
On Allocating Goods to Maximize Fairness

Deeparnab Chakrabarty
Dept. of C&O

University of Waterloo
Waterloo, ON N2L 3G1

Email: deepc@math.uwaterloo.ca

Julia Chuzhoy∗
Toyota Technological Institute

Chicago, IL 60637
Email: cjulia@tti-c.org

Sanjeev Khanna†
Dept. of Computer & Information Science

University of Pennsylvania
Philadelphia, PA 19104.

Email: sanjeev@cis.upenn.edu

Abstract— We consider the Max-Min Allocation problem: given a
set A of m agents and a set I of n items, where agent A ∈ A has
utility uA,i for item i ∈ I, our goal is to allocate items to agents
so as to maximize fairness. Specifically, the utility of an agent is
the sum of its utilities for the items it receives, and we seek to
maximize the minimum utility of any agent. While this problem
has received much attention recently, its approximability has not
been well-understood thus far: the best known approximation
algorithm achieves an Õ(

√
m)-approximation, and in contrast, the

best known hardness of approximation stands at 2.

Our main result is an algorithm that achieves an Õ(nε)-
approximation for any ε = Ω(log log n

log n) in time nO(1/ε). In
particular, we obtain poly-logarithmic approximation in quasi-
polynomial time, and for every constant ε > 0, we obtain an
Õ(nε)-approximation in polynomial time. An interesting technical
aspect of our algorithm is that we use as a building block a linear
program whose integrality gap is Ω(

√
m). We bypass this obstacle

by iteratively using the solutions produced by the LP to construct
new instances with significantly smaller integrality gaps, eventually
obtaining the desired approximation. As a corollary of our main
result, we also show that for any constant ε > 0, an O(mε)-
approximation can be achieved in quasi-polynomial time.

We also investigate the special case of the problem, where every
item has non-zero utility for at most two agents. This problem is
hard to approximate up to any factor better than 2. We give a factor
2-approximation algorithm.

1. INTRODUCTION

In this paper we consider the problem of allocating indivisi-
ble goods to a set of agents, with the objective to maximize
the minimum utility among all agents. Formally, we are
given a set A of m agents, a set I of n indivisible items,
and non-negative utilities uA,i for each agent A and item
i. The total utility of an agent A for a subset S ⊆ I of
items is uA(S) :=

∑
i∈S uA,i, that is, the utility function is

additive. An allocation of items is a function Φ : A → 2I

such that every item is allocated to at most one agent, that
is, Φ(A) ∩ Φ(A′) = ∅ whenever A %= A′. The MAX-MIN
ALLOCATION problem is to find an allocation Φ of items
which maximizes minA∈A {uA(Φ(A))}.
∗ Supported in part by NSF CAREER award CCF-0844872.
† Supported in part by a Guggenheim Fellowship, an IBM Faculty Award,

and by NSF Award CCF-0635084.

The MAX-MIN ALLOCATION problem arises naturally in
the context of fair allocation of indivisible resources where
maximizing the utility of the least ‘happy’ person is arguably
a suitable notion of fairness. Woeginger [17] and Epstein
and Sgall [11] gave polynomial time approximation schemes
(PTAS) for the special case where all agents have identical
utilities for the items. Woeginger [18] also gave an FPTAS
for the case where the number of agents, m, is a constant.
The first non-trivial approximation algorithm for the general
MAX-MIN ALLOCATION problem is due to Bezakova and
Dani [6], achieving a factor (n−m+1)-approximation. They
also showed that the problem is hard to approximate up to
any factor smaller than 2.

Bansal and Sviridenko [3] introduced a restricted version
of the MAX-MIN ALLOCATION problem, called the Santa
Claus problem, where each item has the same utility for
a subset of agents and 0 utility for the rest. In other
words, for each agent A and item i, either uA,i = ui,
or uA,i = 0, where the value ui only depends on the
item i. They proposed an LP relaxation for the problem,
referred to as the configuration LP, and used it to give
an O(log log m/ log log log m)-approximation for the Santa
Claus problem. Subsequently, Feige [12] showed a constant
upper bound on the integrality gap of the configuration LP
for the Santa Claus problem. However his proof is non-
constructive and does not give an approximation algorithm.
More recently, Asadpour, Feige and Saberi [1] provided an
alternative non-constructive proof of a factor-5 upper bound
on the integrality gap of the LP.

As for the general MAX-MIN ALLOCATION problem,
Bansal and Sviridenko [3] showed that the configuration
LP has an integrality gap of Ω(

√
m) in this setting. Asad-

pour and Saberi [2] gave an O(
√

m log3 m) approximation
algorithm for the problem using the same LP relaxation.
This is the best approximation algorithm known for the
problem prior to our work, while the best current hardness
of approximation factor is 2 [6]. The main result of our
paper is an Õ(nε)-approximation algorithm for any ε =
Ω(log log n/ log n) for the general MAX-MIN ALLOCATION
problem, whose running time is nO(1/ε). This implies a

2009 50th Annual IEEE Symposium on Foundations of Computer Science

0272­5428/09 $26.00 © 2009 IEEE

DOI 10.1109/FOCS.2009.51

107

quasi-polynomial time poly-logarithmic approximation for
the general MAX-MIN ALLOCATION problem, and for any
constant ε > 0, it gives an nε-approximation in polynomial
time. Interestingly, one of our main building blocks is an LP-
relaxation whose integrality gap is Ω(

√
m). We bypass this

obstacle by iteratively using the LP solutions to construct a
sequence of new instances with diminishing integrality gaps.

We also investigate a special case of MAX-MIN ALLO-
CATION where each item has positive utility for at most
two agents. We call this special case the 2-restricted MAX-
MIN ALLOCATION problem. When the two positive utilities
are identical for both agents, we call it a uniform 2-
restricted instance. To the best of our knowledge, prior
to our work, the approximability status of the 2-restricted
MAX-MIN ALLOCATION problem has been the same as
that of the the general MAX-MIN ALLOCATION; for the
uniform 2-restricted MAX-MIN ALLOCATION the algorithm
and analysis of Bansal and Sviridenko for the Santa Claus
problem implies a factor-4 approximation. We give a 2-
approximation algorithm for the general 2-restriced MAX-
MIN ALLOCATION.

Remark: Independently of our work, Bateni, Charikar, and
Guruswami [4], [5] showed approximation algorithms for
special cases of the MAX-MIN ALLOCATION problem. They
consider the setting where all utilities uA,i ∈ {0, 1,∞}. Let
G∞ be the graph whose vertices correspond to items and
agents, and there is an edge between an agent A and an item
i iff uA,i = ∞. They achieve an O(nε)-approximation in
nO(1/ε) time and a polylogarithmic approximation in quasi-
polynomial time for the following two special cases: (1)
when the degree of every item in G∞ is at most 2, and (2)
when graph G∞ contains no cycles. They also give a 4-
approximation for the 2-restricted MAX-MIN ALLOCATION
and show that the uniform 2-restricted MAX-MIN ALLOCA-
TION is NP-hard to approximate to a factor better than 2.
Finally, they show that the general MAX-MIN ALLOCATION
is equivalent to the 3-restricted MAX-MIN ALLOCATION,
where every item has a non-zero utility for at most 3 agents.

Overview of Results and Techniques. Our main result is
summarized in the following theorem:

Theorem 1 For any ε ≥ 9 log log n
log n , there is an nO(1/ε)-time

algorithm to compute an O(nε log n)-approximate solution
for the MAX-MIN ALLOCATION problem. In particular,
there is an O(log10 n)-approximation algorithm whose run-
ning time is nO(log n

log log n).

We now give a brief overview of our approach. Fix an ε
such that the desired approximation factor is Õ(nε). Our
algorithm starts by guessing the value M of the optimal
solution. We then define a class of structured MAX-MIN
ALLOCATION instances that we call canonical instances,

and show that any input instance can be transformed into a
canonical one, with an O(log n) loss in the approximation
ratio. In a canonical instance, there are only two types of
agents – heavy agents whose utility for any item is either
0 or M , and light agents. Each light agent has a distinct
heavy item for which it has utility M , and for every other
item, the utility is either M/t or 0, where t ≥ nε is a large
integer. The items with a utility of M/t for a light agent are
referred to as the light items.

Next we transform the problem of assigning items to agents
into a network flow problem, by means of private items.
Each agent is assigned at most one distinct private item, for
which it has utility M . The private item of a light agent is its
unique heavy item, and we fix some maximal assignment of
remaining items to heavy agents. Of course, if every agent
is assigned a private item, we immediately obtain a near-
optimal solution. So assume that some agents do not get
assigned any private items; such agents are called terminals.
A key observation is that if the optimal solution value is M ,
then, given any assignment of private items, there always
exists a way of re-assigning private items such that every
terminal is assigned a heavy item. Re-assignment means a
heavy agent “frees” its private item if it gets another heavy
item while a light agent frees its private item if it gets t light
items. These freed-up private items can then be re-assigned.
Thus, given any allocation of private items, we can construct
a flow network with the property that there exists an integral
flow satisfying certain constraints (for instance, out-flow of
1 for light agents implies an in-flow of t). We then design a
linear programming relaxation to obtain a feasible fractional
flow solution for the above network. Our LP relaxation has
size nO(1/ε) when the desired approximation ratio is Õ(nε).
However, the integrality gap of the LP relaxation is Ω(

√
m),

and thus directly rounding the LP-solution cannot give a
better than O(

√
m) approximation factor.

This brings us to another key technical idea. Although the
LP has a large integrality gap, we show that we can obtain a
better approximation algorithm by performing LP-rounding
in phases. In each phase we solve the LP and run a rounding
algorithm to obtain a solution which is almost feasible: all
terminals get heavy items but some items might be allocated
twice. From this almost-feasible solution, we recover a new
assignment of private items and hence a new instance of
the LP, one that has a much smaller number of terminals
than the starting instance. We thus show that in poly(1/ε)
phases, either one of these instances will certify that the
optimal solution cost is smaller than the guessed value M ,
or we will get an Õ(nε)-approximation.

We note that many previous results use m, the number of
agents, as the parameter in the approximation factor, while
our result is an Õ(nε) approximation. However, as an easy
corollary, we can show that for any constant ε > 0, an

108

O(mε)-approximation can be achieved in quasi-polynomial
time.

Corollary 1 For any fixed ε > 0, there is a quasi-
polynomial time O(mε)-approximation algorithm for MAX-
MIN ALLOCATION.

Our second result is about 2-restricted MAX-MIN ALLOCA-
TION instances.

Theorem 2 There is a 2-approximation algorithm for the
general 2-restricted MAX-MIN ALLOCATION problem.

The 2-restricted MAX-MIN ALLOCATION can be cast as
an orientation problem on (non-uniformly) weighted graphs.
Our main technical lemma is a generalization of Eulerian
orientations to weighted graphs. At a high level, we show
that the edges of any (non-uniformly) weighted graph can be
oriented such that the total weight coming into any vertex
w.r.t. the orientation is greater than half the total weight
incident on the vertex in the undirected graph minus the
maximum weight edge incident on the vertex. Note that in
the case of unweighted graphs, these orientations correspond
to Eulerian orientations.

Related Work. The MAX-MIN ALLOCATION problem falls
in the broad class of resource allocation problems which are
ubiquitous in computer science, economics and operations
research. When the resources are divisible, the fair allocation
problem, also dubbed as cake-cutting problems, has been
extensively studied by economists and political scientists
with entire books (for example, [7]) written on the subject.
However, the indivisible case has come into focus only
recently.

The complexity of resource allocation problems also de-
pends on the complexity of the utility functions of agents.
The utility functions we deal with in this paper are additive
– for every agent A, the total utility of a set S of items
is simply uA(S) :=

∑
i∈S uA,i. More general utility func-

tions have been studied in the literature, with two major
examples being submodular utilities, where for every agent
A and any two subsets S, T of items, uA(S) + uA(T) ≥
uA(S ∪ T) + uA(S ∩ T), and sub-additive utilities, where
uA(S) + uA(T) ≥ uA(S ∪ T). Note that submodular
utilities are a special case of the sub-additive utilities.
Khot and Ponnuswami [14] gave a (2m − 1)-approximate
algorithm for MAX-MIN ALLOCATION with sub-additive
utilities. Recently, Goemans et. al. [13], using the Õ(

√
m)-

approximation algorithm of Asadpour and Saberi [2] as a
black box, gave a Õ(

√
nm1/4)-approximation for MAX-

MIN ALLOCATION with submodular utilities. We note that
using our main theorem above, the algorithm of [13] gives
a Õ(n1/2+ε)-approximation for submodular MAX-MIN AL-
LOCATION in time nO(1/ε). We remark here that nothing

better than the factor 2 hardness is known for MAX-MIN
ALLOCATION even with the general sub-additive utilities.

MAX-MIN ALLOCATION may be viewed as a dual problem
to the minimum makespan machine scheduling. Lenstra,
Shmoys and Tardos [15] gave a factor 2-approximation
algorithm for the problem, and also showed the problem is
NP-hard to approximate to a factor better than 3/2. Closing
this gap has been one of the challenging problems in the
field of approximation algorithms. Recently Ebenlendr et.al.
[10] studied a very restricted setting where each job can only
be assigned to two machines, and moreover its processing
time for both machines is identical. For this case, [13] give
a factor (7/4)-approximation algorithm, and show that even
this special case is NP-hard to approximate better than a
factor 3/2. Our investigation of the 2-restricted MAX-MIN
ALLOCATION is inspired by [10].

Organization. Section 2 presents transformations that allow
us to focus on instances and solutions with a special struc-
ture. Section 3 shows how to get an almost-feasible Õ(nε)-
approximate solution for ε = Ω(log log n/ log n). However
due to lack of space, in this extended abstract we only state
the theorem needed for the subsequent sections. In Section 4,
we establish our main result, namely Theorem 1. Section 5
gives the proof of Corollary 1. We conclude with a proof
of Theorem 2 in Section 6. All proofs missing from this
extended abstract can be found in [8].

2. PRELIMINARIES

We are given a set A of m agents, a set I of n indivisible
items, and non-negative utility uA,i for each agent A and
item i. The utility of agent A for a subset S ⊆ I of items
is uA(S) :=

∑
i∈S uA,i. The MAX-MIN ALLOCATION

problem is to find an allocation Φ : A → 2I of items
to agents which maximizes minA∈A {uA(Φ(A))}, while
Φ(A) ∩ Φ(A′) = ∅ for A %= A′. We assume that we are
given ε ≥ 9 log log n/ log n, and so nε ≥ Ω(log9 n). Our
goal is to produce an Õ (nε)-approximate solution in nO(1/ε)

time. We use M to denote the (guessed) value of the optimal
solution. Our algorithm either produces a solution of value
at least M/Õ(nε), or returns a certificate that M > OPT.
For an agent A and an item i, we use interchangeably the
phrases “A has utility γ for item i” and “item i has utility
γ for A” to indicate that uA,i = γ. We say that item i is
wanted by agent A iff uA,i > 0.

Polynomially Bounded Utilities. We first show that we can
assume w.l.o.g. that all utilities are polynomially bounded.
We give a simple transformation that ensures that each non-
zero utility value is between 1 and 2n, with at most a factor
2 loss in the optimal solution value. We can assume w.l.o.g.
that any non-zero utility value is at least 1 (otherwise, we can
scale up all utilities appropriately), and that the maximum

109

utility is at most M (the optimal solution value). For each
agent A and item i, we define its new utility as follows. If
uA,i < M/2n then u′A,i = 0; otherwise

u′A,i = uA,i ·
2n

M
.

Since the optimal solution value in the original instance is
M , the optimal solution value in the new instance is at most
2n. Moreover, it is easy to see that this value is at least n:
consider any agent A and the subset S of items assigned to
A by OPT. The total utility of S for A is at least M , and at
least M/2 of the utility is received from items i for which
uA,i ≥ M/2n. Therefore, the new utility of set S for A is
at least n.

It is easy to see that any α-approximate solution to the
transformed instance implies a (2α)-approximate solution
to the original instance.

In what follows, we assume that M ≤ 2n.

Canonical Instances. It will be convenient to work with a
structured class of instances that we refer to as canonical
instances. Given ε = Ω(log log n/ log n), we say that an
instance I of MAX-MIN ALLOCATION is ε-canonical, or
simply, canonical iff:

• Agents can be partitioned into two sets, a set L of light
agents and a set H of heavy agents.

• Each heavy agent A ∈ H has a subset ΓH(A) of items,
where for each i ∈ ΓH(A), uA,i = M , and for each
i %∈ ΓH(A), uA,i = 0.

• Each light agent A ∈ L is associated with
– a distinct item h(A) that has utility M for A and

is referred to as the heavy item for A; if A %= A′

then h(A) %= h(A′),
– a parameter NA ≥ nε, and
– a set ΓL(A) of items, referred to as the light items

for A. Each item in ΓL(A) has a utility of M/NA

for A. If i %∈ ΓL(A) ∪ {h(A)} then uA,i = 0.

Given an assignment of items to agents in the canonical
instance, we say that a heavy agent A is satisfied iff it
is assigned one of the items in ΓH(A), and we say that
a light agent A is α-satisfied (for some α ≥ 1) iff it is
either assigned item h(A), or it is assigned at least NA/α
items from the set ΓL(A). In the latter case we say that A is
satisfied by light items. A solution is called α-approximate
iff all heavy agents are satisfied and all light agents are
α-satisfied. Given a canonical instance, our goal is to find
an assignment of items to agents that 1-satisfies all agents.
The next lemma shows that we can restrict our attention to
canonical instances, at the cost of losing a logarithmic factor
in the approximation ratio.

Lemma 1 Given any ε = Ω(log log n/ log n) and an in-
stance I of the MAX-MIN ALLOCATION problem with op-

timal solution value M , we can produce in polynomial time
a canonical instance I ′ such that I ′ has a solution that 1-
satisfies all agents. Moreover, any α-approximate solution to
I ′ can be converted into a max {O(α log n), O(nε log n)}-
approximate solution to I.

Proof: Given an instance I of the MAX-MIN ALLOCA-
TION problem, we create a canonical instance I ′ as follows.
Define s = -log(M/(nε log n)).. Recall that M ≤ 2n, so
s ≤ log n for large enough n. For each agent in I, the
canonical instance I ′ will contain 2s + 1 new agents, for a
total of m(2s + 1) agents. Let I be the set of items in I.
The set I′ of items for the instance I ′ will contain I as well
as 2ms additional items that we define later.

Specifically, for each agent B in I, we create the following
collection of new agents and items:

• A heavy agent H0(B) and s light agents
L1(B), . . . , Ls(B) where each light agent Lj(B)
is associated with value NLj(B) = M/(s · 2j) ≥
M/(s · 2s) ≥ nε.

• For each j ∈ {1, . . . , s}, if the utility of item i ∈ I for
B is 2j−1 < uB,i ≤ 2j , then agent Lj(B) has utility
s · 2j = M/NLj(B) for i. If i ∈ I is an item for which
uB,i > 2s, then H0(B) has utility M for item i.

• Additionally, for each light agent Lj(B) there is a
heavy item h(Lj(B)) which has utility M for Lj(B),
and also a heavy agent Hj(B) who has utility M for
h(Lj(B)).

• Finally, we have a set of s items YB =
{i1(B), . . . , is(B)} such that each item in
YB has utility M for each of the agents in
{H0(B), H1(B), . . . ,Hs(B)}, the set of heavy
agents for B.

This completes the definition of the canonical instance I ′.
Let Φ be an optimal allocation for the instance I. We will
use Φ to construct an allocation Φ′ for I ′ that 1-satisfies
all agents. Consider some agent B in the original instance.
The optimal solution Φ assigns a set Φ(B) of items to B.
We can partition Φ(B) into (s + 1) sets, ϕ0, ϕ1, . . . , ϕs,
as follows. The set ϕ0 ⊆ Φ(B) contains all items i with
uB,i > 2s. For each j ∈ {1, . . . , s}, the set ϕj contains all
items i with 2j−1 < uB,i ≤ 2j . Assume first that ϕ0 %= ∅,
and let i be any item in ϕ0. Then we assign item i to heavy
agent H0(B). The remaining s heavy agents corresponding
to B now get assigned one item from YB each. The light
agents Lj(B) are assigned their heavy items h(Lj(B)). All
agents corresponding to B are now 1-satisfied. Assume now
that ϕ0 = ∅. Then there is a j ∈ {1, . . . , s}, such that
uB(ϕj) ≥ M/s. Since each item in ϕj has utility at most
2j for B, we have |ϕj | ≥ M/(s · 2j) = NLj(B). We assign
all items in ϕj to Lj(B), and h(Lj(B)) is assigned to the
heavy agent Hj(B). Now the remaining s heavy agents are

110

assigned one item of YB each. For each one of the remaining
light agents, we assign h(Lj′(B)) to Lj′(B). Therefore, the
canonical instance has a solution that 1-satisfies all agents.

Conversely, consider now any α-approximate solution Φ′
for the canonical instance I ′. Let B be some agent in the
original instance. Consider the corresponding set of heavy
agents H0(B), . . . ,Hs(B). Since there are only s items in
the set YB , at least one of the heavy agents is not assigned
an item from this set. Assume first that it is the heavy agent
H0(B). Then it must be assigned some item i ∈ I for
which agent B has utility of at least 2s ≥ M/(2nε log n).
We then assign item i to agent B. Otherwise, assume it is
Hj(B), j %= 0 that is not assigned an item from YB . Then
Hj(B) is assigned item h(Lj(B)), and so Lj(B) must be
assigned a set S′ of at least NLj(B)/α = M/(s · 2j · α)
items, each of which has a utility of at least 2j−1 for B. We
then assign the items in S′ to B. Since s ≤ log n, this set
has utility at least M/(2α log n) for B. Thus, we obtain a
max {O(nε log n), O(α log n)}-approximate solution.

From now on, we assume that we are working with a
canonical instance.

Private Items and Flow Solutions. One of the basic
concepts of our algorithm is that of private items and flow
solutions defined by them. We temporarily assign private
items to some of the agents. This assignment of private items
then allows us to define a network flow problem, whose
solution is equivalent to solving the original problem. The
flow-paths in this network can be seen as a re-assignment of
the private items. Throughout the algorithm we maintain an
assignment π of private items to agents. Such an assignment
is called good iff it satisfies the following properties: (1) For
every light agent A ∈ L, its private item is π(A) = h(A);
(2) An item i can be a private item of a heavy agent A ∈ H
only if i ∈ ΓH(A); and (3) An item can be a private item
for at most one agent. We denote by S the set of items that
do not serve as private items in the assignment π. The set
of heavy agents that have private items is denoted by Hpvt,
and the remaining heavy agents are called terminals and are
denoted by T. Notice that every light agent has a private
item.

The initial assignment π of private items to heavy agents
is obtained as follows. We create a bipartite graph G =
(U, V, E), where U = H, V is the set of items that do not
serve as private items for light agents, and E contains an
edge between A ∈ U and i ∈ V iff i ∈ ΓH(A). We compute
a maximum matching in G that determines the assignment of
private items to heavy agents. To simplify notation, we say
that for a terminal A ∈ T, π(A) is undefined and {π(A)} !
∅.

The Flow Network. Given a canonical instance I and an
assignment π of private items, we define a corresponding

directed flow network N(I, π) as follows. The set of
vertices is A ∪ I ∪ {s}. Source s connects to every vertex
i ∈ S. If agent A ∈ A has a private item and i = π(A),
then vertex A connects to vertex i. If A is a heavy agent
and i ∈ ΓH(A)\{π(A)}, then vertex i connects to vertex A.
If A is a light agent and i ∈ ΓL(A) then vertex i connects
to vertex A. Note that every agent A has out-degree of at
most 1. Let N(I, π) denote the resulting network. We have
the following set of constraints on the flow in this network.

C1) All flow originates at the source s.
C2) Each terminal agent A ∈ T receives exactly one flow

unit.
C3) For each heavy agent A ∈ H, if the outgoing flow is

1 then the incoming flow is 1; otherwise both are 0.
C4) For each item i ∈ I, if the outgoing flow is 1 then the

incoming flow is 1; otherwise both are 0.
C5) For each light agent A ∈ L, if the outgoing flow is 1

then the incoming flow is at least NA; otherwise both
are 0.

An integral flow obeying the above conditions is called a
feasible flow. We say that a flow is α-feasible iff constraints
(C1)–(C4) hold for it, and the constraint (C5) is relaxed as
below:

C6) For each light agent A ∈ L, if the outgoing flow is
1 then the incoming flow is at least NA/α; otherwise
both are 0.

The next lemma show that the problem of α-satisfying all
agents is equivalent to the problem of finding an α-feasible
flow. The proof is omitted from this extended abstract.

Lemma 2 Let π : L ∪Hpvt → I be any good assignment
of private items for a given canonical instance I. Then
any optimal solution for instance I gives a feasible flow in
N(I, π). Moreover, an integral α-feasible flow in N(I, π)
gives an α-approximate solution for the canonical instance
I.

Let I∗ be the set of items and let H∗ be the set of heavy
agents reachable from s by a path that does not contain light
agents. A useful property of our initial assignment of private
items is that H∗ does not contain any terminals (otherwise
we could have increased the matching). Throughout the
algorithm, the assignment of private items to H∗ does not
change, and the above property is preserved. Given any pair
v, v′ of vertices, we say that a path p starting at v and ending
at v′, directly connects v to v′ if it does not contain any
light agents as intermediate vertices (however we allow v
and v′ to be light agents under this definition). We say that
v is directly connected to v′ if such a path exists. Similarly,
given an integral flow solution, we say that v sends flow
directly to v′ iff the flow is sent via a path p that does not
contain light agents as intermediate vertices.

111

An Equivalent Formulation. A flow-path p is called an
elementary path iff it does not contain any light agents as
intermediate vertices, and either a) originates and terminates
at light agents, or b) originates at a light agent and terminates
at a terminal, or c) originates at the source s and terminates
at a light agent. It is easy to verify that the problem of finding
an α-feasible flow is equivalent to finding a collection P of
elementary paths such that:

Ĉ1) All paths in P are internally-disjoint (i.e. they do not
share intermediate vertices).

Ĉ2) Each terminal has exactly one path p ∈ P terminating
at it.

Ĉ3) For each light agent A ∈ L, there is at most one path
p ∈ P starting at A, and if such a path exists, then
there are at least NA/α paths in P terminating at A.

3. ALMOST FEASIBLE SOLUTIONS

This section contains one of the main technical parts of our
algorithm. We write a linear programming relaxation for the
problem which has a feasible solution if I is an 1-satisfiable
canonical instance. Given a feasible fractional solution to
the LP, we perform a rounding procedure. The algorithm
does not produce a feasible solution. Instead we obtain an
almost-feasible solution in that all constraints (Ĉ1)–(Ĉ3)
hold, except that for some items and some heavy agents
there may be two elementary paths containing them: one
terminating at some light agent and another at a terminal.
Similarly, some light agents A will have two elementary
paths starting at A, one terminating at another light agent
and another at a terminal. The fact that we are unable to
obtain a feasible solution is not surprising: the LP that
we construct has an Ω(

√
m) integrality gap. (We refer the

reader to the full version of this paper [8] for the lower
bound on the integrality gap.) We bypass this obstacle in our
final algorithm presented in Section 4, and obtain a much
better approximation guarantee while using the LP-rounding
algorithm from this section as a subroutine. The following
theorem summarizes the properties of the almost-feasible
solution that we obtain in this section.

Theorem 3 Let I = (A, I) be any 1-satisfiable canonical
instance, and let π : L ∪Hpvt → I be a good assignment
of private items to non-terminal agents, such that N(I, π)
does not contain direct paths from source s to any terminal.
Let h = 9/ε and α = O(h5 log n). Then we can find, in
nO(1/ε) time, two collections P1 and P2 of elementary paths
in N(I, π) with the following properties.

D1) All paths in P1 terminate at the terminals and all
paths in P2 terminate at light agents. Moreover, each
terminal lies on some path in P1.

D2) All paths in P1 are completely vertex disjoint, and
paths in P2 are internally vertex-disjoint but may

share endpoints. A non-terminal agent or an item may
appear in both P1 and P2.

D3) For each light agent A ∈ L, there is at most one path
in P1 and at most one path in P2 that originates at
A (so, in total, there may be two paths in P1 ∪ P2

originating at A).
D4) If there is a path p ∈ P1 ∪ P2 originating at some

light agent A ∈ L, then at least NA/α paths in P2

terminate at A.

We briefly sketch the main ideas in the proof of Theorem 3.
Given a canonical instance I and an assignment π of private
items, an optimal solution OPT for I defines a feasible
integral flow in N(I, π). Let H be the graph induced by the
edges carrying one flow unit in OPT. Our first observation is
that we can assume that every source-to-terminal path in H
contains at most h light agents, at the cost of losing an (h+1)
factor in the approximation ratio, for h = 9/ε. Therefore, we
can partition graph H into h levels, where level i contains
all vertices v that have exactly i light agents on the path
connecting s to v in H . Using this observation, we create h
copies of the original graph, where the ith copy is used to
route the flow corresponding to level i in H . We then write
an LP-relaxation for the problem of obtaining a 1-satisfying
flow in this new graph and perform a standard randomized
rounding procedure on it. Our goal is to ensure that, after the
randomized rounding, the “congestion” on every vertex (the
number of flow-paths using the vertex) is poly-logarithmic.
It is easy to see that this is impossible to achieve with the
standard flow LP, and instead we use a more complex LP,
where we have a variable for every h′-tuple of light agents,
for all 1 ≤ h′ ≤ h. The new LP has size nO(h) = nO(1/ε),
and after the randomized rounding procedure we obtain two
collections P1, P ′2 of paths with properties D1 and D4 for
α = (h + 1). As for the other two properties, they hold for
paths in P1 but not for paths in P ′2, as a vertex (representing
an item, a heavy agent or a light agent) may participate in
a poly-logarithmic number of paths in P ′2. In our last step,
we use standard flow techniques to produce a new set P2

of paths, such that properties D1–D4 hold for P1,P2, at the
cost of increasing the factor α to O(h5 log n). The proof of
Theorem 3 can be found in [8].

4. AN Õ (nε)-APPROXIMATION ALGORITHM

We now describe an iterative rounding procedure that uses
almost-feasible solutions produced by Theorem 3 as a sub-
routine to produce an O(hα)-approximate solution, where
h = 9/ε and α is the approximation factor from Theorem 3.

We start with some notation. Let Q be a collection of
elementary paths, such that all paths in Q terminate at light
agents. We say that Q α′-satisfies L′ for some subset L′ ⊆ L
of light agents iff

112

• the paths in Q do not share intermediate vertices,
• each light agent A ∈ L′ has at least NA/α′ paths in Q

that terminate at A and no path in Q originates from
A, and

• each light agent A ∈ L \L′ has at most one path in Q
originating from it, and if such a path exists, then there
are at least NA/α′ paths in Q that terminate at A.

The algorithm consists of h = 9/ε iterations. The input
to iteration j is a subset Lj ⊆ L of light agents, a set
Tj ⊆ H of terminals and an assignment of private items πj :
A\ (Lj ∪Tj) → I. The associated canonical instance Ij of
the problem is identical to I, except that we remove all light
agents in Lj from it. We ensure that πj is a good assignment
of private items for Ij . Additionally, we ensure that in the
resulting flow network N(I, πj), there is a collection Qj

of elementary paths that αj-satisfy agents in Lj , for αj =
2jα (here α is the parameter from Theorem 3). The output
of iteration j is a valid input to iteration (j + 1), that is,
sets Lj+1,Tj+1, an assignment of private items πj+1 : A \
(Lj+1 ∪ Tj+1) → I, and a collection Qj+1 of elementary
paths in N(I, πj+1) that αj+1-satisfy Lj+1. The size of Tj

decreases in each iteration and in h iterations Tj becomes
empty, with πh+1 assigning a private item to each agent in
A \ Lh+1. The set Qh+1 of paths in network N(I, πh+1)
then defines an αh+1 = 2(h + 1)α-approximate solution.

Initialization and Invariants: In the input to the first
iteration, L1 = ∅, Q1 = ∅. Each light agent A ∈ L is
assigned its heavy item as a private item, π1(A) = h(A), and
the assignment of private items to heavy agents is performed
by computing a maximum matching between the set of
heavy agents and the remaining items. Recall that H∗ is
the set of heavy agents and I∗ is the set of items directly
reachable from the source s in network N(I, π1), while S
is the set of items that do not serve as private items in π1.
Clearly, each agent in H∗ is assigned an item in I∗ and there
are no direct paths from s to any terminal in T1. Throughout
the algorithm, the assignments πj(A) of private items to
agents in H∗ do not change, and the set S of un-assigned
items remains unchanged. This ensures that for each iteration
j, there are no direct paths from s to any terminal t ∈ Tj

in N(I, πj).

Iteration j: Iteration j, for 1 ≤ j ≤ h is performed as
follows. We construct a canonical instance Ij that is identi-
cal to I except that we remove the light agents in Lj from
this instance. Let Nj = N(Ij , πj) be the corresponding
flow network. We will ensure that πj is a good assignment
for this instance. Note that we do not remove any items
from the instance. So if instance I is 1-satisfiable, so is Ij .
Combined with the fact that there are no direct paths from
s to Tj , we can apply Theorem 3 to obtain two sets P1, P2

of elementary paths in Nj , satisfying properties D1–D4.

Let L′ be the subset of light agents A for which there is

a path in either P1 or P2 originating from A. Recall that
for any such agent A, there are at least NA/α paths in P2

terminating at A. Let L′′ be the set of light agents A such
that either A ∈ Lj , or there is a path in Qj originating from
A. Recall that there are at least NA/αj paths terminating at
A in Qj . The remainder of the algorithm consists of three
steps. In Step 1, we use paths in P2 ∪Qj to produce a new
set Q∗ of paths, such that every agent in L′∪L′′ has at least
-NA/(αj + α). paths in Q∗ terminating at it, and at most
one path leaving it. Moreover, the only light agents from
which such paths originate lie in (L′ ∪ L′′) \ Lj . In Step 2
we re-route paths in P1, so that each new path intersects at
most one path in Q∗. Let P ′ be the resulting set. Next we
obtain Q′ ⊆ Q∗ by removing from Q∗ all paths intersecting
paths in P ′. In Step 3 we use sets P ′ and Q′ to produce
input to iteration (j + 1).

Step 1: Combining Qj and P2. This step is summarized
in the next lemma.

Lemma 3 We can find, in polynomial time, a set of
internally-disjoint elementary paths Q∗ in N(I, πj) such
that each agent A in L′ ∪ L′′ has at least -NA/(αj + α).
paths terminating at A. Moreover, only light agents in
(L′ ∪ L′′) \ Lj have paths in Q∗ originating from them,
with at most one path originating from any agent.

Step 2: Re-Routing paths in P1. We say that elementary
paths p, q intersect iff they either share intermediate vertices,
or they start from the same vertex. Notice that each path in
P1 may intersect many paths in Q∗. In our next step, we
re-route paths in P1 to get set P ′ of paths, so that each new
path intersects at most one path in Q∗.

Lemma 4 We can find, in polynomial time, a set P ′ of
disjoint paths, and a partition Q∗ = Q′ ∪ Q′′, such that
each path in P ′ starts at a distinct light agent in L′ and
ends at a distinct terminal in Tj , and each terminal in Tj

has one path terminating at it. Moreover, |Q′′| ≤ |P ′|, and
paths in P ′ do not intersect paths in Q′.

Since |Q′′| ≤ |P ′| = |Tj |, we can find a 1-1 mapping
f : Q′′ → Tj . If f(q) = t for path q ∈ Q′′ and t ∈ Tj , we
say that t is responsible for q. Note that now we have set
Q′ ∪ P ′ of paths that almost has the desired properties. All
paths in P ′ connect light agents to terminals and are vertex
disjoint; all paths in Q′ are internally vertex disjoint. Each
light agent A has at most one path leaving it, and if such
a path is present, then Q∗ contains -NA/(αj + α). paths
terminating at it, while all light agents in Lj are (αj + α)-
satisfied by Q∗. The problem is that set Q′′ contains many
paths from Q∗, and so some light agents may have a path in
P ′ ∪ Q′ leaving them, but not enough paths in Q′ entering

113

them. We take care of this problem and define the input to
the next iteration in the next step.

Step 3: Producing Input to Iteration (j+1). We call a light
agent A bad iff A ∈ Lj or there is a path originating at A in
P ′ ∪Q′, but there are less than NA/(αj +2α) = NA/αj+1

paths terminating at A. We now perform the following
procedure that will define the new set Tj+1 of terminals.
We initialize Tj+1 = ∅. While there exists a bad light agent
A:

• Remove all paths entering A from Q′.
• If A %∈ Lj , then remove the unique path p leaving A

from P ′ or Q′, and say that A is responsible for this
path. If p ∈ P ′ and t ∈ Tj is the terminal lying on p,
then we add t to Tj+1 and say that A is responsible
for t.

• If A ∈ Lj , consider the item i = h(A). If there is a
heavy agent A′ for which i is a private item, we add A′

to Tj+1 (where it becomes a terminal). In either case,
item i becomes the private item for A. We remove A
from Lj .

If there is any path p containing i in P ′∪Q′, then we
remove p from P ′ or Q′ and say that A is responsible
for p. If p ∈ P ′ and t ∈ Tj is a terminal lying on p,
then we add t to Tj+1 and say that A is responsible
for t.

It is easy to see that a bad light agent can only be responsible
for at most two terminals in Tj+1, and removal of at most
one path from P ′ ∪ Q′. Notice that once we take care of
a bad light agent A, this could result in another agent A′

becoming a bad light agent. We repeat this process until no
bad light agents remain. We now show how to produce the
input to the next iteration.

Input to Iteration (j+1): We start with Lj+1 containing all
the remaining agents in Lj . Consider now the residual sets
P ′ ∪ Q′ of paths. Let p ∈ P ′, and let A be the first vertex
and t ∈ Tj be the last vertex on p. We then add A to Lj+1

and re-assign private items that lie on path p as follows. If
A′ is the agent lying immediately after item i on path p then
i becomes a private item for A′. The assignment of private
items to agents not lying on any path in P ′ remains the same.
Let πj+1 be the resulting assignment of private items after
we process all paths in P ′. Note that the only agents with
no private items assigned are agents in the set Lj+1∪Tj+1.
Also, any agent of Lj which is bad (and thus not in Lj+1)
is assigned its heavy item. We set Qj+1 = Q′. Since no
light agent in Lj+1 is bad, set Qj+1 of paths αj+1-satisfies
every agent of Lj+1 in N(I, πj+1).

Lemma 5 The set S of items that are not assigned to any
agent and the assignment of private items to agents in H∗

remain unchanged throughout the algorithm.

Since the original network N(I, π1) did not contain any
direct paths connecting s to terminals, Lemma 5 implies that
this property is also true for N(I, πj) for every j. Therefore
we have produced a feasible input to iteration (j + 1). The
lemma below bounds the size of Tj+1.

Lemma 6 |Tj+1| ≤
(

32h2α
nε

)
|Tj |.

Thus, after h iterations, |Th+1| ≤| T|/(nε/(32h2α))h.
Since h ≤ log n/ log log n, nε ≥ log9 n and α =
O(h5 log n), we have that 32h2α = O(h7 log n) =
O(log8 n) = O(n8ε/9). Thus, for large enough n,
(nε/(32h2α))h > (nε/9)h = n. Therefore, Th+1 = ∅ and
the algorithm terminates in h iterations.

Final Allocation: At the end of iteration (h + 1), we have
an assignment, πh+1, of private items to all agents apart
from Lh+1. Furthermore, in the network N(I, πh+1), the set
Qh+1 of paths αh+1 satisfies Lh+1. Thus, as in the proof of
Lemma 2, we can use these paths to find the final allocation
as follows. Each agent A that does not appear on any path
in Qh+1 is assigned its private item. Agent A appearing on
paths in Qh+1 is assigned all the items i such that (i, A)
is an arc in one of the paths of Qh+1. Since these paths
are internally disjoint, this allocation is feasible. Moreover,
each heavy agent is satisfied and each light agent is αh+1-
satisfied.

Approximation Factor and Running Time. Let α∗

be the approximation factor that we achieve for the
canonical instance. The final approximation factor is
max {O(nε log n), O(α∗ log n)}. We now bound α∗ in terms
of α = O(h5 log n), the approximation factor from Theo-
rem 3. Our algorithm assigns NA/(2hα) items to each light
agent A. So overall α∗ = O(hα) = O(h6 log n)), yielding a
max

{
O(nε log n), O(h6 log n)

}
-approximation. When ε is

chosen to be (9 log log n)/ log n, since h = 9/ε, we get
an O(log10 n)-approximation algorithm. The algorithm in
Theorem 3 runs in nO(1/ε) time, and the algorithm presented
in this section performs a poly-logarithmic number of calls
to Theorem 3. Therefore, the overall running time of the
algorithm is nO(1/ε).

5. A QUASI-POLYNOMIAL TIME
O(mε)-APPROXIMATION ALGORITHM

In this section, building on the O(log10 n)-approximation
algorithm of the preceding section, we show that it is possi-
ble to obtain an O(mε)-approximation in quasi-polynomial
time for any fixed ε > 0. We start with the following easy
lemma.

Lemma 7 There exists an (log n)O(m log n)-time O(1)-
approximation algorithm for MAX-MIN ALLOCATION.

114

Proof: From Section 2 we can assume all the utilities
uA,i to be between 1 and 2n. By losing another constant
factor in the approximation, we round down all the utilities
to the nearest power of 2. Thus we can assume from here
on that there are O(log n) distinct values of utilities.

Fix an optimal solution OPT. For every agent A, we let
vj(A) be the number of items assigned to A in OPT whose
utility for A is 2j , for j = 1 . . . s = -log 2n.. Thus there
exists an O(1)-approximate solution that can be described
a collection of s-dimensional vectors, one for each agent.
For an agent A, let v(A) := (v1(A), . . . , vs(A)) denote the
s-dimensional vector associated with it. By losing another
factor of 2, we can further assume that each vj(A) has been
rounded down to the nearest power of 2. Therefore, for every
agent there are at most (log n)s possible vectors v(A), and
one of them corresponds to the optimal solution.

We now show how, given vector v(A) for every agent A,
we can check if there is a feasible assignment of the items
respecting these vectors, so that each agent A is assigned
vj(A) items with utility uA,i = 2j . Construct a bipartite
graph G(U, V, E) where U contains s copies of each agent
A, say A(1), . . . , A(s), and the vertex set V corresponds to
the set of items. There is an edge from A(j) to an item i
iff uA,i = 2j . The problem of checking whether a given
collection of vectors v(A) can be realized is equivalent to
testing if there exists a matching from U to V such that
every vertex A(j) in U has exactly vj(A) edges incident on
it, and every vertex in V has at most one edge incident on
it. This can be done in polynomial time.

Thus in time (log n)O(m log n) (over all the choices of vectors
for all agents), we can get an O(1) approximation to MAX-
MIN ALLOCATION.

Using the above claim we can get the following.

Theorem 4 (Corollary 1) For any constant ε > 0, there
exists a quasi-polynomial time algorithm which gives a
O(mε)-approximation to MAX-MIN ALLOCATION.

Proof: If m < log10/ε n, then by the claim above
we can get a O(1)-approximation in (log n)O(m log n) time
which is quasi-polynomial for any fixed ε > 0. If m ≥
log10/ε n, then our main result gives a quasi-polynomial time
O(log10 n) = O(mε)-factor algorithm.

6. THE 2-RESTRICTED MAX-MIN ALLOCATION
PROBLEM

In this section we focus on the restricted version of MAX-
MIN ALLOCATION, where each item i is wanted by at most
2 agents Ai and Bi (not necessarily distinct). Given a 2-
restricted MAX-MIN ALLOCATION instance I = (A, I),
construct a graph G(I) = (A, I) where an item i is an

edge between agents Ai and Bi. Such a graph can have
loops and parallel edges. Note that an allocation of items
corresponds to the orientation of edges of this graph. The
weights on the edges are non-uniform, that is, an edge has
different weights for its two end points.

For agent A ∈ A, let δ(A) denote the set of adjacent edges
in G(I), that is, δ(A) := {i : uA,i > 0}. Given a parameter
M > 0, we define the following system LP (M) of linear
inequalities.

∀i ∈ I; xAi,i + xBi,i ≤ 1 (1)

∀A ∈ A,∀S ⊆ δ(A);
∑

i/∈S

ûA,ixA,i ≥ M − uA(S) (2)

where uA(S) :=
∑

i∈S uA,i and ûA,i := min(uA,i, M −
uA(S)). The first inequality states that each item goes to
at most one agent. The second states that, given any set
of items S that give positive utility to agent A, the total
utility of items not in S allocated to agent A must exceed
(M − uA(S)). Furthermore, this should also be true if the
utility of any individual item is capped to ûA,i which is the
minimum of uA,i and (M − uA(S)). These type of valid
inequalities are called knapsack cover inequalities (see, for
instance, [9]).

Let M∗ be the largest value M for which the above LP is
feasible, so M∗ ≥ OPT. Note that this LP has exponentially
many constraints of type (2). In general, it is sufficient
to produce a separation oracle in order to solve this LP
in polynomial time by the Ellipsoid method. We do not
produce such an oracle. Rather, we show that if a solution x
satisfies the inequality (2) for a single set S per agent, the set
depending on the solution x, then we can obtain an integral
allocation such that each agent gets utility at least M∗/2.
Furthermore, we can check, given x, whether x satisfies
these particular inequalities, in polynomial time. Therefore,
in each iteration, we either get a desired x and thus a desired
integral allocation; or we obtain a separating inequality. The
ellipsoid method guarantees that in a polynomial number of
steps either the former happens, or we prove that the LP is
infeasible.

Given a solution x, we now describe the set of inequalities
that we need to check. We say that an item i is integrally
allocated to agent A, if xA,i = 1. For every agent A ∈ A,
let I(A) denote the set of items integrally allocated to A. An
item i is said to be fractionally allocated if it is not allocated
integrally to any agent. Let I′ be the set of items allocated
fractionally. For every agent A, let δ′(A) be the set of items
fractionally allocated to it, that is, δ′(A) = {i ∈ I′ : xA,i >
0}. Let i∗ be the item in δ′(A) with maximum value uA,i.
The inequality that needs to be checked for agent A is (2)
with S := (I(A)∪δ′(A))\{i∗}. From the above discussion,
we can find in polynomial time a solution x which satisfies

115

the constraints (1) of LP(M∗) and the following constraints

∀A ∈ A,
∑

i/∈S

ûA,ixA,i ≥ M − uA(S) (3)

for S := (I(A) ∪ δ′(A)) \ {i∗}

Given such an x, we allocate the items I(A) to agent A
and define MA := M − uA(I(A)). We now focus on the
sub-graph H of G(I) induced by the edges corresponding to
items in I′. We remove from H all isolated vertices. Observe
that H does not contain self-loops but may contain parallel
edges. It now suffices to allocate items of I′ to agents of H
such that every agent A gets a utility of at least MA/2. We
start with the following observation about H .

Claim 1 Fix an agent A. Then the total utility of the
fractionally allocated items with a positive utility for agent
A is at least (MA+uA,i∗), that is, uA(δ′(A) \ {i∗}) ≥ MA.

Proof: Assume otherwise. Then we get for S =
(I(A) ∪ δ′(A)) \ {i∗}, uA(S) < M . Inequality (3) is then
contradicted, for the left hand side is precisely ûA,i∗xA,i∗

which is strictly less than (M −uA(S)) if M −uA(S) > 0,
because by definition xA,i∗ < 1.

The above claim implies that for every agent A ∈ V (H),
the (non-uniform) weighted degree of A is at least (MA +
maxi∈δ′(A) {uA,i}). Given a graph G = (V,E), for each
vertex v ∈ V , we denote by ∆(v) the set of edges incident
on v, and given an orientation O of its edges, we denote by
∆−
O(v) and ∆+

O(v) the set of incoming and outgoing edges
for v, respectively. The following theorem about weighted
graph orientations completes the proof.

Theorem 5 Given a non-uniformly weighted undirected
graph G(V,E) with weights wu,e and wv,e for every edge
e = (u, v) ∈ E, there exists an orientation O such that in
the resulting digraph, for every vertex v:

∑
e∈∆−

O(v) wv,e ≥
1
2

(∑
e∈∆(v) wv,e −maxe∈∆(v) {wv,e}

)
.

REFERENCES

[1] A. Asadpour, U. Feige, and A. Saberi. Santa Claus meets
hypergraph matchings. International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization Problems
(APPROX), pages 10–20, 2008.

[2] A. Asadpour and A. Saberi. An approximation algorithm for
max-min fair allocation of indivisible goods. Proceedings
of ACM Symposium on the Theory of Computation (STOC),
pages 114–121, 2007.

[3] N. Bansal and M. Sviridenko. The Santa Claus Problem. Pro-
ceedings of ACM Symposium on the Theory of Computation
(STOC), pages 31–40, 2006.

[4] M. H. Bateni, M. Charikar, and V. Guruswami. MaxMin
Allocation via Degree Lower-Bounded Arborescences. Pro-
ceedings of ACM Symposium on the Theory of Computation
(STOC), pages 543–552, 2009.

[5] M. H. Bateni, M. Charikar, and V. Guruswami. New approx-
imation algorithms for degree lower-bounded arborescences
and max-min allocation. Technical Report TR-848-09, Com-
puter Science Department, Princeton University, March 2009.

[6] I. Bezakova and V. Dani. Allocating indivisible goods.
SIGecom Exchanges, 5(3):11–18, 2005.

[7] S. J. Brams and A. D. Taylor. Fair Division : From Cake-
Cutting to Dispute Resolution. Cambridge University Press,
1996.

[8] D. Chakrabarty, J. Chuzhoy and S. Khanna. On Allocating
Goods to Maximize Fairness. Full version available at the
authors’ webpages.

[9] R. D. Carr, L. K. Fleischer, V. J. Leung, and C. A. Phillips.
Strengthening integrality gaps for capacitated network design
and covering problems ACM-SIAM Annual Symposium on
Discrete Algorithms (SODA), pages 106–115, 2000.

[10] T. Ebenlendr, M. Krcal, and J. Sgall. Graph balancing: a
special case of scheduling unrelated parallel machines. ACM-
SIAM Annual Symposium on Discrete Algorithms (SODA),
pages 483–490, 2008.

[11] L. Epstein and J. Sgall. Approximation schemes for schedul-
ing on uniformly related and identical parallel machines.
Algorithmica, 39(1):43–57, 2004.

[12] U. Feige. On allocations that maximize fairness. ACM-SIAM
Annual Symposium on Discrete Algorithms (SODA), pages
287–293, 2008.

[13] M. X. Goemans, N. J. A. Harvey, S. Iwata, and V. Mirokkni.
Approximating submodular functions everywhere. ACM-
SIAM Annual Symposium on Discrete Algorithms (SODA),
To appear, 2009.

[14] S. Khot and A. K. Ponnuswami. Approximation Algorithms
for the Max-Min Allocation Problem. APPROX-RANDOM,
pp. 204-217, 2007.

[15] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation
algorithms for scheduling unrelated parallel machines. Math.
Programming, 46:259–271, 1990.

[16] C.H. Papadimitriou and M. Yannakakis. Shortest paths
without a map. Theo. Comp. Sci. 84:127–150, 1991

[17] G. J. Woeginger. A polynomial time approximation scheme
for maximizing the minimum machine completion time. Op-
erations Research Letters, 20:149–154, 1997.

[18] G. J. Woeginger. When does a dynamic programming
formulation guarantee the existence of a fully polynomial
time approximation scheme (FPTAS)? INFORMS Journal
on Computing, 12:57–75, 2000.

116

