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Abstract

In the Survivable Network Design problem (SNDP), we are given an undirected
graph G(V,E) with costs on edges, along with a connectivity requirement r(u, v) for
each pair u, v of vertices. The goal is to find a minimum-cost subset E∗ of edges, that
satisfies the given set of pairwise connectivity requirements. In the edge-connectivity
version we need to ensure that there are r(u, v) edge-disjoint paths for every pair u, v
of vertices, while in the vertex-connectivity version the paths are required to be vertex-
disjoint. The edge-connectivity version of SNDP is known to have a 2-approximation.
However, no non-trivial approximation algorithm has been known so far for the vertex
version of SNDP, except for special cases of the problem. We present an extremely
simple algorithm to achieve an O(k3 log n)-approximation for this problem, where k
denotes the maximum connectivity requirement, and n denotes the number of vertices.
We also give a simple proof of the recently discovered O(k2 log n)-approximation result
for the single-source version of vertex-connectivity SNDP. We note that in both cases,
our analysis in fact yields slightly better guarantees in that the log n term in the
approximation guarantee can be replaced with a log τ term where τ denotes the number
of distinct vertices that participate in one or more pairs with a positive connectivity
requirement.
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1 Introduction

In the Survivable Network Design problem (SNDP), we are given an undirected graph
G(V,E) with costs on edges, and a connectivity requirement r(u, v) for each pair u, v of
vertices. The goal is to find a minimum cost subset E∗ of edges, such that each pair (u, v)
of vertices is connected by r(u, v) paths. In the edge-connectivity version (EC-SNDP),
these paths are required to be edge-disjoint, while in the vertex-connectivity version (VC-
SNDP), they need to be vertex-disjoint. It is not hard to show that EC-SNDP can be cast
as a special case of VC-SNDP. We denote by n the number of vertices in the graph and
by k the maximum pairwise connectivity requirement, that is, maxu,v∈V {r(u, v)}. We also
define a subset T ⊆ V of vertices called terminals: a vertex u ∈ T iff r(u, v) > 0 for some
vertex v ∈ V .

The best current approximation algorithm for EC-SNDP is due to Jain [13], and it
achieves a factor-2 approximation via the iterative rounding technique. At the same time
no non-trivial approximation algorithms have been known for VC-SNDP, with the ex-
ception of several restricted special cases. Agrawal et. al. [1] showed a 2-approximation
algorithm for the special case where maximum connectivity requirement k = 1. For k = 2,
a 2-approximation algorithm was given by Fleischer [9]. The k-vertex connected span-
ning subgraph problem, a special case of VC-SNDP where for all u, v ∈ V ru,v = k,
has been studied extensively. Cheriyan et al. [2, 3] gave an O(log k)-approximation al-
gorithm for this case when k ≤

√
n/6, and an O(

√
n/ε)-approximation algorithm for

k ≤ (1 − ε)n. For large k, Kortsarz and Nutov [17] improved the preceding bound to an
O(ln k ·min{

√
k, n

n−k ln k})-approximation. Fakcharoenphol and Laekhanukit [8] improved
it to an O(log n log k)-approximation, and further obtained an O(log2 k)-approximation for
k < n/2. Very recently, Nutov [20] improved this to O(log k · log n

n−k )-approximation.
Kortsarz et. al. [15] showed that VC-SNDP is hard to approximate to within a factor

of 2log1−ε n for any ε > 0, when k is polynomially large in n. This result was subsequently
extended by Chakraborty et. al. [4] to a kε-hardness for all k > k0, where k0 and ε are
fixed positive constants. The existence of good approximation algorithms for small values
of k has remained an open problem, even for k ≥ 3. In particular, when each connectivity
requirement ru,v ∈ {0, 3}, the best known approximation factor is polynomially large while
only an APX-hardness is known on the hardness side.

A special case of VC-SNDP that has received much attention recently is the single-
source version. In this problem there is a special vertex s called the source, and all non-
zero connectivity requirements involve s, that is, if u '= s and v '= s, then r(u, v) = 0.
Kortsarz et. al [15] showed that even this restricted special case of VC-SNDP is hard
to approximate up to factor Ω(log n), and recently Lando and Nutov [18] improved this
to (log n)2−ε-hardness of approximation for any constant ε > 0. Both results only hold
when k is polynomially large in n. On the algorithmic side, Chakraborty et. al. [4]
showed an 2O(k2) log4 n-approximation for the problem. This result was later independently
improved to O(kO(k) log n)-approximation by Chekuri and Korula [5], and to O(k2 log n) by
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Chuzhoy and Khanna [7], and by Nutov [19]. Recently, Chekuri and Korula [6] simplified
the analysis of the algorithm of [7]. We note that for the uniform case, where all non-zero
connectivity requirements are k, Chuzhoy and Khanna [7] show a slightly better O(k log n)-
approximation algorithm, and the results of [6] extend to this special case.

A closely related problem to EC-SNDP and VC-SNDP is the element-connectivity
SNDP. The input to the element-connectivity SNDP is the same as for EC-SNDP and
VC-SNDP, and we also define the set T ⊆ V of terminals as above. Given a problem
instance, an element is any edge or any non-terminal vertex in the graph. We say that
a pair (s, t) of vertices is k-element connected iff for every subset X of at most (k − 1)
elements, s and t remain connected by a path when X is removed from the graph. In
other words, there are k element-disjoint paths connecting s to t; these paths are allowed
to share terminals. Observe that if (s, t) are k-vertex connected, then they are also k-
element connected, and similarly, if (s, t) are k-element connected, then they are also
k-edge connected. The goal in the element-connectivity SNDP is to select a minimum-cost
subset E∗ of edges, such that in the graph induced by E∗, each pair (u, v) of vertices is
r(u, v)-element connected. The element-connectivity SNDP was introduced in [14] as a
problem of intermediate difficulty between edge-connectivity and vertex-connectivity, and
the authors game a primal-dual O(log k)-approximation for this problem. Subsequently,
Fleischer et al. [10] gave a 2-approximation algorithm for element-connectivity SNDP via
the iterative rounding technique, matching the 2-approximation guarantee of Jain [13] for
EC-SNDP. We will use this result as a building block for our algorithm.

Our results: Our main result is as follows.

Theorem 1 There is a polynomial-time randomized O(k3 log n)-approximation algorithm
for VC-SNDP, where k denotes the largest pairwise connectivity requirement.

In fact, our analysis gives a slightly better approximation guarantee of O(k3 log |T |).
The proof of this result is based on a randomized reduction that maps a given instance of
VC-SNDP to a family of instances of element-connectivity SNDP. The reduction creates
O(k3 log n) instances, and has the property that any collection of edges that is feasible for
each one of the element-connectivity SNDP instances generated above, is a feasible solution
for the given VC-SNDP instance. We can thus use the known 2-approximation algorithm
for element-connectivity SNDP to obtain the desired result.

We use these ideas to also give an alternative simple proof of the O(k2 log n)-approximation
algorithm for the single-source VC-SNDP problem.

Organization: We present the proof of Theorem 1 in Section 2. Section 3 presents an
alternative proof of the O(k2 log n)-approximation result for single-source VC-SNDP.
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2 The Algorithm for VC-SNDP

Recall that in the VC-SNDP problem we are given an undirected graph G(V,E) with costs
on edges, and a connectivity requirement r(u, v) ≤ k for all u, v ∈ V . Additionally, we
have a subset T ⊆ V of terminals, and r(u, v) > 0 only if u, v ∈ T . Pairs of terminals
with non-zero connectivity requirements are called source-sink pairs. We will use OPT to
denote the cost of an optimal solution to the given VC-SNDP instance.

Our algorithm is as follows. We create p copies of our original graph, say G1, G2, . . . , Gp,
where p is a parameter to be determined later. For each copy Gi we define a subset Ti ⊆ T
of terminals. We then view Gi as an instance of element-connectivity SNDP, where the
connectivity requirements are induced by the set Ti of terminals as follows. For each
s, t ∈ Ti the new connectivity requirement is the same as the original one. For all other
pairs the connectivity requirements are 0. Observe that for each Gi the cost of an optimal
solution for the induced element-connectivity SNDP instance is at most OPT. We then
apply the 2-approximation algorithm of [10] to each one of the p instances of k-element
connectivity problem. Let Ei denote the set of edges output by the 2-approximation
algorithm on the instance defined on the Gi. Our final solution is E∗ = E1 ∪E2 ∪ ...∪Ep.
Clearly, the cost of the solution is at most 2p ·OPT. The main idea of our algorithm is that
with the appropriate assignment of terminals to subsets Ti, the algorithm is guaranteed to
produce a feasible solution.

Definition 2.1 Let M be the input collection of source-sink pairs and T is the correspond-
ing collection of terminals. We say that a family {T1, . . . , Tp} of subsets of T is good iff
for each source-sink pair (s, t) ∈ M, for each subset X ⊆ T of size at most (k − 1), there
is a subset Ti, 1 ≤ i ≤ p, such that s, t ∈ Ti and X ∩ Ti = ∅.

We show below that a good family of subsets exists for p = O(k3 log n), and give a
poly-time randomized algorithm to find such a family with high probability. We start by
proving that such a family guarantees that the algorithm produces a feasible solution.

Theorem 2 Let {T1, . . . , Tp} be a good family of subsets. Then the output E∗ of the above
algorithm is a feasible solution to the VC-SNDP instance.

Proof. Let (s, t) ∈M be any source-sink pair, and let X ⊆ V \ {s, t} be any collection
of at most (r(s, t)− 1) ≤ (k− 1) vertices. It is enough to show that the removal of X from
the graph induced by E∗ does not separate s from t. Let X ′ = X ∩ T . Since {T1, . . . , Tp}
is a good family of subsets, there is some Ti such that s, t ∈ Ti while Ti ∩X ′ = ∅. Recall
that set Ei of edges defines a feasible solution to the element-connectivity SNDP instance
corresponding to Ti. Then X is a set of non-terminal vertices with respect to Ti. Since s
is r(s, t)-element connected to t in the graph induced by Ei, the removal of X from the
graph does not disconnect s from t.
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We now show how to find a good family of subsets {T1, . . . , Tp}. Let p = 128k3 log n,
and set q = p/(2k) = 64k2 log n. Each terminal t ∈ T selects uniformly at random q indices
from the set {1, 2, ..., p} (repetitions are allowed). Let φ(t) denote the set of indices chosen
by the terminal t. For each 1 ≤ i ≤ p, we then define Ti = {t | i ∈ φ(t)}.

Theorem 3 With high probability, the resulting family {T1, . . . , Tp} of subsets is good.

Proof. We extend the definition of φ() to an arbitrary subset Z of vertices by defining
φ(Z) =

⋃
t∈Z∩T φ(t). Fix any source-sink pair (s, t). Let X be an arbitrary set of at most

(k− 1) vertices that does not include s, t. Note that |φ(X)| ≤ (k− 1)q < p/2. We say that
the bad event E1(s, t,X) occurs if |φ(s) ∩ φ(X)| ≥ 3q

4 . By Chernoff bounds,

Pr[E1(s, t,X)] ≤ e−q/32.

We say that the bad event E2(s, t,X) occurs if φ(s)∩ φ(t) ⊆ φ(X). We say that the set
X is a bad set for a pair (s, t) if the event E2(s, t,X) occurs. Note that if there is no bad
set X of size at most (r(s, t) − 1) for every pair (s, t) ∈ M, then {T1, . . . , Tp} is a good
family.

We observe that

Pr[E2(s, t,X) | E1(s, t,X)] ≤
(

1− q/4
p

)q

≤ e−q2/4p ≤ e−q/8k

Thus we can bound the probability of the event E2(s, t,X) as follows:

Pr[E2(s, t,X)] = Pr[E2(s, t,X) | E1(s, t,X)]Pr[E1(s, t,X)] + Pr[E2(s, t,X) | E1(s, t,X)]Pr[E1(s, t,X)]

≤ Pr[E1(s, t,X)] + Pr[E2(s, t,X) | E1(s, t,X)]

≤ e−q/32 + e−q/8k

< n−4k.

Hence, using the union bound, the probability that some bad set X of size at most
(k − 1) exists for any pair (s, t) can be bounded by n−2k.

Remark 1: We note here that in the proof of Theorem 3, it suffices to ensure that the
probability of the event E2(s, t,X) is bounded by |T |−4k instead of n−4k. To see this, observe
that we need only to consider the sets X that consist of terminal vertices. Moreover, the
total number of source-sink pairs is bounded by |T |2.

Combining Theorems 2 and 3 gives the following corollary:

Corollary 1 There is a randomized O(k3 log n)-approximation algorithm for VC-SNDP.
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Remark 2: We also note that this result implies that the integrality gap of the standard
set-pair relaxation for VC-SNDP [12] has an integrality gap of O(k3 log n). This follows
from the fact that the 2-approximation result of [10] also establishes an upper bound of 2
on the integrality gap of the set-pair relaxation for element-connectivity. A lower bound
of Ω̃(k1/3) is known on the integrality gap of the set-pair relaxation for VC-SNDP [4].

Remark 3: We notice that our algorithm carries over to the node-weighted version of
VC-SNDP, and in particular an α-approximation algorithm for the node-weighted element-
connectivity SNDP would imply an O(k3α log |T |)-approximation for the node-weighted
VC-SNDP.

3 The Algorithm for Single-Source VC-SNDP

In this section we show that an O(k2 log n)-approximation algorithm can be easily achieved
using the above ideas for the single-source version of VC-SNDP. Several algorithms achiev-
ing similar approximation factors have been proposed recently [7, 6, 19]. While the al-
gorithm and the analysis proposed here are elementary, we make use of the (relatively
involved) 2-approximation algorithm of [10] as a black box. The algorithms of [7, 6] have
the advantage that they are presented “from scratch”, using only elementary tools, and
when viewed as such they are rather simple.

The input to the single-source VC-SNDP is a graph G = (V,E) with a special vertex s
called the source, and a subset T of vertices called terminals. Additionally, for each t ∈ T
we are given a connectivity requirement r(s, t) ≤ k. The goal is to select a minimum-
cost subset E′ ⊆ E of edges, such that in the graph induced by E′ every terminal t ∈ T
is r(s, t)-vertex connected to s. This is clearly a special case of VC-SNDP, where the
source-sink pairs are {(s, t)}t∈T . As before, we create a family {T1, . . . , Tp} of subsets of
terminals, Ti ⊆ T for all 1 ≤ i ≤ p. We also create p copies G1, . . . , Gp, and for each Gi we
solve the element-connectivity SNDP instance with connectivity requirements induced by
terminals in Ti. Let Ei be the 2-approximate solution to instance Gi. Our final solution is
E∗ =

⋃p
i=1 Ei. Clearly, the cost of the solution is at most 2p(OPT).

Definition 3.1 A family {T1, . . . , Tp} of subsets of terminals is good iff for each terminal
t ∈ T , for each subset X ⊆ T of at most (k− 1) terminals, there is Ti such that t ∈ Ti and
Ti ∩X = ∅.

Theorem 4 If {T1, . . . , Tp} is good family of subsets then the above algorithm produces a
feasible solution.

Proof. Let t ∈ T and let X ⊆ V \ {s, t} be any subset of at most r(s, t)− 1 ≤ (k − 1)
vertices excluding s and t. It is enough to prove that the removal of X from the graph
induced by E∗ does not disconnect s from t. Let X ′ = X ∩T . Since {T1, . . . , Tp} is a good
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family, there is some Ti such that t ∈ Ti and Ti ∩ X ′ = ∅. Consider the solution Ei to
the corresponding k-element connectivity instance. Since vertices of X are non-terminal
vertices for the instance Gi, their removal from the graph induced by Ei does not disconnect
s from t.

Let p = 4k2 log n and q = p/(2k) = 2k log n. Each terminal t ∈ T selects q indices from
the set {1, 2, ..., p} uniformly at random with repetitions. Let φ(t) denote the set of indices
chosen by the terminal t. For each 1 ≤ i ≤ p, we then define Ti = {t | i ∈ φ(t)}.

Theorem 5 With high probability, the resulting family of subsets {T1, . . . , Tp} is good.

Proof. Let t ∈ T be any terminal and let X be any subset of at most r(s, t)−1 ≤ (k−1)
terminals. As before, we extend the function φ to an arbitrary subset Z of vertices by
defining φ(Z) =

⋃
t∈Z∩T φ(t). We say that bad event E(t, X) occurs iff φ(t) ⊆ φ(X). The

probability of E(t, X) is at most
(

1− kq

p

)q

=
(

1
2

)q

≤ n−2k

Therefore, with high probability the event E(t, X) does not happen for any t, X and
then {T1, . . . , Tp} is good.

Corollary 2 There is a randomized O(k2 log n)-approximation algorithm for single-source
VC-SNDP.
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