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Abstract. In this paper, we introduce weak bisimulation in the frame-
work of Labeled Concurrent Markov Chains, that is, probabilistic tran-
sition systems which exhibit both probabilistic and nondeterministic be-
havior. By resolving the nondeterminism present, these models can be de-
composed into a possibly in�nite number of computation trees. We show
that in order to compute weak bisimulation it is su�cient to restrict at-
tention to only a �nite number of these computations. Finally, we present
an algorithm for deciding weak bisimulation which has polynomial-time
complexity in the number of states of the transition system.

1 Introduction

In recent years, the need for reasoning about probabilistic behavior, as exhibited
for instance in randomized, distributed and fault-tolerant systems, has triggered
much interest in the area of formal methods for the speci�cation and analysis
of probabilistic systems [6, 11, 13{15, 27, 28, 30]. The general approach taken has
been to extend existing models and techniques which have proved successful in
the nonprobabilistic setting with probability.

Thus, much work in the area of formal models for probabilistic systems has
been based on labeled transition systems [23]. In order to extend labeled tran-
sition systems to the probabilistic setting, various mechanisms for capturing
probabilistic behavior have been proposed and investigated. On one end of the
spectrum, several approaches have replaced nondeterministic branching in la-
beled transition systems with probabilistic branching [13] by assigning proba-
bilities to each transition, while others explored the possibility of integrating
nondeterministic and probabilistic behavior [30, 21, 13, 14, 28]. For example, in
the reactive model of [13] as well as in the simple probabilistic automata of [28],
probability distributions are dependent on the occurrence of actions, whereas
in the strati�ed model, levelwise probabilistic branching is also possible [13]. A
more general model for probabilistic computation is captured in the probabilistic
transition systems of [30] and the probabilistic automata of [28], which extend
the strati�ed model with nondeterminism among actions.
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Veri�cation techniques for these models have been inspired by successful ap-
proaches in the nonprobabilistic case. On one hand, temporal logics have been
enriched with probability and on the other hand, probabilistic notions of equiva-
lence and preorder relations have been explored. Among these, bisimulations [21],
simulations [17, 29] and testing preorders [8, 10, 16], have been de�ned and algo-
rithms given for their automatic veri�cation [2, 9]. The majority of this work has
focused on fully probabilistic systems, that is, systems where only probabilistic
branching is involved.

In the nonprobabilistic setting, weak bisimulations have proved fundamen-
tal for the compositional veri�cation of systems where abstraction from internal
computation is essential. However, such notions have been rare in the setting of
probabilistic systems and, as noted, although desirable their formalization has
been problematic [14, 18, 3]. One paper that addresses this issue is [29], where
notions of weak and branching bisimulations are introduced for a certain class of
probabilistic transition systems de�ned by simple probabilistic automata. This
model captures nondeterministic and probabilistic behavior by allowing from
each state the nondeterministic choice of a number of probability distributions,
each of which involves probabilistic transitions associated with a distinct action.
The de�nition presented replaces the weak transition in the weak bisimulation
de�nition of Milner [23], by assigning a (possibly in�nite) set of distributions to
each state, representing the (non-deterministic) alternatives of probabilistic dis-
tributions for states that are reachable by weak transitions. However, no method
for computing the notion is considered in [29].

More recently, [3] has introduced a notion of weak bisimulation for fully prob-
abilistic systems and presented a polynomial-time algorithm for deciding it. In
this de�nition, weak transitions are replaced with the probability of making a
transition to reach a certain state and the requirement of weakly bisimilar states
is that the probability of a step by each process can be matched by the other. An-
other algorithmic approach for deciding weak equivalences for the model of [29]
is proposed in [5]. The equivalence hereby obtained lies between strong and weak
bisimulation.

In this paper, we propose a notion of weak bisimulation for probabilistic
systems that allows for both nondeterministic and probabilistic branching. Such
systems arise as formal models of randomized distributed systems, as well as real-
life reactive systems that exhibit uncertainty. While probabilistic choice in these
systems becomes relevant due to faults or random assignments, nondeterministic
branching is also present due to the asynchronicity of a system's subprocesses
or external intervention, as for instance an action taken by the environment.

Our de�nition of weak bisimulation in this model extends the de�nition of [3]
by treating nondeterministic in addition to probabilistic behavior. It achieves
this by incorporating the notion of a scheduler, an entity that resolves nonde-
terminism in a system by choosing the next step to take place, out of a set of
nondeterministic alternatives. Indeed, due to the presence of nondeterminism it
is not possible in general to determine the probability with which a weak tran-
sition may take place. Instead, we associate such a probability with each of the



possible schedulers and in order to establish weak bisimulation we compare the
set of possible probabilities for each of two states. Our �rst main result is that
according to our de�nition, weak bisimulation can be characterized in terms of
maximum probabilities of transitions over all schedulers. We then turn to tackle
the problem of computing such probability bounds. Although the set of sched-
ulers for a system is in general in�nite, our second main result shows that in
order to compute maximum probabilities it is su�cient to consider only a �nite
number of them. In particular, we introduce the notion of determinate schedulers
and we isolate a �nite set of schedulers in which maximal probabilities arise. On
the basis of the above, we present an algorithm for deciding weak bisimulation
equivalence classes, in time polynomial in the number of states of the underlying
probabilistic system. Thus the main contribution of this paper is the de�nition
of weak bisimulation in a general framework of probabilistic systems and the
corresponding algorithm for computing weak bisimulation equivalence classes.

The remainder of the paper is organized as follows: the following section
contains an account of the Labeled Concurrent Markov Chain model and some
background material, section 3 introduces and studies the notion of weak bisim-
ulation, section 4 presents determinate schedulers and their relevance to weak
bisimulation, while section 5 describes an algorithm for deciding weak bisimula-
tion classes. We conclude with a comparison of our proposal with that of [29]
and a discussion of further work. Due to the limitation of space, proofs of results
are only briey sketched, the complete proofs can be found in [25].

2 The Model

In this section we introduce Labeled Concurrent Markov Chains and some back-
ground de�nitions and notations we will be using.

De�nition 1. A Labeled Concurrent Markov Chain (LCMC) is a tuple hSn; Sp;
Act;�!n;�!p; s0i, where Sn is the set of nondeterministic states, Sp is the
set of probabilistic states, Act = L [ f�g is the set of labels, (where � is the
internal action), �!n� Sn �Act� (Sn [ Sp) is the nondeterministic transition
relation, �!p� Sp� (0; 1]�Sn is the probabilistic transition relation, satisfying
�(s;�;t)2�!p

� = 1 for all s 2 Sp, and s0 2 Sn [ Sp is the initial state. 2

Thus the set of states of an LCMC is partitioned into two sets, Sn and Sp.
States in Sn are capable of performing nondeterministic transitions while states
in Sp may perform probabilistic transitions. We assume both of these sets to be
�nite. Note that the nonprobabilistic model is derivable from the LCMC model
by setting Sp = ;. In what follows we will write S for Sn [ Sp and we will let s,
s0 range over S, �, � over Act and ` over Act[ (0; 1]. In addition, when it is clear
within a context, we will refer to a LCMC hSn; Sp;Act;�!n;�!p; s0i by s0.

Computations of LCMC's arise by resolving the nondeterministic and prob-
abilistic choices:

De�nition 2. A computation in �=hSn; Sp;Act;�!n;�!p; s0i is either a �-
nite sequence s0 `1 s1 : : : `k sk, where sk has no transitions, or an in�nite sequence
s0 `1 s1 : : : `k sk : : :, such that (si; `i+1; si+1) 2�!p [ �!n, for all 0 � i.



We denote by Comp(�) the set of all computations of � and by Compfin(�)
the set of all partial computations of �, i.e. Compfin(�) = fs0`1 : : : `ksk j 9c 2
Comp(�)� c = s0`1 : : : `ksk : : :g. Given c = s0`1 : : : `ksk 2 Compfin(�), we de�ne
trace c = `1 : : : `kj�L, inter c = fs0; : : : ; sk�1g, �rst c = s0 and last c = sk.

To de�ne probability measures on computations, it is necessary to resolve
the nondeterminism present. To achieve this, the notion of a scheduler has been
employed [30, 14, 29]. A scheduler is an entity that given a partial computation
(ending in a nondeterministic state) chooses the next transition to be scheduled:

De�nition 3. A scheduler of a LCMC � is a function � : Compfin(�) 7!
(�!n [?), such that, if �(c) = tr 2�!n then tr = (last c; �; s) for some � and
s. 2

Here we use �(c) = ? to express that a scheduler may schedule nothing at some
point during computation. In the rest of the paper we will use Sched(�) to denote
the set of schedulers of �, and we will let � range over all schedulers. For a LCMC
� and a scheduler � 2 Sched(�) we de�ne the set of scheduled computations

Scomp(�; �) � Comp(�), to be the �nite computations c = s0 `1 : : : `k sk where
for all i < k, si 2 Sn �(s0 `1 : : : `isi) = (si; `i+1; si+1), and �(s0 `1 : : : `k sk) = ?,
and the in�nite computations c = s0 `1 : : : `k sk : : : where for all i, si 2 Sn,
�(s0 `1 : : : `isi) = (si; `i+1; si+1). Each scheduler � induces a probability space
on Scomp(�; �) in the usual way [29].

We conclude with the de�nition of strong bisimulation for the model. First
we have a de�nition.

De�nition 4. Given s; s0 2 S, and M� S, we de�ne

1.

pr(s; s0) =

8<
:
�, if s

�
�!p s

0

1, if s = s0; s 2 Sn
0, otherwise

2. �(s;M) = �s02Mpr(s; s0). 2

Thus, pr(s; s0) denotes the probability that s may perform at most one proba-
bilistic transition to become s0, and �(s;M) denotes the cumulative probability
that s may perform a probabilistic action to a state in M.

De�nition 5. An equivalence relation R � S � S is a strong bisimulation if,
whenever sRt

1. for all � 2 Act, if s; t 2 Sn and s
�

�!n s
0 then t

�
�!n t

0 and s0Rt0;
2. for all M2 S=R, �(s;M) = �(t;M).

Two states s and t are strong bisimulation equivalent, written s � t, if there
exists a strong bisimulation R such that sRt. 2

An example of strong bisimulation equivalent systems is shown in Figure 1.
The above de�nition is almost identical to the one proposed in [14], where

an alternating model is considered, However, with a slight reformulation of the
de�nition of pr(s; s0), De�nition 5 allows for pairs of probabilistic and nondeter-
ministic systems, such as (s; x), to be considered as bisimulation equivalent.
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3 Weak Bisimulation

In this section we de�ne weak bisimulation for probabilistic transition systems.
Weak bisimulation was introduced in the context of nonprobabilistic transition
systems in [23]. It abstracts away from internal computation by focusing on

weak transitions, that is transitions of the form =)
�
�!=) (where =) is the

transitive, reexive closure of
�
�!) and requires that weakly bisimilar systems

can match each other's observable behavior.
However, in the probabilistic setting, while considering a transition with ob-

servable content � 2 Act (trace c = �), it is necessary to take account of the
probability of the transition taking place, and to ensure that weakly bisimilar
systems may not only match one another's transitions but also perform the tran-
sitions with matching probabilities. To achieve this, given a state s, an action �,
and an equivalence class of the weak bisimulation relation,M, we are interested
in computing the probability of s reaching a state in M via a transition with
observable content �. This probability depends on how the nondeterminism of s
is resolved. So, given a LCMC �, � � Act�,M� S and � 2 Sched(�) we de�ne

Paths(�;�;M; �) = fc 2 Scomp(�; �) j last c 2M; �(c) = ?; trace c 2 �g:

Thus, Paths(�;�;M; �) denotes the set of computations of �, scheduled by �,
leading to a state inM via a sequence of actions in �. In what follows, we use "
to denote the empty word. We also often abbreviate the singleton set fxg by x.

The probability Pr(s; �;M; �)
def
= P(Paths(�;�;M; �)), s is the initial state

of �, is given by the smallest solution to X(s; �;M; �; s) de�ned by the following
set of equations:

X(s; �;M; �; c) =

8><
>:

1, if " 2 �; s 2 M; �(c) = ?
0, if (" 62 �; s 62 M; �(c) = ?) or � = ;
�t pr(s; t) �X(t; �;M; �; c pr(s; t) t), if s 2 Sp
X(t; �� �;M; �; c � t), if s 2 Sn; �(c) = (s; �; t)

where � � � = f� j �� 2 �g. Note that the last argument of X(s; �;M; �; c),
c, records the history of reaching s. This is needed for performing subsequent
scheduling of s under scheduler �. Moreover, we use regular expressions (such
as ��������) to represent sets of traces. So, for example, Pr(s; �����;M; �)



denotes the probability to reach some state in M from state s, at the endpoints
of scheduler �, by performing a weak transition with observable content �.

The de�nition of weak bisimulation follows. As usual we write b� for � if
� 2 L and " otherwise. Furthermore, given a relation R, we write �R(s;M) for
the probability of reaching M � S from state s weighted by the probability of
exiting the equivalence class [s]R:

�R(s;M) =

�
�(s;M)=(1� �(s; [s]R)), if �(s; [s]R) 6= 1;
�(s;M), otherwise

De�nition 6. An equivalence relation R � S � S is a weak bisimulation if
whenever sRt,

1. for all � 2 Act, if s; t 2 Sn and s
�

�!n s0, then there exists � 2 Sched(t)
such that Pr(t; ��b���; [s0]R; �) = 1;

2. there exists � 2 Sched(t) such that for all M 2 S=R � [s]R, �R(s;M) =
Pr(t; ��;M; �).

We say that s and t are weakly bisimilar, written s � t, if (s; t) 2 R for some
weak bisimulation R. 2

Thus the de�nition speci�es how deterministic and probabilistic transitions are
matched by weakly bisimilar states. Nondeterministic behavior is matched as
follows: if one of the system can engage in a transition involving an action there
exists a scheduler of the other which weakly performs the same transition with
probability one. On the other hand, if s � t then, given a probabilistic branching
of s, that is a set of transitions s

�i�!p si, there exists a single scheduler of t that
weakly matches the branching, in the sense that the weighted probabilities of
reaching any equivalence classM are the same for both systems. The purpose for
considering weighted probabilities is highlighted in the example of Figure 2(a).
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Fig. 2. (a)s � t and (b) x � y

We observe that states s and t can both engage in actions � and � equally
likely. Furthermore, although, pr(t; t2) = pr(t; t3) = 0:2, t may also probabilisti-



cally reach t1 where clearly t � t1, in this way contributing to the probability of t
eventually performing either � and �. Thus, t can weakly perform both � and �
with probability 0:5 which suggests s and t should be considered weakly bisimilar.
To allow this, on matching probabilistic transitions of weakly bisimilar states, we
consider the probability of reaching an equivalence class weighted by the proba-
bility of exiting the equivalence class of the initial state. Thus, the weak bisim-
ulation that connects s and t is R = ffs; t; t1g; fs1; t2g; fs2; t3g; fs3; s4; t4; t5gg.
To establish satisfaction of the relation for the pair (s; t), we observe that clause
2 of De�nition 6 is satis�ed as �R(s; [s1]R) = 0:5 and since �(t; [t]R) = 0:6, we

have that �R(t; [s1]R) = �R(t; [t2]R) =
0:2

1� 0:6 = 0:5 as required. Similarly it

can be shown that �R(s; [s2]R) = �R(t; [s2]R) = 0:5.
Another example of weakly bisimilar systems is exhibited in Figure 2(b). We

have that states x and y are related by the weak bisimulationR = ffx; y; x1g; fx2;

y1g; fx3; y2g; fu; u1; u2; u3; u4; v1; v2; v3; v4gg. We point out that while x
�

�!n u,
there is � 2 Sched(y) such that Pr(y; �����; [u]R; �) = 1, as required.

Weak bisimulation satis�es the following properties:

Lemma 1. � is the largest weak bisimulation and ���. 2

Given � 2 Act andM� S, we introduce the following notation for the largest
probabilities of reachingM via a path with observable content �, over all sched-

ulers: Prmax(s; �;M)
def
= max�2Sched(s) Pr(s; �

�b���;M; �). Our �rst important
result states that weak bisimulation preserves maximum probabilities:

Theorem 1. If s � t then, for all � 2 Act and M 2 S=�, Prmax(s; �;M) =
Prmax(t; �;M). 2

Proof: The proof involves showing that if s � t, for any � 2 Sched(s), � 2
Act and M 2 S=R there exists �0 2 Sched(t) such that Pr(s; �����;M; �) �
Pr(t; ��b���;M; �0). To do this we must match every move made by s via �, by a
scheduler of t, using the weak bisimulation de�nition, concatenating schedulers
on the way. It then remains to show that the sets of equations that de�ne the
two probabilities have the same least solutions. 2

We continue with a result which is central to the understanding of the in-
terplay between probabilistic behavior and the de�nition of weak bisimulation.
Suppose s

�i�!p si. The result states that on matching such a transition in t,
t � s, a scheduler only passes via states that are weakly bisimilar to s.

Lemma 2. Suppose s � t. Then, if � 2 Sched(t) is such that for allM2 S=�,
��(s;M) = Pr(t; ��;M; �), then, for all partial computations c 2 Scompfin(t; �),
if �(c) 6= ?, and t0 = last c, either t0 � t or Pr(t0; ��; [t0]�; �) = 1. 2

Proof: Suppose s � t and pick � 2 Sched(t) such that for all M 2 S= �,
��(s;M) = Pr(t; ��;M; �). We assume for the sake of contradiction that there
exists computation c 2 Scomp(t; �), such that �(c) 6= ?, t0 = last c with
t0 6� t and Pr(t0; ��; [t0]�; �) 6= 1. (Note that Pr(t0; ��; [t0]�; �) = 1 implies that
��(s; [t

0]�) > 0.) Computation of the probabilities Prmax(s; �; [t
0]�), Prmax(t; �;

[t0]�) results in violation of Theorem 1 which completes the proof. 2



This result implies that on matching a probabilistic branching of weakly
bisimilar states the branching structure of the states is preserved. It comes in
agreement with the senario of [3] where it is shown that for fully probabilistic
systems weak and branching bisimulations coincide. Of course this does not hold
in our model due to the presence of nondeterminism.

Let Sched0(t;M) be the subset of schedulers of t containing all schedulers
that schedule within the set of states M and consider the case M = [t]�. We
may prove by structural induction of t that Sched0(t; [t]�) = ;, and that each
�t 2 Sched0(t; [t]�) satis�es the requirement of Lemma 2: If s � t and �t 2
Sched0(t; [t]�), then for all M2 S=�, ��(s;M) = Pr(t; ��;M; �t). Thus letting

Pr0max(s; �;M;M)
def
= max�2Sched0(s;M) Pr(s; �

�b���;M; �), we have that for all
M2 S=�, Pr0max(t; �;M; [t]�) = ��(s;M).

As a consequence, we have an alternative de�nition of weak bisimulation in
terms of maximum probabilities.

Theorem 2. An equivalence relation R � S � S is a weak bisimulation i�

whenever sRt, then

1. if s; t 2 Sn, � 2 Act and M2 S=R, then Prmax(s; �;M) = Prmax(t; �;M);
2. for all M2 S=R� [s]R, �R(s;M) = Pr

0
max(t; �;M; [t]R). 2

Proof: Let R be a weak bisimulation and suppose sRt. Then, by Theorem 1,
R satis�es condition 1 above. In addition, by the observation above, �R(s;M) =
Pr0max(t; �

�;M; [t]R), thus condition 2 is also satis�ed.
To prove the converse, suppose R satis�es the conditions of the theorem. By

condition 1, R satis�es De�nition 6(1). To establish the second condition it is

su�cient to note that whenever t
�

�!n t1, t
�

�!n t2 with tRt1Rt2 and (s; t) 2
R, for all M 2 S=R, �R(s;M) = Pr0max(t1; �

�;M; [t1]�), and �R(s;M) =
Pr0max(t2; �

�;M; [t2]�). This implies that for any � 2 Sched0(t; [t]R), �R(s;M) =
Pr(t; ��;M; �), for all M2 S=R. Thus, De�nition 6(2) holds. 2

4 Determinate Schedulers

In this section we turn to the issue of deciding weak bisimulation for proba-
bilistic systems. According to Theorem 2, establishing weak bisimilarity of two
systems amounts to computing certain maximum probabilities. These probabil-
ities are quanti�ed over the set of all schedulers, and as noted earlier, such sets
are in general in�nite. The question then arises whether it is possible to compute
maximum probabilities by looking only at a �nite subset of schedulers.

So let s 2 S, � 2 Act and M 2 S= � and consider Prmax(s; �;M). First
we point out that the only schedulers relevant to computing this probability are
such that �(c) = ? unless trace c 2 f"; �g. Given a set of schedulers D, let D� be
the subset of D which only contains such schedulers. We may see that in general
D� is an in�nite set. For example, consider agent s in Figure 3. The family of
schedulers f�igi�0 de�ned below is such that �k 2 Sched(s)�.

�k(s 0:5 (u �s 0:5)
i u) = (u; �; s); if i < k

�k(s 0:5 (u �s 0:5)
k u) = (u; �; y)
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We de�ne the following set of schedulers:

De�nition 7. Let � be a LCMC and � 2 Sched(�). We say that scheduler � is
determinate if for all c; c0 2 Compfin(�) with last c = last c0 and trace c = trace c0,
�(c) = �(c0). We write DSched(�) for the set of determinate schedulers of �. 2

It is not di�cult to see that DSched(�)� is a �nite set. Furthermore, it turns out
that in order to compute Prmax(�;�;M) it is su�cient to restrict our attention
to DSched(�) (and consequently to DSched(�)�).

Theorem 3. Suppose s 2 S. Then if � 2 Act, M 2 S=�, (1) if � 2 Sched(s)
there exists �0 2 DSched(s) such that Pr(s; �����;M; �) � Pr(s; ��b���;M; �0),
and (2) if � 2 Sched(s; [s]�), there exists �

0 2 DSched(s) \ Sched0(s; [s]�) such
that Pr(s; ��;M; �) � Pr(s; ��;M; �0). 2

Proof: The proof involves transforming an arbitrary scheduler into a determi-
nate one without decreasing the probability of interest, by scheduling from each
state the transition that maximizes the desired probability. 2

The problem of computing maximum (and minimum) probabilities of prop-
erties was also tackled in the context of model checking for probabilistic ex-
tensions of the CTL temporal logic [7, 12, 4]. In these works, the challenge had
been to compute the probability bounds that certain logical properties are sat-
is�ed by probabilistic systems. As was shown in the papers just cited, to com-
pute such probabilities it is su�cient to consider only the (�nite) set of sim-

ple schedulers, where a scheduler � is simple if for all c, with last c = last c0,
�(c) = �(c0). Thus, a simple scheduler is also determinate. However, simple
schedulers are insu�cient for computing Prmax(s; �;M). For instance consider
the LCMC s in Figure 4. None of the two simple schedulers of the system
achieves probability Prmax(s; �; [u]�). On the other hand, DSched(s) contains
�, where �(s) = (s; �; t), �(s�t) = (t; �; t), �(s�t�t) = (t; �; u), and indeed,
Pr(s; �; [u]�; �) = Prmax(s; �; [u]�) = 1.

5 The Algorithm

In this section we develop an algorithm for deciding weak bisimulation for la-
beled concurrent Markov chains. The basic idea originates from the bisimulation
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algorithms of [24, 19], where a partitioning technique is employed to compute
strong bisimulation equivalence classes for nonprobabilistic systems. Briey, this
technique involves considering the set of states of the system in question, S, and
beginning with the trivial partition of this set W = fSg, successively re�ning
the partition until the set of weak bisimulation equivalence classes is reached.
The re�nement method is based on the notion of `splitters'.

De�nition 8. Let W be a partition of S � S. Then a splitter of W is a triple
(C; �;M), where C 2 W , � 2 Act and M 2 W , such that there are s; s0 2 C
and Prmax(s; �;M) 6= Prmax(s

0; �;M) or �W(s;M) > Pr0max(s
0; �;M; C), or

�W(s0;M) > Pr0max(s; �;M; C).

Thus a splitter (C; �;M) of a partition W isolates a class of W which contains
states that prevent W from being a weak bisimulation. So suppose (C; �;M)
a splitter of a partition W . The purpose of function Split is to partition C
into classes C1 : : : Ck, none of which can be split by the pair (�;M). Formally,
Split(C; �;M) = C= �, where s � t i� Prmax(s; �;M) = Prmax(t; �;M),
�W(s;M) � Pr0max(s

0; �;M; [s]�), and �W(s0;M) � Pr0max(s; �;M; [s0]�). Tak-
ing this a step further, given a splitter (C; �;M) of a partition W , it is possible
to re�ne W as follows: Re�ne(W ; C; �;M) = Split(C; �;M) [ (W �C). The cor-
rectness of the procedure is given by a generalization of Theorem 2.

Theorem 4. SupposeM =
S
i2IMi andM

0 =
S
i2I0 M0

i, where eachMi;M
0
i

is in S=� and further let s � t, s 2M0. The following hold:

1. for all � 2 Act, Prmax(s; �;M) = Prmax(t; �;M), and
2. ��(s;M) � Pr0max(t; �;M;M0).

It is easy to see that given a partition W of a set S, if W is coarser than
S=� then there exists a splitter (C; �;M) ofW . Furthermore, given the previous
result, Re�ne(W ; C; �;M) is strictly �ner thanW and coarser than S=�. Finally,
if no splitter exists for partition W we may conclude that W = S= �. The
algorithm for weak bisimulation follows.

Algorithm for computing weak bisimulation equivalence classes

Input: (Sn; Sp;Act;�!n;�!p; s0)
Output: (Sn [ Sp)=�
Method: W := fSg;

(C; �;M) := FindSplit(W);
while C 6= ; do



W := Re�ne(W; C; �;M);
(C; �;M) := FindSplit(W)

od

return W

It is based on the procedure FindSplit(W) which, given a partition W , it
isolates and returns a splitter (C; �;M) ofW , if one exists, and a triple (;; �;M),
otherwise. It achieves this by considering each � 2 Act and each M 2 W and
computing �W(s;M), Prmax(s; �;M) and Pr0max(s; �;M; [s]W) for all s 2 S,
thus determining a splitter if one exists. To compute maximum probabilities,
FindSplit(W) makes use of the functions FindMax(s; �;M) and FindMax0(s; �;M;
[s]W), responsible for computing probabilities Prmax(s0; �;M) and Pr0max(s0; �;
M; [s0]W) respectively. We describe the former, computation of the latter is
similar. To do this, we associate with each state s the variables X�

s and, if
� 6= � , X�

s . The relationship between the variables is given by the following
equations:

X�
s =

8<
:

P
s

�
�!ps0

� �X�
s0 ; s 2 Sp

max(fX�
s0 j s

�
�!n s

0g [ fX�
s0 j s

�
�!n s

0g); s 2 Sn

X�
s =

8>>><
>>>:
1; s 2MP
s

�
�!ps0

� �X�
s0 ; s 2 Sp �M

max
s

�
�!ns0

X�
s0 ; s 2 Sn �M

We can �nd a solution for this set of equations by solving a linear programming
problem. More precisely, for all equations of the form X = maxfX1; : : :Xng,
we introduce the set of inequations X � Xi and we minimize the functionP

s2SX
�
s + X�

s . Using algorithms based on the ellipsoid method, this problem
can be solved in time polynomial to the number of variables (see, e.g. [20]).

Given a solution to this problem we let FindMax(s0; �;M) = X�
s0

and claim
that X�

s0
= Prmax(s0; �;M). The correctness of this claim can be proved by ap-

pealing to Theorem 3, according to which, Prmax(s0; �;M) can be achieved by
a determinate scheduler. In particular, we make use of the following observation:
since a determinate scheduler � 2 DSched(S)� schedules partial computations
with trace either � or �, it can be viewed as either (1) a simple scheduler (if
� = �) or (2) the concatenation of two simple schedulers (if � 2 L), the �rst

responsible for scheduling a transition ending with
�

�!n, and the second re-
sponsible for scheduling invisible transitions to reachM. Thus, according to the
equations above, X�

s and X�
s correspond to Prmax(s; �;M) and Prmax(s; �;M),

respectively.
Therefore, assuming that the size of Act is constant and the size of Sn [ Sp

is N , we have the following theorem.

Theorem 5. The above algorithm for computing weak bisimulation equiva-
lence classes can be computed in time polynomial in N .



We point out that a more e�cient formulation of the algorithm is possible,
which avoids unnecessary recomputation of probabilities and in the searching of
splitters. Such concerns will be relevant in the implementation of the algorithm.

6 Concluding Remarks

In this paper we have de�ned the notion of weak bisimulation for Labeled Con-
current Markov Chains. We have developed a method for deciding weak bisimula-
tion and presented an algorithm which computes weak bisimulation equivalence
classes with polynomial-time complexity in the size of the transition system. Due
to the generality of our framework, our results can be adopted to other models
in which nondeterminism and probabilistic behavior co-exist.

Although not described in the paper, we have also investigated the relation-
ship of the proposed de�nition with existing proposals of weak bisimulation [25].
In particular, we have shown, that when restricted to a fully probabilistic model
the de�nition presented here coincides with that of [3]. Furthermore, we have
compared the de�nition we propose to that de�ned by [29] for probabilistic au-
tomata. A probabilistic automaton is an automaton whose states allow the non-
deterministic choice among a number of probability distributions, each of which
involves probabilistic transitions associated with a single action. The weak bisim-
ulation de�nition of the model, here denoted as �A, requires that if automata
A1 and A2 are weakly bisimilar and A1 can engage in a transition involving
a probability distribution f , then A2 can engage in a weak transition which
combines probability distributions (in a serial manner) to one that is equivalent
to f , in the sense that both distributions assign the same probability to the
same equivalence classes. For example, automata A and M of Figure 5(a) are
bisimilar to each other: A can match every transition of M . In addition, A's ini-
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tial a-labeled transition can be weakly matched by M by combining the initial
� -labeled distribution and consequently the two a labeled ones.

To compare the two bisimulations we have considered translations between
LCMC's and probabilistic automata, which describe how LCMC's can be cap-
tured by probabilistic automata and vice versa. This is done with the aid of two
functions [�] : Aut �! S and [[�]] : S �! Aut, illustrated in Figure 6, where S

and Aut are the sets of LCMC's and probabilistic automata respectively. We may
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then prove that if two LCMC's are bisimilar to each other then their translations
are also bisimilar with respect to the de�nition of [29], that is if s � s0 then
[[s]] �A [[s0]], except in the case when some LCMC state s performs a proba-
bilistic transition to s[�] (see Figure 2). This is due to the fact that [29] does
not consider weighted probabilities in the manner of De�nition 6(2). However,
a similar result does not hold in the opposite direction. That is, it is not the
case that if A �A A0 then [A] � [A0]. A counter-example is provided by the
automata of Figure 5(a). As illustrated Figure 5(b) the LCMC [A] can proba-
bilistically reach state s. However there is no matching transition of [M ]. This
fact is not surprising considering the separation made between nondeterministic
and probabilistic states in the LCMC-model.

An additional notion de�ned in [29] is that of probabilistic weak bisimulation,
which extends �A by allowing schedulers to range over the set of randomized
schedulers. One of the motivations behind this extension was to de�ne a notion
that preserves properties expressed in PCTL. We believe that such an approach
will not be necessary for the weak bisimulation we propose. The logical charac-
terization of this de�nition is an issue we are currently investigating.

In related work, we are studying the notion of weak bisimulation within the
context of the PACSR process algebra [26], a probabilistic extension of ACSR [22]
which is a real-time process algebra that captures the notions of priorities and
resources. In this area work is being carried out with aims the axiomatization



of the congruence induced by weak bisimulation, and the extension of existing
tools with automated weak-bisimulation checking and state-space minimization.

Acknowledgments: We are grateful to Rance Cleaveland and Scott Smolka
for enlightening initial discussions as well as Marta Kwiatkowska and Roberto
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