
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2006
Lecture 2

1/17/06 CIS/TCOM 551 2

Buffer Overrun in the News
• From Slashdot

– “There is an unchecked buffer in Microsoft Data Access
Components (MDAC) prior to version 2.7, the company said.
MDAC is a "ubiquitous" technology used in Internet Explorer and
the IIS web server. The buffer can be overrun with a malformed
HTTP request, allowing arbitrary code to be executed on the
target machine.”

– http://www.theregister.co.uk/content/55/28215.html

1/17/06 CIS/TCOM 551 3

The Consequences
• From Microsoft

– “An attacker who successfully exploited it could gain complete
control over an affected system, thereby gaining the ability to take
any action that the legitimate user could take.”

– http://www.microsoft.com/technet/treeview/default.asp?url=/technet/secur
ity/bulletin/MS02-065.asp

1/17/06 CIS/TCOM 551 4

Buffer Overflow Attacks
• > 50% of security incidents reported at CERT are related

to buffer overflow attacks

• Problem is access control but at a very fine level of
granularity

• C and C++ programming languages don’t do array
bounds checks

1/17/06 CIS/TCOM 551 5

Case Study: Buffer Overflows
• First project: Due: 31 Jan. 2006
• http://www.cis.upenn.edu/~cis551/project1.html

• Assigned Reading:
Aleph One (1996)
Smashing the Stack for Fun and Profit

– This paper is essentially a tutorial for your project!

• Stack smashing is a particular (common) instance of a
buffer overflow.
– Easy to exploit in practice

1/17/06 CIS/TCOM 551 6

3 parts of C memory model
• The code & data (or "text") segment

– contains compiled code, constant strings, etc.

• The Heap
– Stores dynamically allocated objects
– Allocated via "malloc"
– Deallocated via "free"
– C runtime system

• The Stack
– Stores local variables
– Stores the return address of a function

Code

Heap

Stack

La
rg

er
 A

dd
re

ss
es

1/17/06 CIS/TCOM 551 7

C’s Control Stack

f() {
 g(parameter);
}

g(char *args) {
 int x;
 // more local
 // variables
 ...
}

f’s stack
frame

Input
parameter

Return Addr.
Base Pointer

int x;
// local
// variables

La
rg

er
 A

dd
re

ss
es

ESP

1/17/06 CIS/TCOM 551 8

C’s Control Stack

f() {
 g(parameter);
}

g(char *args) {
 int x;
 // more local
 // variables
 ...
}

f’s stack
frame

Input
parameter

La
rg

er
 A

dd
re

ss
es

1/17/06 CIS/TCOM 551 9

C’s Control Stack

f() {
 g(parameter);
}

g(char *args) {
 int x;
 // more local
 // variables
 ...
}

f’s stack
frameLa

rg
er

 A
dd

re
ss

es

Return Addr.

int x;
// local
// variables

Input
parameter

Base Pointer

ESP

1/17/06 CIS/TCOM 551 10

Buffer Overflow Example

g(char *text) {
 char buffer[128];
 strcpy(buffer, text);
}

f’s stack
frame

Return Addr.

buffer[]

text
Attack code
132 bytes

ADDR

Base Pointer

ESP

1/17/06 CIS/TCOM 551 11

Buffer Overflow Example

g(char *text) {
 char buffer[128];
 strcpy(buffer, text);
}

f’s stack
frame

Return Addr.

text
Attack code
132 bytes

ADDR

Base Pointer

Attack code
132 bytes

ADDR

ADDR:

?

1/17/06 CIS/TCOM 551 12

Constructing a Payload
• Idea: Overwrite the return address on the stack

– Value overwritten is an address of some code in the "payload"
– The processor will jump to the instruction at that location
– It may be hard to figure out precisely the location in memory

• You can increase the size of the "target" area by padding
the code with no-op instructions

• You can increase the chance over overwriting the return
address by putting many copies of the target address on
the stack

[NOP]…[NOP]{attack code} {attack data}[ADDR]…[ADDR]

1/17/06 CIS/TCOM 551 13

More About Payloads
• How do you construct the attack code to put in the

payload?
– You use a compiler!
– Gcc + gdb + options to spit out assembly (hex encoded)

• What about the padding?
– NOP on the x86 has the machine code 0x90

• How do you guess the ADDR to put in the payload?
– Some guesswork here
– Figure out where the first stack frame lives: OS & hardware

platform dependent, but easy to figure out
– Look at the program -- try to guess the stack depth at the point of

the buffer overflow vulnerability.
– Intel is little endian -- so if ADDR is:

0xbf9ae358 you actually need to put the following words in the
payload: 0x58 0xe3 0x9a 0xbf

1/17/06 CIS/TCOM 551 14

Finding Buffer Overflows
• The #1 source of vulnerabilities in software
• Caused because C and C++ are not safe languages

– They use a “null” terminated string representation:

“HELLO!\0”

– Standard library routines assume that strings will have the null
character at the end.

– Bad defaults: the library routines don’t check inputs

• Easy to accidentally get wrong
• …even easier to maliciously attack

1/17/06 CIS/TCOM 551 15

Buffer overflows in library code
• Basic problem is that the library routines look like this:

void strcopy(char *src, char *dst) {
 int i = 0;
 while (src[i] != “\0”) {
 dst[i] = src[i];
 i = i + 1;
 }
}

• If the memory allocated to dst is smaller than the
memory needed to store the contents of src, a buffer
overflow occurs.

1/17/06 CIS/TCOM 551 16

If you must use C/C++
• Avoid the (long list of) broken library routines:

– strcpy, strcat, sprintf, scanf, sscanf, gets, read, …

• Use (but be careful with) the "safer" versions:
– e.g. strncpy, snprintf, fgets, …

• Always do bounds checks
– One thing to look for when reviewing/auditing code

• Be careful to manage memory properly
– Dangling pointers often crash program
– Deallocate storage (otherwise program will have a memory leak)

• Be aware that doing all of this is difficult.

1/17/06 CIS/TCOM 551 17

Tool support for C/C++
• Extensions to gcc that do array bounds checking
• Link against "safe" versions of libc (e.g. libsafe)
• Test programs with tools such as Purify or Splint
• Compile programs using tools such as:

– Stackguard and Pointguard (Cowan et al., immunix.org)

• Research compilers:
– Ccured (Necula et al.)
– Cyclone (Morrisett et al.)

• Binary rewriting techniques
– Software fault isolation (Wahbe et al.)

1/17/06 CIS/TCOM 551 18

Defeating Buffer Overflows
• Use a typesafe programming language

– Java/C# are not vulnerable to these attacks

• Some operating systems move the start of the stack on a
per-process basis:
– E.g. eniac-l

