of their secret color.

3. They keep one liter of their secret color, and mix the 
other with the public color.

2. They each choose a random secret color, and mix two 
liters of their secret color.

3. They keep one liter of their secret color, and mix the 
other with the public color.

2. They each choose a random secret color, and mix two 
liters of their secret color.



2/22/06 CIS/TCOM 551 6

Diffie-Hellman by Analogy: Paint
Alice Bart

4.  They exchange the mixtures over the public channel.

5. When they get the other person’s mixture, they 
combine it with their retained secret color.

6.  The secret is the resulting color: Public + Alice’s + Bart’s 



2/22/06 CIS/TCOM 551 7

Diffie-Hellman Key Exchange
• Choose a prime p  (publicly known)

– Should be about 512 bits or more
• Pick g < p   (also public)

– g must be a primitive root of p.
– A primitive root generates the finite field p.
– Every n in {1, 2, …, p-1} can be written as

gk mod p
– Example: 2 is a primitive root of 5
– 20 = 1      21 = 2      22 = 4       23 = 3    (mod 5)

– Intuitively means that it’s hard to take logarithms base g because
there are many candidates.



2/22/06 CIS/TCOM 551 8

Diffie-Hellman
Alice Bart

1. Alice & Bart decide on a public prime p and primitive
root g.

“Let’s use (p, g)”
“OK”

2. Alice chooses secret number A. Bart chooses secret
number B

3. Alice sends Bart gA mod p.

    gA mod p

    gB mod p

4. The shared secret is gAB mod p.



2/22/06 CIS/TCOM 551 9

Details of Diffie-Hellman
• Alice computes gAB mod p because she knows A:

– gAB mod p  =  (gB mod p)A mod p

• An eavesdropper gets gA mod p and gB mod p
– They can easily calculate gA+B mod p but that doesn’t help.
– The problem of computing discrete logarithms (to recover A from

gA mod p is hard.



2/22/06 CIS/TCOM 551 10

Example
• Alice and Bart agree that q=71 and g=7.
• Alice selects a private key A=5 and calculates a public

key gA ≡ 75 ≡ 51 (mod 71).  She sends this to Bart.
• Bart selects a private key B=12 and calculates a public

key gB ≡ 712 ≡ 4 (mod 71).  He sends this to Alice.
• Alice calculates the shared secret:

S ≡ (gB)A ≡ 45 ≡ 30 (mod 71)
• Bart calculates the shared secret

S ≡ (gA)B ≡ 5112 ≡ 30 (mod 71)



2/22/06 CIS/TCOM 551 11

Why Does it Work?
• Security is provided by the difficulty of calculating discrete

logarithms.
• Feasibility is provided by

– The ability to find large primes.
– The ability to find primitive roots for large primes.
– The ability to do efficient modular arithmetic.

• Correctness is an immediate consequence of basic facts
about modular arithmetic.



2/22/06 CIS/TCOM 551 12

Man-in-the-middle Attack
• As stated, Diffie-Hellman doesn't provide authentication.
• So, an attacker could intercept the messages and

impersonate one of the end points.

• (See chalk board)



2/22/06 CIS/TCOM 551 13

Hash Algorithms
• Take a variable length string
• Produce a fixed length digest

– Typically 128-1024 bits

• (Noncryptographic) Examples:
– Parity (or byte-wise XOR)
– CRC (cyclic redundancy check) used in communications
– Ad hoc hashes used for  hash tables

• Realistic Example
– The NIST Secure Hash Algorithm (SHA) takes a message of less than

264 bits and produces a digest of 160 bits

Hash



2/22/06 CIS/TCOM 551 14

Cryptographic Hashes
• Create a hard-to-invert summary of input data
• Useful for integrity properties

– Sender computes the hash of the data, transmits data and hash
– Receiver uses the same hash algorithm, checks the result

• Like a check-sum or error detection code
– Uses a cryptographic algorithm internally
– More expensive to compute

• Sometimes called a Message Digest
• History:

– Message Digest (MD4 -- invented by Rivest, MD5)
– Secure Hash Algorithm  - 1993 - (SHA-0)
– Secure Hash Algorithm (SHA-1)
– SHA-2   (actually a family of hash algorithms with varying output sizes)

• Attacks have been found against both SHA-0 and SHA-1



2/22/06 CIS/TCOM 551 15

Uses of Hash Algorithms
• Hashes are used to protect integrity of data

– Virus Scanners
– Program fingerprinting in general
– Modification Detection Codes (MDC)

• Message Authenticity Code (MAC)
– Includes a cryptographic component
– Send (msg, hash(msg, key))
– Attacker who doesn’t know the key can’t modify msg (or the

hash)
– Receiver who knows key can verify origin of message

• Make digital signatures more efficient (we'll see this
shortly)



2/22/06 CIS/TCOM 551 16

Desirable Properties
• The probability that a randomly chosen message maps to an n-bit

hash should ideally be (½)n.
– Attacker must spend a lot of effort to be able to modify the source

message without altering the hash value

• Hash functions h for cryptographic use as MDC’s fall in one or both of
the following classes.
–  Collision Resistant Hash Function: It should be computationally

infeasible to find two distinct inputs that hash to a common value ( ie. h(x)
= h(y) ).

–  One Way Hash Function: Given a specific hash value y, it should be
computationally infeasible to find an input x such that h(x)=y.



2/22/06 CIS/TCOM 551 17

Secure Hash Algorithm (SHA)
• Pad message so it can be divided into 512-bit blocks,

including a 64 bit value giving the length of the original
message.

• Process each block as 16 32-bit words called W(t) for t
from 0 to 15.

• Expand from these 16 words to 80 words by defining as
follows for each t from 16 to 79:
– W(t) := W(t-3) ⊕ W(t-8) ⊕ W(t-14) ⊕ W(t-16)

• Constants H0, …, H5 are initialized to special constants
• Result is final contents of H0, … , H5



2/22/06 CIS/TCOM 551 18

SHA

Chaining Variables

Shift A left 5 bits



2/22/06 CIS/TCOM 551 19

Attacks against SHA-1
• In early 2005, Rijmen and Oswald published an attack on

a reduced version of SHA-1 ( 53 out of 80 rounds ) which
finds collisions with a complexity of fewer than 280

operations.
• In February 2005, an attack by Xiaoyun Wang, Yiqun Lisa

Yin, and Hongbo Yu was announced. The attacks can find
collisions in the full version of SHA-1, requiring fewer than
269 operations (brute force would require 280.)

• In August 2005, same group lowered the threshold to 263.

• May lead to more attacks…


