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Abstract|The PARAGON toolset provides
an environment for the modular and hierar-
chical design of resource-bound, real-time sys-
tems. It o�ers well-integrated graphical and
textual speci�cation languages with formal se-
mantics. Both languages are based on the
Algebra of Communicating Shared Resources
(ACSR), a process algebra with explicit no-
tions of time, resources and priority. The inte-
gration of the three notions widens the appli-
cability of the PARAGON formalisms to em-
bedded systems, control systems, and fault-
tolerant systems where run-time resource re-
quirements must be considered during the de-
sign phase. To facilitate the design of com-
plex systems, PARAGON allows a designer
to describe a system incrementally through
re�nement steps that preserve system prop-
erties. To increase dependentability of sys-
tem models, PARAGON o�ers three types of
analysis: automated veri�cation of system re-
quirements, interactive simulation, and test-
ing. In this paper, we demonstrate the design
methodology that PARAGON o�ers through
examples.
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I. Introduction

There has been signi�cant progress in the

development of formal methods for the de-

sign of real-time systems in an e�ort towards

increasing reliability in these systems. For-

mal approaches to the speci�cation and anal-

ysis of real-time systems take many forms,

including state machines, logics, and pro-

cess algebras. We focus here on the alge-

braic paradigm, which involves the descrip-

tion of processes using an algebraic language

and the derivation of their correctness proofs

through equivalence checking, testing, and

state space exploration. The algebra we use

is the Algebra of Communicating Shared Re-

sources (ACSR) [5].

ACSR is a timed process algebra that facil-

itates description of concurrent real-time sys-

tems with �nite supplies of serially reusable

resources. Most current real-time process

algebras adequately capture delays due to

process synchronization, e.g., timed exten-

sions of the classic untimed process algebras

CSP and CCS [1], [11], [16], [23], [24], [29].



These process algebras, however, abstract

out resource-speci�c details. In contrast, the

computation model of ACSR is based on the

view that a real-time system consists of a set

of communicating processes that compete for

shared resources. The use of shared resources

is modeled by timed actions whose executions

are subject to the availability of resources.

Contention for resources is arbitrated accord-

ing to the priorities of competing actions. To

ensure the uniform progression of time, pro-

cesses execute timed actions synchronously.

In addition to timed actions, ACSR supports

instantaneous actions, called events, that do

not consume any resource. Processes execute

events asynchronously except when two pro-

cesses synchronize through matching events.

When multiple events are possible their rela-

tive importance can be prioritized.

The novelty of ACSR relative to exist-

ing real-time formalisms is its representation

of resources and priority. Without an ex-

plicit notion of resources, the speci�cation

of resource-bound systems requires that some

arti�cial means be used to model resource re-

quirements, such as de�ning processes to rep-

resent resources. Models that lack explicit

priorities require that a process be created

for the sole purpose of arbitrating priorities

and implementing preemption. Providing ex-

plicit notions of resources and priority within

ACSR results in speci�cations that are closer

analogues of the systems they model and that

are easier to modify to re
ect di�erent re-

source allocations and scheduling disciplines.

The algebraic nature of the ACSR formal-

ism makes it attractive in several ways. One

is that the various operators allow it to sup-

port common software design methodologies

such as modular and hierarchical description

of a large-scale system. A second attrac-

tion is that both design (i.e. detailed) and

requirements (i.e. abstract) speci�cations are

described in the same language. Another at-

tractive aspect is that the behavioral equiva-

lence relation of ACSR is a congruence. This

facilitates modular and hierarchical analy-

sis of large-scale systems because it is pos-

sible to verify the whole system by reasoning

about its parts. Yet another attractive aspect

is that automated and semi-automated for-

mal analysis techniques such as equivalence

checking, testing, and simulation can be ap-

plied within the ACSR paradigm.

While the virtues of formal approaches to

speci�cation and analysis of software systems

are well-known, it is equally well-known that

1) their textual, mathematical notation often

produces obtuse descriptions, and this has

impeded their application within industrial

settings, and 2) their manual application to

realistic problems is time consuming and er-

ror prone. As a result, many formalisms have

adopted graphical notation [15], [17], [27]

and are supported by automated tools [9],

[10], [12], [21], [25], [26] that perform tasks

such as syntax checking, semantic equiva-

lences (e.g., CWB[9] for CCS) or pre-orders

checking (e.g., FDR [12] for CSP), model

checking (e.g., MT [10] for Modecharts and

the TTM/RTTL veri�er[25]), and interactive

execution.

To avoid the mathematical notation and fa-

cilitate the use of ACSR by practitioners that

are not necessarily experts in process alge-

bras, we have developed the Graphical Com-

municating Shared Resources (GCSR) [4]

language. The graphical syntax of GCSR



has been carefully de�ned so that it pro-

duces modular, hierarchical and thus scal-

able speci�cations. In addition, the seman-

tics of GCSR and ACSR are tightly con-

nected, which allows a designer to combine

graphical and textual notations, for exam-

ple to describe the high level structure of a

system graphically and �ll in the details tex-

tually. Furthermore, to facilitate the design

within the ACSR paradigm, we have devel-

oped a toolset, called PARAGON, that as-

sists in the graphical and textual description

of real-time systemmodels and that supports

veri�cation based on automated equivalence

checking, syntactic transformations that pre-

serve behavioral equivalence, testing and in-

teractive execution.

The remainder of this paper is organized as

follows. Section II describes the ACSR and

GCSR languages. Section III describes the

tools we have implemented to facilitate the

use of ACSR. Section IV describes a design

methodology for real-time applications in our

paradigm and illustrates it through a landing

gear system [28]. Finally, Section V summa-

rizes the paper and reports on our current

research within the ACSR paradigm.

II. Formalism

A. ACSR

ACSR (Algebra of Communicating Shared

Resources) is a timed process algebra based

on the synchronization model of CCS that

includes features for representing synchro-

nization, time, temporal scopes [20], resource

requirements, and priorities. Although the

time domain of ACSR can be either dis-

crete [19] or dense [5], this paper and the

GCSR/XVERSA toolset use discrete time

exclusively.

The ACSR paradigm is based on the view

that a real-time system consists of a set of

communicating processes that execute on a �-

nite set of serially reusable resources and syn-

chronize with one another through communi-

cation channels. The use of shared resources

is represented by time and resource consum-

ing actions, and synchronization is supported

by instantaneous events.

An action consists of a possibly empty set

of pairs (r; p) where r is the resource name

and p is its priority, with the restriction that

each resource is represented in the set at most

once. The action ; represents the idling ac-

tion since no resources are used. The execu-

tion of an action is assumed to take nonzero

time units with respect to a global clock, and

to consume a set of resources during that

time. The execution of an action is subject to

the availability of the resources that it uses.

Contention for resources is arbitrated accord-

ing to the priorities of competing actions; pri-

orities are static, i.e., �xed and are drawn

from the set of natural numbers. To ensure

uniform progress of time, processes execute

actions synchronously.

An event in ACSR consists of a pair (e; p)

where e is a label and p is its priority. The

special event label � represents synchroniza-

tion of two events with complementary event

labels e and e. Unlike an action, the execu-

tion of an event is instantaneous and never

consumes any resource. Processes execute

events asynchronously except when two pro-

cesses synchronize through matching event

labels.

Let P range over the domain of terms, A

range over the domain of actions, e range over



the domain of event labels or � , b range over

the domain of event labels, F range over the

set of event labels, I range over the set of

resource names, and let C range over the do-

main of process names. The syntax of ACSR

is de�ned by the following grammar:

P ::= NIL j At : P j (e; p):P j P1 + P2

P1kP2 P 4
b

t
(P1; P2; P3) j [P ]I

P nnI j PnF j C

The semantics of an ACSR process is de-

�ned in terms of a labeled transition system

together with a notion of prioritized transi-

tion represented by a preemption relation.

We informally describe the ACSR semantics

next; for a detailed description, please refer

to [19].

NIL is a process that executes no action,

i.e., it is initially deadlocked. There are two

pre�x operators that correspond to the two

types of actions. The �rst, At : P , exe-

cutes a timed, resource-consuming action A

for t 2 NN+ time units (i.e. t is a positive in-

teger) and proceeds to the process P . The

second pre�x operator, (e; p):P , executes the

instantaneous event e at priority level p, and

proceeds to P . The Choice operator P1 + P2

represents possibilities { either of the pro-

cesses may be chosen to execute, subject to

the event o�erings and resource limitations

of the environment. The operator P1kP2 is

the concurrent execution of P1 and P2. Note

that in ACSR, execution of events can be

interleaved while actions are executed syn-

chronously by the processes in the parallel

operator.

The Scope construct P4
b

t
(P1; P2; P3) binds

the process P by a temporal scope [20], and

incorporates both the features of timeouts

and interrupts. P executes for a maximum

of t 2 NN+ [ f1g time units. The scope may

be exited in three ways. First, if P success-

fully terminates within time t by executing an

event labeled with �b, then control proceeds to

the \exception-handler" P1 (here, b may be

any label other than � ). Second, if P fails

to terminate within time t, then control pro-

ceeds to the \timeout-handler" P2. Lastly,

at any time while P is executing it may be

interrupted by P3's execution of an action or

event, and the scope is then departed.

The Close operator, [P ]I, produces a pro-

cess P that uses the resources in the set I ex-

clusively. The resource hiding operator, PnnI,

eliminates all resources in I from the actions

of P . The Restriction operator, PnF , lim-

its the behavior of P : events with labels in F

are permitted to execute only if they synchro-

nize and become the internal event � . Each

process constant C is associated with a pro-

cess de�nition of the form C
def
= P . This pro-

vides ACSR's mechanism for de�ning recur-

sive processes.

When several execution steps (i.e. transi-

tions in the labelled transition system) are

simultaneously possible they are prioritized.

Informally, the selection among two transi-

tions that are simultaneously possible is ei-

ther nondeterministic, or is arbitrated ac-

cording to the following three rules for select-

ing a transition labeled with � over a tran-

sition labeled with �: 1) � and � are events

with the same label and � has a higher prior-

ity; 2) � and � are actions and � uses a sub-

set of the resources used in � at priorities no

lower than in � and with at least one resource

in � at a higher priority; or 3) � is a � event

(i.e. synchronization of two events) with a

non-zero priority and � is a time-consuming



action. The technical reasons behind these

rules are rather complicated and outside the

scope of this paper [19].)

ACSR o�ers two basic notions of behav-

ioral equivalence that are de�ned over the pri-

oritized labeled transition system. The �rst

equivalence relation is based on strong bisim-

ulation [22], ��, which ensures that equiv-

alent processes match each other's labeled

transitions; it is a congruence relation [13].

The second is based on weak bisimulation,

��, which ensures that equivalent processes

match each other's transitions that are la-

beled with actions and non-� events but al-

lows one process to make transitions on �

that an equivalent process does not match.

B. GCSR

One motivation for the development of

Graphical Communicating Shared Resources

(GCSR) is that, like other textual for-

malisms, the syntax of ACSR produces ob-

tuse speci�cations that are hard to under-

stand even in the case of simple examples.

In addition, the development of GCSR ad-

dressed two concerns: support the modular,

hierarchical, and thus scalable, speci�cation

of real-time systems; and bene�t from the

analysis techniques [6], [7] and tool set [8]

developed for ACSR.

Scalability is an essential feature in any

speci�cation language (and in particular

graphical languages) for large-scale applica-

tions. GCSR supports scalability through its

well de�ned notions of modularity and hier-

archy. In GCSR, the visibility scope of com-

munication events, which re
ect potential de-

pendencies between system components, can

be limited. Furthermore, GCSR's notion of

hierarchy is structured in the sense that no

edge can cross node boundaries and there is a

graphical distinction between control transfer

due to an interrupt versus an exception, i.e.,

involuntary versus voluntary release of con-

trol. These two syntactic features, in addi-

tion to the explicit representation of resources

and priorities, distinguish GCSR from other

graphical languages for real-time systems,

e.g., Statecharts [15], Modechart [17] and

the Communicating Real-time State Ma-

chines [27].

The semantics of GCSR can be de�ned ei-

ther directly as a labeled transition system

or through a translation to ACSR. As shown

in [4], the second way of de�ning the se-

mantics of GCSR allows a designer to in-

terchangeably use the graphical and textual

notations; for example, to specify the high-

level view of a system graphically and �ll

the details of components textually. In ad-

dition, it allows a designer to use the no-

tions of equivalence of ACSR to verify the

correctness of a GCSR speci�cation, as we

will see shortly. Equivalence checking also

distinguishes GCSR from other graphical lan-

guages for real-time systems. We next brie
y

describe the syntax of GCSR and its seman-

tics through a correspondence to ACSR.

Syntax. Graphically, a GCSR process is

represented by a �nite set of nodes that are

connected with directed edges.

Figure 1 shows the graphical symbols for

the �ve types of GCSR nodes. The Resource

attribute of a time-consuming node is a set of

(resource, priority) pairs, with the restriction

that each resource is listed once; this enforces

the notion of non-shared resource usage. The

Name attribute of a reference node refers to



Resource

instantaneous time-consuming

examples of compound nodesreference 

Restrict=F  Close=I Restrict=F  Close=I

Name

nil

Fig. 1. GCSR nodes

the name of a GCSR process. The Restrict

and Close attributes of a compound node are

sets of event names and resource names, re-

spectively.

The motivation for various node symbols

in GCSR is a succinct and scalable repre-

sentation of the di�erent system activities

and components. The instantaneous node re-

quires that no delay is allowed before the next

activity. In contrast, the time-consuming

node describes a time and resource consum-

ing activity. Note that the explicit speci�-

cation of the required resources by a system

activity makes it easy to modify any resource

requirement to re
ect di�erent resource allo-

cation and scheduling disciplines.

The nil node describes a halting process,

i.e., end of system execution. The ref-

erence node allows the decomposition of

a large speci�cation into subspeci�cations

which eases the visual structuring of such a

speci�cation. On the other hand, the com-

pound node visually distinguishes a system

action from a system component. It is essen-

tial in supporting scalable and modular speci-

�cations since it allows a designer to 1) group

GCSR processes into a higher level entity, 2)

connect several GCSR processes that are exe-

cuted sequentially, and 3) re
ect the fact that

system components execute in parallel. In

addition to the structural modularity, com-

pound nodes also provide for semantic modu-

larity by encapsulating dependencies through

their Restrict and Close attributes. The Re-

strict attribute identi�es a set of events that

are visible only among the GCSR processes

inside the node; the Close attribute identi�es

a set of resources that are reserved for the

nested GCSR processes, even if their actions

do not explicitly request them.

(event-name, priority)

Exception edges

The source node is any box node

time

(event-name, priority)
event-labeled edge

unlabeled edge

time-labeled edge

The circle  node is any node.

Normal edges

Fig. 2. GCSR edges

GCSR nodes can be connected with edges

to describe sequential execution. GCSR of-

fers four types of edges shown in Figure 2.

We call unlabeled, event-labeled, and time-

labeled edges normal edges. The distinct

symbols for a normal edge and an exception

edge are motivated by the desire to support a

structured, hierarchical speci�cation in which

edges do not cross node boundaries and to

graphically distinguish two types of control


ow: one that is externally controlled by an

interacting process and one that is triggered

internally through voluntary release of con-

trol by raising an exception. The �rst type



of control 
ow is described by a normal edge

and the second by an exception edge. Control

moves to the destination node of an exception

edge when the process of the source node ex-

ecutes an exception event that labels the ex-

ception edge. The transfer of control through

an exception edge allows synchronization be-

tween a process inside a compound node with

an outside node and thus emulates a transi-

tion between nodes at di�erent levels of nest-

ing.

In [4] we de�ne a set of simple syntactic

rules for a well-formed GCSR process. These

rules basically disallow 1) an edge to cross a

node boundary, 2) an edge to connect nodes

in parallel components inside a compound

node, 3) a node to have multiple time-labeled

outgoing edges, and 4) an instantaneous node

to have a time-labeled outgoing edge.

GCSR-ACSR Correspondence. Fig-

ure 3 shows the main steps of the transla-

tion of a GCSR process to an ACSR process,

where the translation function is denoted as

T.

The translation starts from the initial node

of a GCSR process and recursively traverses

all reachable nodes. Step 1 binds the trans-

lation of an initial node to the ACSR pro-

cess variable name C and returns the ACSR

process variable C; this step is done for each

initial GCSR node. In step 2, the nil node is

translated to the NIL ACSR process. In step

3, an instantaneous node is translated to an

ACSR Choice process; each ACSR subpro-

cess in the Choice process corresponds either

to the translation of the target node of an un-

labeled edge out of the instantaneous node,

or to an event-pre�x ACSR process where

the event is the label of an edge out of the

M1

Mk

N1

Nj

t
A N1

N1

C

G1 Gk

N1

en

e1

C

U1

Ul

V1

Vn

e1

el

t
N2

e

Restrict=F , Close=I

return

where

e
tP       (T(N1),   T(N2),  S)

1.

2.

3.

4.

5.

P = [ ( T(N01)  ||   ...  ||  T(N0k) ) \ F ] I

G1, ...., Gk

N01, ..., N0k are initial nodes of

P = C

or

return C

return A  :T(N1)

C = T(N1)

t

return NIL

return    e1.T(N1) +...+en.T(Nj) +
 T(M1)+...+T(Mk)

S = e1.T(U1)+...+el.T(Ul) +
    T(V1)+...+T(Vn)

Fig. 3. GCSR to ACSR Translation, T.

instantaneous node and the next process in

the event-pre�x process is the translation of

the target node of the edge. Note that in

this translation the event syntax must be con-

verted from GCSR to ACSR, i.e., (a!; p) and

(a?; p) are converted to (a; p) and (a?; p), re-

spectively. In step 4, a time-consuming node

is translated to an action-pre�x ACSR pro-

cess where the duration of the action is the

label of the time-labeled edge out of the time-

consuming node. In step 5, the translation of

the box node produces a Scope ACSR process

P 4
e

t
(P1; P2; P3) where the main process P

is the translation of the box node without its

outgoing edges.

Note that due to space limitations, Fig-

ure 3 abstracts out several details such as how



loops are handled, and equivalence preserv-

ing optimizations applied when some edges

are missing in a GCSR speci�cation. The re-

verse translation, from ACSR to GCSR, is

also possible.

C. Example: Aircraft Landing Gear

The landing gear system is a case study

of the Swedish JAS 39 Gripen defense and

�ghter aircraft [28]. In [28], the authors used

an automaton-based language to model the

system and prove that their model ensures

one safety property: the door and landing

gear do not collide while in motion. In this

section, we illustrate how to model the air-

craft landing gear system using the GCSR

and ACSR formalisms. In subsequent sec-

tions, we will analyze our model for the above

safety requirement and additional timeliness

requirements.

The physical system, i.e. plant consists of

a door and a landing gear. The goal of the

case study is to model a software controller

that receives commands from a pilot to lower

or raise the landing gear. To function au-

tonomously, the plant is equipped with sen-

sors that report the status of the plant to the

controller, and actuators, for the controller to

operate the plant.

When it receives the command to lower

the landing gear, the software controller must

�rst inquire the status of the door and land-

ing gear. If the door is closed and the landing

gear is raised, the controller signals the door

to open, waits until the door is completely

open, signals the landing gear to move down,

waits for it to be completely lowered, and

then signals the door to close again. When

it receives the command to raise the landing

gear, the controller also inquires the status

of the door and landing gear. If the door is

closed and the landing gear is lowered, the

controller �rst signals the door to open, sig-

nals the landing gear to move up after the

door is open, waits until the landing gear is

raised, and then signals the door to close.

The software controller operates the door

and landing gear within a set of timing and

safety requirements. The timing assumptions

about the system are summarized in Table I.

The controller must report to the pilot the

result of executing a command within a �xed

deadline. One safety requirement in the origi-

nal case study [28] is that the controller must

ensure that the door and gear never collide

while in motion. In addition, our design will

check for and report failures in the door and

gear.

TABLE I

Timing Assumptions

Door
Tdoor = 10 time to open/close door

Landing gear
Tgear = 10 time to lower/raise gear

Controller
Tdoor + 1 deadline for door's response
Tgear+ 1 deadline for gear's response

Our design. Our design models a sam-

ple of both unshared and shared resources.

The unshared resources door and gear repre-

sent physical components in the plant each of

which is only manipulated by its correspond-

ing software/hardware component. In addi-

tion, our design models the shared and crit-

ical resource space which describes the space

in which both the gear and door move during

their operation. This resource can be used by



one component at a time. An attempt by the

door and gear components to use it simulta-

neously indicates a collision between the door

and gear, which is a safety violation.

Each sensor and actuator is represented

by a communication event. Since our for-

malisms lack continuous data, sensory in-

formation only re
ects the critical status of

the plant, e.g. door completely open or com-

pletely closed. Intermediate sensory informa-

tion is ignored. The synchronization events

for the set of sensors and actuators in the

system are summarized in Table II.

Figure 4 shows the high-level structure of

our design which contains three components:

the processes Door and Gearwhich model the

two components in the plant, and the process

Controller which is the software controller.

The three components execute concurrently

and privately coordinate with one another

through the synchronization events shown in

Table II. In addition, the three components

reserve the resources door, gear and space.

Fig. 4. High Level GCSR Speci�cation of the Land-

ing Gear System

Figure 5 shows the ACSR speci�cation of

the door component. Initially, the door is

assumed to be closed and behaves as de-

scribed by the process Closed. This latter has

four possible behaviors: instantaneously send

the event (dc; 1) to indicate its closed status

and remain closed; instantaneously receive

the event cd at priority level 1 after which

it remains closed; instantaneously receive the

event od at priority level 2 after which it

starts behaving as described by the process

Opening; or idles by consuming time and

no resources. As shown in Figure 5, within

the System process the Door process synchro-

nizes its behavior with the Controller process

through the events dc, cd and od. Thus, when

synchronization occurs, these events will be-

come the special, internal event � . The pri-

oritized semantics of ACSR and GCSR is

such that when any synchronization is pos-

sible, the Door process favors it over idling.

Also, when all synchronizations are possible,

the Door process favors the event od over the

other possible behaviors; this is re
ected by

the high priority of the event od. However,

the selection between the events dc and cd is

nondeterministic since they have equal prior-

ities.

The process Opening describes the activity

of opening the door: the process starts be-

having like the process DoorBusyO for Tdoor

time units. The process DoorBusyO can con-

sume the resource door at priority level 1

together with the resource space at priority

level 1 for one time unit. The process Door-

BusyO uses the resources in a non-preemptive

way. In addition, the process DoorBusyO can

receive the event (od,1) which instructs it to

open the door. Since it is already opening

the door, the process receives the event and

goes on carrying out the door-opening activ-



TABLE II

Synchronization Events

Controller ! Door Controller ! Landing gear
od : open door lg : lower gear
cd : close door rg : raise gear

9>=
>; Actuators

Door ! Controller Landing gear ! Controller
do : door is open gl : gear is low
dc : door is closed gr : gear is raised

9>=
>; Sensors

Door
def
= Closed

Closed
def
= (dc; 1):Closed + (cd; 1):Closed + (od; 2):Opening + ; : Closed;

Opening
def
= DoorBusyO4Tdoor (NIL;Open; (cd; 2):Closing)

Closing
def
= DoorBusyC4Tdoor (NIL;Closed; (od; 2):Opening)

DoorBusyO
def
= (od; 1):DoorBusyO + f(door; 1); (space; 1)g : DoorBusyO

DoorBusyC
def
= (cd; 1):DoorBusyC + f(door; 1); (space; 1)g : DoorBusyC

Open
def
= (do; 1):Open + (od; 1):Open + (cd; 2):Closing + ; : Open

Fig. 5. ACSR Speci�cation of the Door Component

ity. The execution of the process DoorBusyO

can be aborted in two ways within the pro-

cess Opening: One is through a timeout after

Tdoor time units from its instantiation and

after which the process Open is started; a sec-

ond way is through receiving the event (cd; 2)

from the controller, in which case the process

Closing is started to close the door. Synchro-

nization with the controller has a higher pri-

ority than consuming time and the resource

door as long as the timer Tdoor has not ex-

pired.

The speci�cation of the Gear process is

similar to the process Door. When it is

being lowered or raised, the Gear process

simultaneously uses the gear and space re-

sources in a non-preemptive mode. Figure 6

shows the GCSR speci�cation of the Con-

troller process. Execution starts at the ref-

erence node marked with Controller. At this

time, the controller starts idling as described

by theWait process. The idling can be inter-

rupted by the reception of the event cm dn

at priority level 3, at which time execution

moves inside the top compound node. Inside

this node, two processes execute in parallel:

one process, LowerGear, describes the con-

troller's instructions to open the door, lower

the gear, and then close the door again; the

second describes the fact that the controller

is always ready to receive the command to

lower the gear|event (cm dn?,3) which is ac-

cepted without the controller initiating ad-

ditional attempts to lower the gear. Execu-

tion of these two processes can be interrupted

at any time by the reception of a command

to raise the gear|event (cm up?,3). When

this command is received, the controller in-



Fig. 6. GCSR Speci�cation of the Controller Component

terrupts its instructions to open the door and

lower the gear and starts instructing the door

to open, the gear to move up, and then the

door to close again.

Our design accounts for potential failures

of the door and gear. For example, in the

process LowerGear after signaling the door

to open, the controller waits for at most one

time unit more than the time needed to open

the door. If by this time the controller does

not receive the event do which indicates that

the door is open, it assumes a failure has oc-

curred in the door and signals an error, event

(dr err!, 4), then immediately enters a dead-

locked state that is represented by a nil node.

Our design also includes similar error detec-

tion for the gear. The semantics of GCSR

and ACSR ensures that if the controller (or

any of the other parallel processes) deadlocks,

so does the process System. We will use these

deadlocks and special error-marking events to

test for potential malfunctioning of the door

and gear.

III. The PARAGON Toolset

We have implemented a toolset, called

PARAGON, to facilitate the use of the ACSR

paradigm for real-time systems modeling and

analysis. Figure 7 shows the overall struc-

ture of PARAGON. The user's view of the

toolset is provided by the GCSR, XVERSA



and VERSA user interfaces. The analysis

of ACSR and GCSR speci�cations is carried

out by the VERSA system that is accessed

through these interfaces.

Term
Rewriting

State
Space

Exploration

Equivalence
Testing

Interactive
Execution

Text-Based Interface
VERSA

X-Windows Interface
XVERSA

GCSR-to-ACSR

GCSR Tool Set

Fig. 7. Architecture of the PARAGON toolset

The user interfaces are responsible for man-

agement of input/output streams. They

allow processes to be entered as graphical

GCSR process descriptions or as ACSR pro-

cesses using a text-based notation. Graph-

ical input of GCSR speci�cations is man-

aged with drawing support functions, syntax-

checking functions, and automated transla-

tion of GCSR to ACSR. The text-based no-

tation accepted by XVERSA enhances the

ACSR process algebra with indexing, which

can be used to emulate value-passing.

Within VERSA there are four major func-

tional areas for analyzing processes: term

rewriting, state space exploration, equiva-

lence testing, and interactive execution.

The rewrite system facilitates the rewrit-

ing of ACSR process expressions according

to sound algebraic laws that preserve priori-

tized strong equivalence, a bisimulation rela-

tion that respects priority. At the direction

of the user, the rewrite system applies pre-

de�ned algebraic laws to one or more pro-

cesses, producing a new process that may

be bound to a new, or pre-existing process

variable. In this way, algebraic proofs of the

equivalence of process expressions may be de-

veloped.

State space exploration, equivalence test-

ing and interactive execution operate on a la-

beled transition system (LTS) representation

of the system being analyzed. The LTS for

one or more processes is produced by an al-

gorithm that expands the process to produce

a labeled transition system representing all

possible executions. The LTS construction

algorithm also prunes edges made unreach-

able by the semantics of the prioritized tran-

sition system, in most cases reducing the size

of the resulting LTS.

State space exploration analysis can be

used to determine key properties of a sys-

tem's LTS. These include (1) number of

states and transitions; (2) presence of dead-

locked states; (3) states capable of Zeno be-

haviors (i.e. in�nite sequences of instanta-

neous events); (4) states that require syn-

chronization to take place before time can

progress; and (5) reachability of speci�c ex-

ternally observable events.

Process equivalence can be tested using a

number of di�erent notions of equivalence in-

cluding syntactic equivalence, a weaker syn-

tactic equivalence which allows renaming of

process variables and simple changes in struc-

ture, prioritized strong equivalence, and pri-

oritized weak equivalence. In the order

listed, these notions of equivalence increase

in computational complexity and decrease in

\strength" (i.e. equate more terms).

The interactive execution feature allows

user-directed execution of process speci�-

cations. The user may interactively step

through the LTS one action at a time, pro-



duce traces from random executions of the

LTS, save process con�gurations to a stack

for later analysis while an alternate path is

explored, and analyze the size and deadlock

characteristics of the LTS resulting from their

process.

IV. Design Support

A. Speci�cation

The various operators in ACSR, such as the

parallel and scope operators, allow the speci-

�cation and veri�cation of a system in a mod-

ular and hierarchical fashion, which makes

the development of a large scale real-time

system more manageable. The precise, com-

positional semantics of the operators allows

one to replace any component of a require-

ments speci�cation by an equivalent compo-

nent, and retain any correctness proved us-

ing the same equivalence. Thus, one can

develop a design speci�cation by a series of

component-wise design re�nements, starting

with a requirements speci�cation and grad-

ually replacing its components with detailed

components until a desired design speci�ca-

tion is realized.

Another support of modular and hierar-

chical design within ACSR and GCSR is

through a set of re�nement operations that

allow a designer to introduce implementa-

tion details gradually, e.g. add communica-

tion events, rename communication events,

show the structure of a process for a time-

consuming action, and tighten an estimate

resource requirements [3]. These notions of

re�nement are supported through a set of

rewrite rules for ACSR and graphical trans-

formations for GCSR, that syntactically ma-

nipulate an abstract speci�cation to add de-

tails. In addition, re�nement in ACSR and

GCSR has a precise semantics that insures

that each trace of the re�ned speci�cation

mimics a trace in the abstract speci�cation

in such a way that each timed occurrence of

an abstract event is preserved in the re�ned

trace.

Another feature of the ACSR paradigm

that facilitates real-time system speci�cation

is the precise correspondence between ACSR

and GCSR, which allows a designer to com-

bine textual and graphical descriptions. For

example, a designer can describe the high

level structure of a system graphically and

�ll in the detailed description of components

textually. This helps a designer to visualize

the structure of the system and the depen-

dencies between its component expressed as

communication events.

To illustrate one of the notions of re�ne-

ment in GCSR, let us revisit the landing

gear example and re�ne our controller design

shown in Figure 6. We can re�ne this design

by adding a report to the pilot after each

command has been successfully carried out

by the door and gear. For this, we rely on the

modularity of re�nement in GCSR and focus

on re�ning the processes in charge of carry-

ing out the commands, e.g., LowerGear and

which are part of the Controller component of

the System process. One new event is (gdn!,

4) and it is inserted between each occurrence

of the event dc and the next Wait process. A

similar event (gup!,4) is added to report the

fact that the gear has been raised. The re-

�ned Controller process is shown in Figure 8.



Fig. 8. Re�ned Controller

B. Veri�cation

The primary methods for verifying the cor-

rectness of GCSR and ACSR processes are

(1) using bisimulation checking algorithms to

verify the prioritized strong equivalence of

a design model and a high-level correctness

speci�cation; and (2) using state space explo-

ration to detect the presence of deadlocked

states.

Equivalence Testing. When a real-time

system model is based on the structure of a

proposed design, the model is likely to con-

tain non-sequential operators such as par-

allel composition and temporal scope. Al-

though these operators are critical for creat-

ing a model that accurately and succinctly

describes the intended design, they make it

di�cult to determine the model's operational

behavior by inspection. However, if the sys-

tem's correct behavior (ignoring constraints

on the design such as a need for redundancy

or distributed control) has a succinct sequen-

tial speci�cation that is correct by inspection,

the correctness of the design model can be

veri�ed by proving the two descriptions are

bisimilar.

For example, consider the model of System

presented in Figure 4 of Section II-C. The

model contains nested processes with syn-



chronization events, temporal scopes, and re-

source requirements to facilitate a concise de-

scription and accurately re
ect the hardware

implementation. The system also has a se-

quential correctness speci�cation SystemSeq

SystemSeq
def
= ; : SystemSeq

+ (cmd dn; 3):SystemSeq
+ (cm up; 3):SystemSeq

which describes in simple terms a recur-

sive behavior that essentially accepts com-

mands and consumes time. The correctness

of this formulation of the system require-

ments can be veri�ed by inspection: the pro-

cess SystemSeq never deadlocks, it is always

ready to accept commands, and it never pro-

duces any failure marking event.

Deadlock Detection. An approach to

veri�cation that can be applied to non-

terminating systems is to use resource con-

tention deadlocks to indicate that an unsafe

state is reachable. Recall that the notion of

resource de�ned in ACSR's semantic model

does not allow two or more timed actions

to execute simultaneously if they require the

same resource. If a system model is con-

structed in such a way that a resource must

be held while executing in a non-sharable

critical region, then an attempt by two or

more processes to execute simultaneously in

that critical region will introduce a deadlock.

For example, to ensure that our landing

gear system design is safe, we need to check

that there is never a collision between the

door and the landing gear. First, we note

that each component can separately execute

forever; this is due to the recursive de�ni-

tion of the processes. Second, the concur-

rent behavior of the components consists of

synchronized events (i.e. � 's) interleaved by

timed usage of the door, gear and space re-

sources, possibly at priority zero. Thus, by

the operational semantics of parallel execu-

tion, if all the events are synchronized and

there is no resource contention, then the com-

ponents will execute forever; in other words,

the system will not reach a deadlocked state.

Furthermore, if we ignore the synchronization

events and conceal the identities of the re-

sources, the concurrent behavior of the com-

ponents consists of in�nite sequences of idling

actions, i.e. ;, and reception of the command

events cmd dn and cmd up which is described

by the process SystemSeq. From this, we

can conclude that our design is safe if the fol-

lowing bisimulation holds:

Systemnnfdoor; gear; spaceg �� SystemSeq

where the operation nn hides the resource

names in the behavior of the process.

In our design, there are two sources of dead-

locks which would make the above equiva-

lence fail: contention on the space resource,

which indicates collision between the door

and gear, and miscommunication between

the controller and physical devices. For the

timing assumptions shown in Table I, we used

our automated GCSR-to-ACSR translation

and the VERSA toolset to prove that our

design has no deadlocked states and it sat-

is�es the above bisimulation; and thus our

design is safe with respect to the collision

criterion. This test is performed automati-

cally by the VERSA system using its equiv-

alence testing features. LTS's for System

and SystemSeq are constructed, and a state-

minimization algorithm[18] is applied to de-

termine whether the two LTS's are bisimilar.

If they are, then the correctness of the com-

plex System process can be veri�ed by in-



specting the SystemSeq process. If they are

not equivalent, then there is some fault in

System that causes it to behave di�erently

than SystemSeq. In this case, VERSA will

produce a state where the two processes have

distinguishing behaviors.

C. Testing

Both of the veri�cation techniques de-

scribed in Section IV-B rely on computing the

LTS representation of the system model be-

ing analyzed. Therefore they are only appli-

cable in situations where the LTS representa-

tion of the process can be computed in a rea-

sonable amount of time and space. In cases

where this is not possible, an alternative ap-

proach is to use testing techniques to explore

speci�c system behaviors without computing

the entire system state space.

Our testing technique uses parallel com-

position to apply tests written in ACSR to

the system model. A test is the process

R = (P k T )nE, where P is the process be-

ing tested, T is the sequence of events and

actions making up the test, E is the set of

event labels on which P and T interact, and

R is the result of applying T to P subject

to the restriction of E. Tests are de�ned in

such a way that the success or failure of P

tested by T can be determined by exploring

the state space of R. If R contains the sen-

tinel event failure, P fails T . If R contains

one or more occurences of the sentinel event

success, P passes T .

For example, the speci�cation of the land-

ing gear System requires that at most 30 time

units will elapse following a cmd dn before

the gdn response is received (Tdoor+Tgear+

Tdoor = 30). Thus, one possible test of

T1 = (cmd dn; 1):T 0

1

T 0

1 = (IdleDn431

(NIL;

(failure; 1):NIL;

(gdn; 1):(success; 1):NIL)

IdleDn = ; : IdleDn+ (gup; 1):IdleDn

Fig. 9. Sample Test of System

System is as shown in Figure 9. If P is a

correct implementation of the System speci-

�cation for this input, then the state space of

R = (P k T )nfcmd up,cmd dn,gup,gdng will

contain the success event. If P accepts the

cmd dn input but produces incorrect output,

or no output within 30 time units, then R

will emit failure and deadlock at time 31.

E�cient Translation for Testing. Our

ability to construct the labeled transition sys-

tem corresponding to the result R of a test

depends on e�cient translation of ACSR pro-

cess terms into their state space representa-

tion. Two approaches to this problem are

common: (1) a bottom-up technique that

computes the LTS for each of the sub-terms

of a process, and then combines them to

create the LTS for the process; and (2) a

top-down technique that uses the algebra's

semantic rules to interpret the process one

event or action step at a time. Because

top-down translation is based on interpreting

the process to derive its behaviors, it follows

that only the reachable portion of the process

state space will be constructed.

Bottom-up techniques are not applicable

to our process testing technique because the

computation of the LTS for (P k T )nE will

begin by computing the LTS for P . When



the computation of the entire state space of

P is intractable, VERSA's top-down transla-

tion makes testing possible because a single

test process will exercises a small subset of

the state space of the process being tested.

Testing Techniques. We derive our tests

by viewing the processes being tested as

black-boxes with behavior that can be charac-

terized by inputs, outputs and timing. Test-

ing seeks to verify the acceptance of inputs

at the correct time, and the generation of

corresponding correct outputs at the correct

time. We have successfully applied two black-

box testing techniques from software engi-

neering[2] to verify large ACSR process mod-

els: (1) exhaustive testing; and (2) partition

testing.

Exhaustive testing exercises all possible be-

haviors of a process by applying all possible

inputs and checking the process outputs. If

the process being tested accepts only �nitely

many inputs and has only executions of �nite

duration, then exhaustive testing of the input

domain is su�cient to verify the correctness

of the process. Process models generally have

�nite input domains (this can be veri�ed by

inspection of the process structure) but in�-

nite executions are common in realistic sys-

tem models. Where in�nite executions exist,

simplifying assumptions regarding the maxi-

mum length of a non-repeating execution, or

the maximumlength of an execution that will

be of interest have to be made.

Partition testing is based on a partitioning

of inputs into classes, all elements of which

exercise the same internal functions of the

process. If the partitioning is correct, then

exercising a single input from each class is

su�cient to verify correctness of the process

as a whole. The weakness of this method

lies in the need to partition the functions of

a process when the internal structure of the

process is unknown. As reported in the liter-

ature[14], partition testing has intuitive ap-

peal, but its quantitative merits are limited.

A more complete test of cmd up and

cmd dn inputs of the landing gear System

process could be performed by exercising

both the cmd up and cmd dn inputs and

all of their possible interactions. Because

System is non-terminating, there are in-

�nitely many inputs that exercise these sce-

narios. We concentrate our attention here

on single inputs of each command, beginning

from the start state. A test suite to exercise

cmd up and cmd dn and a single interruption

of one command by the other, beginning in

the start state, is shown in Figure 10.

Test T2 exercises the cmd up input for the

system's start state, and veri�es that gup is

returned within the required interval. Test

T2 applys cmd dn in the system's start state,

and then nondeterministically applys cmd up

at every time instant up to and including the

instant when gdn is returned. Then it is ver-

i�ed that gup is returned within the required

interval. Thus, T3 veri�es the ability of a

cmd dn command to be properly interrupted

by cmd up at any instant up to and including

the moment when the gear is fully lowered.

Test T4 performs a similar task, checking the

ability of cmd up to be properly interrupted

by cmd dn at any time.

We used VERSA to apply these tests to

System and explored the state space of each

of the resulting LTS's to determine that

each contained success and was failure free.

Therefore, System executes the tests T1, T2,



T2 = (cmd up; 1):(IdleUp431 (NIL; (failure; 1):NIL; (gup; 1):(success; 1):NIL)

IdleUp = ; : IdleUp+ (gdn; 1):IdleUp

T3 = (cmd dn; 1):(IdleDn431 (NIL; (failure; 1):NIL; (gdn; 1):T2 + (�; 0):T2)

T4 = (cmd dn; 1):(IdleDn431 (NIL; (failure; 1):NIL; (gdn; 1):T40)

T 0

4 = (cmd up; 1):(IdleUp431 (NIL; (failure; 1):NIL; (gup; 1):T1 + (�; 0):T1)

Fig. 10. Test processes for landing gear System

T3 and T4 successfully. The combined state

space of the application of all four tests to

System contained 500 states and 556 edges,

as compared with 2766 states and 8432 edges

for the full state space of System. This rep-

resents an 82% reduction in states and a 93%

reduction in edges for testing compared to

exploration of the full state space of System

V. Conclusion

We have presented tools and techniques for

modeling resource bound real-time systems.

The presentation was based on the ACSR

process algebra and the GCSR graphical pro-

cess description language. Tools and tech-

niques for constructing and analyzing system

models using GCSR and ACSR were pre-

sented.

In our experience, no single veri�cation

technique will be e�ective in all cases. Ex-

haustive veri�cation based on state space ex-

ploration is mainly applicable to small-scale

systems, or mission-critical subsystems of a

larger design. To analyze large systems, the

user has to concentrate on speci�c aspects

of the system's behavior. We think that our

testing approach provides a formal basis for

this. By combining the two techniques, the

user can reach the desired level of con�dence

in correctness of a given design.

Our current research goals include the au-

tomatic derivation of tests that satisfy a time-

based partition testing criteria. We intend

to augment the existing toolset with: (1) a

tool for creating a high-level timing speci�-

cation diagram; and (2) tools that will use

these timing speci�cations to automatically

derive a complete partition test suite to check

proper implementation of the timing con-

straints. We also want to explore how to

use the generated tests to drive the graphi-

cal simulator of GCSR speci�cations, which

is a part of the PARAGON toolset.

An important aspect of a speci�cation

paradigm is the right balance between textual

and graphical speci�cation. It seems that

high-level speci�cations are better compre-

hended in the graphical form, while more de-

tailed ones may be too tedious to enter graph-

ically. Therefore, another area of interest lies

in closer integration of graphical (GCSR) and

textual (ACSR) speci�cation paradigms.
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