An $O\left(k^{3} \log n\right)$-Approximation Algorithm for Vertex-Connectivity Survivable Network Design

Julia Chuzhoy* Sanjeev Khanna ${ }^{\dagger}$

December 23, 2008

Abstract

In the Survivable Network Design problem (SNDP), we are given an undirected graph $G(V, E)$ with costs on edges, along with a connectivity requirement $r(u, v)$ for each pair u, v of vertices. The goal is to find a minimum-cost subset E^{*} of edges, that satisfies the given set of pairwise connectivity requirements. In the edge-connectivity version we need to ensure that there are $r(u, v)$ edge-disjoint paths for every pair u, v of vertices, while in the vertex-connectivity version the paths are required to be vertexdisjoint. The edge-connectivity version of SNDP is known to have a 2 -approximation. However, no non-trivial approximation algorithm has been known so far for the vertex version of SNDP, except for special cases of the problem. We present an extremely simple algorithm to achieve an $O\left(k^{3} \log n\right)$-approximation for this problem, where k denotes the maximum connectivity requirement, and n denotes the number of vertices. We also give a simple proof of the recently discovered $O\left(k^{2} \log n\right)$-approximation result for the single-source version of vertex-connectivity SNDP. We note that in both cases, our analysis in fact yields slightly better guarantees in that the $\log n$ term in the approximation guarantee can be replaced with a $\log \tau$ term where τ denotes the number of distinct vertices that participate in one or more pairs with a positive connectivity requirement.

[^0]
1 Introduction

In the Survivable Network Design problem (SNDP), we are given an undirected graph $G(V, E)$ with costs on edges, and a connectivity requirement $r(u, v)$ for each pair u, v of vertices. The goal is to find a minimum cost subset E^{*} of edges, such that each pair (u, v) of vertices is connected by $r(u, v)$ paths. In the edge-connectivity version (EC-SNDP), these paths are required to be edge-disjoint, while in the vertex-connectivity version (VCSNDP), they need to be vertex-disjoint. It is not hard to show that EC-SNDP can be cast as a special case of VC-SNDP. We denote by n the number of vertices in the graph and by k the maximum pairwise connectivity requirement, that is, $\max _{u, v \in V}\{r(u, v)\}$. We also define a subset $T \subseteq V$ of vertices called terminals: a vertex $u \in T$ iff $r(u, v)>0$ for some vertex $v \in V$.

The best current approximation algorithm for EC-SNDP is due to Jain [13], and it achieves a factor-2 approximation via the iterative rounding technique. At the same time no non-trivial approximation algorithms have been known for VC-SNDP, with the exception of several restricted special cases. Agrawal et. al. [1] showed a 2-approximation algorithm for the special case where maximum connectivity requirement $k=1$. For $k=2$, a 2 -approximation algorithm was given by Fleischer [9]. The k-vertex connected spanning subgraph problem, a special case of VC-SNDP where for all $u, v \in V r_{u, v}=k$, has been studied extensively. Cheriyan et al. [2, 3] gave an $O(\log k)$-approximation algorithm for this case when $k \leq \sqrt{n / 6}$, and an $O(\sqrt{n / \epsilon})$-approximation algorithm for $k \leq(1-\epsilon) n$. For large k, Kortsarz and Nutov [17] improved the preceding bound to an $O\left(\ln k \cdot \min \left\{\sqrt{k}, \frac{n}{n-k} \ln k\right\}\right)$-approximation. Fakcharoenphol and Laekhanukit [8] improved it to an $O(\log n \log k)$-approximation, and further obtained an $O\left(\log ^{2} k\right)$-approximation for $k<n / 2$. Very recently, Nutov [20] improved this to $O\left(\log k \cdot \log \frac{n}{n-k}\right)$-approximation.

Kortsarz et. al. [15] showed that VC-SNDP is hard to approximate to within a factor of $2^{\log ^{1-\epsilon} n}$ for any $\epsilon>0$, when k is polynomially large in n. This result was subsequently extended by Chakraborty et. al. [4] to a k^{ϵ}-hardness for all $k>k_{0}$, where k_{0} and ϵ are fixed positive constants. The existence of good approximation algorithms for small values of k has remained an open problem, even for $k \geq 3$. In particular, when each connectivity requirement $r_{u, v} \in\{0,3\}$, the best known approximation factor is polynomially large while only an APX-hardness is known on the hardness side.

A special case of VC-SNDP that has received much attention recently is the singlesource version. In this problem there is a special vertex s called the source, and all nonzero connectivity requirements involve s, that is, if $u \neq s$ and $v \neq s$, then $r(u, v)=0$. Kortsarz et. al [15] showed that even this restricted special case of VC-SNDP is hard to approximate up to factor $\Omega(\log n)$, and recently Lando and Nutov [18] improved this to $(\log n)^{2-\epsilon}$-hardness of approximation for any constant $\epsilon>0$. Both results only hold when k is polynomially large in n. On the algorithmic side, Chakraborty et. al. [4] showed an $2^{O\left(k^{2}\right)} \log ^{4} n$-approximation for the problem. This result was later independently improved to $O\left(k^{O(k)} \log n\right)$-approximation by Chekuri and Korula [5], and to $O\left(k^{2} \log n\right)$ by

Chuzhoy and Khanna [7], and by Nutov [19]. Recently, Chekuri and Korula [6] simplified the analysis of the algorithm of [7]. We note that for the uniform case, where all non-zero connectivity requirements are k, Chuzhoy and Khanna [7] show a slightly better $O(k \log n)$ approximation algorithm, and the results of [6] extend to this special case.

A closely related problem to EC-SNDP and VC-SNDP is the element-connectivity SNDP. The input to the element-connectivity SNDP is the same as for EC-SNDP and VC-SNDP, and we also define the set $T \subseteq V$ of terminals as above. Given a problem instance, an element is any edge or any non-terminal vertex in the graph. We say that a pair (s, t) of vertices is k-element connected iff for every subset X of at most $(k-1)$ elements, s and t remain connected by a path when X is removed from the graph. In other words, there are k element-disjoint paths connecting s to t; these paths are allowed to share terminals. Observe that if (s, t) are k-vertex connected, then they are also k element connected, and similarly, if (s, t) are k-element connected, then they are also k-edge connected. The goal in the element-connectivity SNDP is to select a minimum-cost subset E^{*} of edges, such that in the graph induced by E^{*}, each pair (u, v) of vertices is $r(u, v)$-element connected. The element-connectivity SNDP was introduced in [14] as a problem of intermediate difficulty between edge-connectivity and vertex-connectivity, and the authors game a primal-dual $O(\log k)$-approximation for this problem. Subsequently, Fleischer et al. [10] gave a 2-approximation algorithm for element-connectivity SNDP via the iterative rounding technique, matching the 2-approximation guarantee of Jain [13] for EC-SNDP. We will use this result as a building block for our algorithm.

Our results: Our main result is as follows.
Theorem 1 There is a polynomial-time randomized $O\left(k^{3} \log n\right)$-approximation algorithm for $V C-S N D P$, where k denotes the largest pairwise connectivity requirement.

In fact, our analysis gives a slightly better approximation guarantee of $O\left(k^{3} \log |T|\right)$. The proof of this result is based on a randomized reduction that maps a given instance of VC-SNDP to a family of instances of element-connectivity SNDP. The reduction creates $O\left(k^{3} \log n\right)$ instances, and has the property that any collection of edges that is feasible for each one of the element-connectivity SNDP instances generated above, is a feasible solution for the given VC-SNDP instance. We can thus use the known 2-approximation algorithm for element-connectivity SNDP to obtain the desired result.

We use these ideas to also give an alternative simple proof of the $O\left(k^{2} \log n\right)$-approximation algorithm for the single-source VC-SNDP problem.

Organization: We present the proof of Theorem 1 in Section 2. Section 3 presents an alternative proof of the $O\left(k^{2} \log n\right)$-approximation result for single-source VC-SNDP.

2 The Algorithm for VC-SNDP

Recall that in the VC-SNDP problem we are given an undirected graph $G(V, E)$ with costs on edges, and a connectivity requirement $r(u, v) \leq k$ for all $u, v \in V$. Additionally, we have a subset $T \subseteq V$ of terminals, and $r(u, v)>0$ only if $u, v \in T$. Pairs of terminals with non-zero connectivity requirements are called source-sink pairs. We will use OPT to denote the cost of an optimal solution to the given VC-SNDP instance.

Our algorithm is as follows. We create p copies of our original graph, say $G_{1}, G_{2}, \ldots, G_{p}$, where p is a parameter to be determined later. For each copy G_{i} we define a subset $T_{i} \subseteq T$ of terminals. We then view G_{i} as an instance of element-connectivity SNDP, where the connectivity requirements are induced by the set T_{i} of terminals as follows. For each $s, t \in T_{i}$ the new connectivity requirement is the same as the original one. For all other pairs the connectivity requirements are 0 . Observe that for each G_{i} the cost of an optimal solution for the induced element-connectivity SNDP instance is at most OPT. We then apply the 2 -approximation algorithm of [10] to each one of the p instances of k-element connectivity problem. Let E_{i} denote the set of edges output by the 2-approximation algorithm on the instance defined on the G_{i}. Our final solution is $E^{*}=E_{1} \cup E_{2} \cup \ldots \cup E_{p}$. Clearly, the cost of the solution is at most $2 p$. OPT. The main idea of our algorithm is that with the appropriate assignment of terminals to subsets T_{i}, the algorithm is guaranteed to produce a feasible solution.

Definition 2.1 Let \mathcal{M} be the input collection of source-sink pairs and T is the corresponding collection of terminals. We say that a family $\left\{T_{1}, \ldots, T_{p}\right\}$ of subsets of T is good iff for each source-sink pair $(s, t) \in \mathcal{M}$, for each subset $X \subseteq T$ of size at most $(k-1)$, there is a subset $T_{i}, 1 \leq i \leq p$, such that $s, t \in T_{i}$ and $X \cap T_{i}=\emptyset$.

We show below that a good family of subsets exists for $p=O\left(k^{3} \log n\right)$, and give a poly-time randomized algorithm to find such a family with high probability. We start by proving that such a family guarantees that the algorithm produces a feasible solution.

Theorem 2 Let $\left\{T_{1}, \ldots, T_{p}\right\}$ be a good family of subsets. Then the output E^{*} of the above algorithm is a feasible solution to the VC-SNDP instance.

Proof. Let $(s, t) \in \mathcal{M}$ be any source-sink pair, and let $X \subseteq V \backslash\{s, t\}$ be any collection of at most $(r(s, t)-1) \leq(k-1)$ vertices. It is enough to show that the removal of X from the graph induced by E^{*} does not separate s from t. Let $X^{\prime}=X \cap T$. Since $\left\{T_{1}, \ldots, T_{p}\right\}$ is a good family of subsets, there is some T_{i} such that $s, t \in T_{i}$ while $T_{i} \cap X^{\prime}=\emptyset$. Recall that set E_{i} of edges defines a feasible solution to the element-connectivity SNDP instance corresponding to T_{i}. Then X is a set of non-terminal vertices with respect to T_{i}. Since s is $r(s, t)$-element connected to t in the graph induced by E_{i}, the removal of X from the graph does not disconnect s from t.

We now show how to find a good family of subsets $\left\{T_{1}, \ldots, T_{p}\right\}$. Let $p=128 k^{3} \log n$, and set $q=p /(2 k)=64 k^{2} \log n$. Each terminal $t \in T$ selects uniformly at random q indices from the set $\{1,2, \ldots, p\}$ (repetitions are allowed). Let $\phi(t)$ denote the set of indices chosen by the terminal t. For each $1 \leq i \leq p$, we then define $T_{i}=\{t \mid i \in \phi(t)\}$.

Theorem 3 With high probability, the resulting family $\left\{T_{1}, \ldots, T_{p}\right\}$ of subsets is good.
Proof. We extend the definition of $\phi()$ to an arbitrary subset Z of vertices by defining $\phi(Z)=\bigcup_{t \in Z \cap T} \phi(t)$. Fix any source-sink pair (s, t). Let X be an arbitrary set of at most $(k-1)$ vertices that does not include s, t. Note that $|\phi(X)| \leq(k-1) q<p / 2$. We say that the bad event $\mathcal{E}_{1}(s, t, X)$ occurs if $|\phi(s) \cap \phi(X)| \geq \frac{3 q}{4}$. By Chernoff bounds,

$$
\operatorname{Pr}\left[\mathcal{E}_{1}(s, t, X)\right] \leq e^{-q / 32}
$$

We say that the bad event $\mathcal{E}_{2}(s, t, X)$ occurs if $\phi(s) \cap \phi(t) \subseteq \phi(X)$. We say that the set X is a bad set for a pair (s, t) if the event $\mathcal{E}_{2}(s, t, X)$ occurs. Note that if there is no bad set X of size at most $(r(s, t)-1)$ for every pair $(s, t) \in \mathcal{M}$, then $\left\{T_{1}, \ldots, T_{p}\right\}$ is a good family.

We observe that

$$
\operatorname{Pr}\left[\mathcal{E}_{2}(s, t, X) \mid \overline{\mathcal{E}_{1}(s, t, X)}\right] \leq\left(1-\frac{q / 4}{p}\right)^{q} \leq e^{-q^{2} / 4 p} \leq e^{-q / 8 k}
$$

Thus we can bound the probability of the event $\mathcal{E}_{2}(s, t, X)$ as follows:

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{E}_{2}(s, t, X)\right] & =\operatorname{Pr}\left[\mathcal{E}_{2}(s, t, X) \mid \mathcal{E}_{1}(s, t, X)\right] \operatorname{Pr}\left[\mathcal{E}_{1}(s, t, X)\right]+\operatorname{Pr}\left[\mathcal{E}_{2}(s, t, X) \mid \overline{\mathcal{E}_{1}(s, t, X)}\right] \operatorname{Pr}\left[\overline{\mathcal{E}_{1}(s, t, X)}\right] \\
& \leq \operatorname{Pr}\left[\mathcal{E}_{1}(s, t, X)\right]+\operatorname{Pr}\left[\mathcal{E}_{2}(s, t, X) \mid \overline{\mathcal{E}_{1}(s, t, X)}\right] \\
& \leq e^{-q / 32}+e^{-q / 8 k} \\
& <n^{-4 k} .
\end{aligned}
$$

Hence, using the union bound, the probability that some bad set X of size at most $(k-1)$ exists for any pair (s, t) can be bounded by $n^{-2 k}$.

Remark 1: We note here that in the proof of Theorem 3, it suffices to ensure that the probability of the event $\mathcal{E}_{2}(s, t, X)$ is bounded by $|T|^{-4 k}$ instead of $n^{-4 k}$. To see this, observe that we need only to consider the sets X that consist of terminal vertices. Moreover, the total number of source-sink pairs is bounded by $|T|^{2}$.

Combining Theorems 2 and 3 gives the following corollary:
Corollary 1 There is a randomized $O\left(k^{3} \log n\right)$-approximation algorithm for $V C-S N D P$.

Remark 2: We also note that this result implies that the integrality gap of the standard set-pair relaxation for VC-SNDP [12] has an integrality gap of $O\left(k^{3} \log n\right)$. This follows from the fact that the 2-approximation result of [10] also establishes an upper bound of 2 on the integrality gap of the set-pair relaxation for element-connectivity. A lower bound of $\tilde{\Omega}\left(k^{1 / 3}\right)$ is known on the integrality gap of the set-pair relaxation for VC-SNDP [4].

Remark 3: We notice that our algorithm carries over to the node-weighted version of VC-SNDP, and in particular an α-approximation algorithm for the node-weighted elementconnectivity SNDP would imply an $O\left(k^{3} \alpha \log |T|\right)$-approximation for the node-weighted VC-SNDP.

3 The Algorithm for Single-Source VC-SNDP

In this section we show that an $O\left(k^{2} \log n\right)$-approximation algorithm can be easily achieved using the above ideas for the single-source version of VC-SNDP. Several algorithms achieving similar approximation factors have been proposed recently $[7,6,19]$. While the algorithm and the analysis proposed here are elementary, we make use of the (relatively involved) 2-approximation algorithm of [10] as a black box. The algorithms of $[7,6]$ have the advantage that they are presented "from scratch", using only elementary tools, and when viewed as such they are rather simple.

The input to the single-source VC-SNDP is a graph $G=(V, E)$ with a special vertex s called the source, and a subset T of vertices called terminals. Additionally, for each $t \in T$ we are given a connectivity requirement $r(s, t) \leq k$. The goal is to select a minimumcost subset $E^{\prime} \subseteq E$ of edges, such that in the graph induced by E^{\prime} every terminal $t \in T$ is $r(s, t)$-vertex connected to s. This is clearly a special case of VC-SNDP, where the source-sink pairs are $\{(s, t)\}_{t \in T}$. As before, we create a family $\left\{T_{1}, \ldots, T_{p}\right\}$ of subsets of terminals, $T_{i} \subseteq T$ for all $1 \leq i \leq p$. We also create p copies G_{1}, \ldots, G_{p}, and for each G_{i} we solve the element-connectivity SNDP instance with connectivity requirements induced by terminals in T_{i}. Let E_{i} be the 2-approximate solution to instance G_{i}. Our final solution is $E^{*}=\bigcup_{i=1}^{p} E_{i}$. Clearly, the cost of the solution is at most $2 p(\mathrm{OPT})$.

Definition 3.1 A family $\left\{T_{1}, \ldots, T_{p}\right\}$ of subsets of terminals is good iff for each terminal $t \in T$, for each subset $X \subseteq T$ of at most $(k-1)$ terminals, there is T_{i} such that $t \in T_{i}$ and $T_{i} \cap X=\emptyset$.

Theorem 4 If $\left\{T_{1}, \ldots, T_{p}\right\}$ is good family of subsets then the above algorithm produces a feasible solution.

Proof. Let $t \in T$ and let $X \subseteq V \backslash\{s, t\}$ be any subset of at most $r(s, t)-1 \leq(k-1)$ vertices excluding s and t. It is enough to prove that the removal of X from the graph induced by E^{*} does not disconnect s from t. Let $X^{\prime}=X \cap T$. Since $\left\{T_{1}, \ldots, T_{p}\right\}$ is a good
family, there is some T_{i} such that $t \in T_{i}$ and $T_{i} \cap X^{\prime}=\emptyset$. Consider the solution E_{i} to the corresponding k-element connectivity instance. Since vertices of X are non-terminal vertices for the instance G_{i}, their removal from the graph induced by E_{i} does not disconnect s from t.

Let $p=4 k^{2} \log n$ and $q=p /(2 k)=2 k \log n$. Each terminal $t \in T$ selects q indices from the set $\{1,2, \ldots, p\}$ uniformly at random with repetitions. Let $\phi(t)$ denote the set of indices chosen by the terminal t. For each $1 \leq i \leq p$, we then define $T_{i}=\{t \mid i \in \phi(t)\}$.

Theorem 5 With high probability, the resulting family of subsets $\left\{T_{1}, \ldots, T_{p}\right\}$ is good.
Proof. Let $t \in T$ be any terminal and let X be any subset of at most $r(s, t)-1 \leq(k-1)$ terminals. As before, we extend the function ϕ to an arbitrary subset Z of vertices by defining $\phi(Z)=\bigcup_{t \in Z \cap T} \phi(t)$. We say that bad event $\mathcal{E}(t, X)$ occurs iff $\phi(t) \subseteq \phi(X)$. The probability of $\mathcal{E}(t, X)$ is at most

$$
\left(1-\frac{k q}{p}\right)^{q}=\left(\frac{1}{2}\right)^{q} \leq n^{-2 k}
$$

Therefore, with high probability the event $\mathcal{E}(t, X)$ does not happen for any t, X and then $\left\{T_{1}, \ldots, T_{p}\right\}$ is good.

Corollary 2 There is a randomized $O\left(k^{2} \log n\right)$-approximation algorithm for single-source $V C-S N D P$.

Acknowledgements

We thank Chandra Chekuri for his helpful comments on an earlier version of this paper.

References

[1] A. Agrawal, P. N. Klein, and R. Ravi. When trees collide: An approximation algorithm for the generalized steiner problem on networks. SIAM Journal of Computing, $24(3): 440-456,1995$.
[2] J. Cheriyan, S. Vempala, and A. Vetta. An approximation algorithm for the minimumcost k-vertex connected subgraph. SIAM Journal of Computing, 32(4):1050-1055, 2003.
[3] J. Cheriyan, S. Vempala, and A. Vetta. Network design via iterative rounding of setpair relaxations. Combinatorica, 26(3):255-275, 2006.
[4] T. Chakraborty, J. Chuzhoy, and S. Khanna. Network Design for Vertex Connectivity. In Proceedings of ACM Symposium on Theory of Computing (STOC), 2008.
[5] C. Chekuri and N. Korula. Single-Sink Network Design with Vertex Connectivity Requirements. FSTTCS, 2008.
[6] C. Chekuri and N. Korula. A Graph Reduction Step Preserving Element -Connectivity and Applications. Manuscript, 2008.
[7] J. Chuzhoy and S. Khanna. Algorithms for single-source vertex connectivity. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), 2009.
[8] J. Fakcharoenphol and B. Laekhanukit. An $O\left(\log ^{2} k\right)$-approximation algorithm for the k-vertex connected subgraph problem. In Proceedings of ACM Symposium on Theory of Computing (STOC), 2008.
[9] L. Fleischer. A 2-Approximation for Minimum Cost $\{0,1,2\}$ Vertex Connectivity. IPCO, pp. 115-129, 2001.
[10] L. Fleischer, K. Jain, and D. P. Williamson. An Iterative Rounding 2-Approximation Algorithm for the Element Connectivity Problem. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pp. 339-347, 2001.
[11] L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-approximation algorithms for minimum cost vertex connectivity problems. Journal of Computer and System Sciences, 72(5):838-867, 2006.
[12] A. Frank and T. Jordan. Minimal edge-coverings of pairs of sets. Journal of Combinatorial Theory, Series B, 65(1):73-110, 1995.
[13] K. Jain. Factor 2 approximation algorithm for the generalized steiner network problem. In Proceedings of the thirty-ninth annual IEEE Foundations of Computer Science (FOCS), pages 448-457, 1998.
[14] K. Jain, I. Mandoiu, V.V. Vazirani and D.P. Williamson. A primal-dual schema based approximation algorithm for the element connectivity problem. J. Algorithms 45(1), pp. 1-15.
[15] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertexconnectivity network design problems. SIAM Journal of Computing, 33(3):704-720, 2004.
[16] G. Kortsarz and Z. Nutov. Approximating node connectivity problems via set covers. Algorithmica, 37(2):75-92, 2003.
[17] G. Kortsarz and Z. Nutov. Approximating k-node connected subgraphs via critical graphs. SIAM Journal of Computing, 35(1):247-257, 2005.
[18] Y. Lando and Z. Nutov. Inapproximability of Survivable Networks APPROX 2008, Lecture Notes in Computer Science, 5171, pp. 146-152.
[19] Z. Nutov. A note on Rooted Survivable Networks. Manuscript. http://www.openu.ac.il/home/nutov/R-SND.pdf.
[20] Z. Nutov. An almost $O(\log k)$-approximation for k-connected subgraphs. Manuscript. http://www.openu.ac.il/home/nutov/k-conn-best.pdf.
[21] R. Ravi and D. P. Williamson. An approximation algorithm for minimum-cost vertexconnectivity problems. Algorithmica, 18(1):21-43, 1997.

[^0]: *Toyota Technological Institute, Chicago, IL 60637. Email: cjulia@tti-c.org.
 ${ }^{\dagger}$ Dept. of Computer \& Information Science, University of Pennsylvania, Philadelphia, PA 19104. Email: sanjeev@cis.upenn.edu. Supported in part by a Guggenheim Fellowship, an IBM Faculty Award, and by NSF Award CCF-0635084.

