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ABSTRACT
We resolve the space complexity of single-pass streaming
algorithms for approximating the classic set cover problem.
For finding an α-approximate set cover (for α = o(

√
n)) via

a single-pass streaming algorithm, we show that Θ(mn/α)
space is both sufficient and necessary (up to an O(logn)
factor); here m denotes number of the sets and n denotes
size of the universe. This provides a strong negative answer
to the open question posed by Indyk et al. (2015) regarding
the possibility of having a single-pass algorithm with a small
approximation factor that uses sub-linear space.

We further study the problem of estimating the size of a
minimum set cover (as opposed to finding the actual sets),
and establish that an additional factor of α saving in the
space is achievable in this case and that this is the best
possible. In other words, we show that Θ(mn/α2) space
is both sufficient and necessary (up to logarithmic factors)
for estimating the size of a minimum set cover to within a
factor of α. Our algorithm in fact works for the more general
problem of estimating the optimal value of a covering integer
program. On the other hand, our lower bound holds even for
set cover instances where the sets are presented in a random
order.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms
Theory, Algorithms
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1. INTRODUCTION
The set cover problem is a fundamental optimization prob-

lem with many applications in computer science and related
disciplines. The input is a universe [n] and a collection of
m subsets of [n], S = 〈S1, . . . , Sm〉, and the goal is to find
a subset of S with the smallest cardinality that covers [n],
i.e., whose union is [n]; we call such a collection of sets a
minimum set cover and throughout the paper denote its
cardinality by opt := opt(S).

The set cover problem can be formulated in the well-
established streaming model [1, 24], whereby the sets in S
are presented one by one in a stream and the goal is to solve
the set cover problem using a space-efficient algorithm. The
streaming setting for the set cover problem has been stud-
ied in several recent work, including [28, 13, 11, 18, 8]. We
refer the interested reader to these references for many ap-
plications of the set cover problem in the streaming model.
In this paper, we focus on algorithms that make only one
pass over the stream (i.e., single-pass streaming algorithms),
and our goal is to settle the space complexity of single-pass
streaming algorithms that approximate the set cover prob-
lem.

Two versions of the set cover problem are considered in
this paper: (i) computing a minimum set cover, and (ii)
computing the size of a minimum set cover. Formally,

Definition 1 (α-approximation). An algorithm A is
said to α-approximate the set cover problem iff on every
input instance S, A outputs a collection of (the indices of)
at most α · opt sets that covers [n], along with a certificate
of covering which, for each element e ∈ [n], specifies the
set used for covering e. If A is a randomized algorithm, we
require that the certificate corresponds to a valid set cover
w.p.1 at least 2/3.

We remark that the requirement of returning a certificate
of covering is standard in the literature (see, e.g., [13, 8]).

We are also interested in algorithms that only compute
the size of a minimum set cover, referred to as estimation
algorithms.

1Throughout, we use w.p. and w.h.p. to abbreviate “with
probability” and “with high probability”, respectively.



Definition 2 (α-estimation). An algorithm A is said
to α-estimate the set cover problem iff on every input in-
stance S, A outputs an estimate for the cardinality of a
minimum set cover in the range [opt, α · opt]. If A is a ran-
domized algorithm, we require that:

Pr
(
A(S) ∈ [opt, α · opt]

)
≥ 2/3

1.1 Our Results
We resolve the space complexities of both versions of the

set cover problem. Specifically, we show that for any α =
o(
√
n/ logn) and any m = poly(n),

• There is a deterministic single-pass streaming algo-
rithm that α-approximates the set cover problem us-

ing space Õ(mn/α) bits and moreover, any single-
pass streaming algorithm (possibly randomized) that
α-approximates the set cover problem must use space
of Ω(mn/α) bits.

• There is a randomized single-pass streaming algorithm
that α-estimates the set cover problem using space

Õ(mn/α2) bits and moreover, any single-pass stream-
ing algorithm (possibly randomized) that α-estimates

the set cover problem must use Ω̃(mn/α2) bits of space.

We should point out right away that in this paper, we are
not concerned with poly-time computability, though our al-
gorithms for set cover can be made computationally efficient
for any α ≥ logn by allowing an extra logn factor in the
space requirement2.

We establish our upper bound result for α-estimation for
a much more general problem: estimating the optimal value
of a covering integer linear program (see Section 4 for a for-
mal definition). Moreover, the space lower bound for α-
estimation (for the original set cover problem) holds even if
the sets are presented in a random order. We now describe
each of these two sets of results in more details.

Approximating Set Cover. There is a very simple deter-
ministic α-approximation algorithm for the set cover prob-

lem using space Õ(mn/α) bits which we mention in Sec-
tion 1.2 for completeness. Perhaps surprisingly, we establish
that this simple algorithm is essentially the best possible;
any α-approximation algorithm for the set cover problem

requires Ω̃(mn/α) bits of space (see Theorem 1 for a formal
statement).

Prior to our work, the best known lower bounds for single-
pass streams ruled out (3/2− ε)-approximation using o(mn)
space [18] (see also [16]), o(

√
n)-approximation in o(m) space

[13, 8], and O(1)-approximation in o(mn) space [11] (only
for deterministic algorithms); see Section 1.3 for more de-
tail on different existing lower bounds. Note that these
lower bound results leave open the possibility of a single-
pass randomized 3/2-approximation or even a deterministic
O(logn)-approximation algorithm for the set cover problem

using only Õ(m) space. Our result on the other hand, rules
out the possibility of having any non-trivial trade-off be-
tween the approximation factor and the space requirement,

2Set cover admits a classic logn-approximation algo-
rithm [20, 29], and unless P = NP, there is no polyno-
mial time α-approximation for the set cover problem for
α < (1− ε) logn (for any constant ε > 0) [12, 14, 23].

answering an open question raised by Indyk et al. [18] in
the strongest sense possible.

We also point out that the bound of α = o(
√
n/ logn)

in our lower bound is tight up to an O(logn) factor since

an O(
√
n)-approximation is known to be achievable in Õ(n)

space (independent of m for m = poly(n)) [13, 8].

Estimating Set Cover Size. We present an Õ(mn/α2)
space algorithm for α-estimating the set cover problem, and
in general any covering integer program (see Theorem 3 for
a formal statement). Our upper bound suggests that if one
is only interested in α-estimating the size of a minimum set
cover (instead of knowing the actual sets), then an additional
α factor saving in the space (compare to the best possible
α-approximation algorithm) is possible. To the best of our
knowledge, this is the first non-trivial gap between the space
complexity of α-approximation and α-estimation for the set
cover problem.

We further show that space complexity of our Õ(mn/α2)
space α-estimation algorithm for the set cover problem is
essentially tight (up to logarithmic factors). In other words,
any α-estimation algorithm for set cover (possibly random-

ized) requires Ω̃(mn/α2) space (see Theorem 4 for a formal
statement).

There are examples of classic optimization problems in
the streaming literature for which size estimation seems to
be distinctly easier in the random arrival streams3 compare
to the adversarial streams (see, e.g., [21]). However, we show
that this is not the case for the set cover problem, i.e., the

lower bound of Ω̃(mn/α2) for α-estimation continues to hold
even for random arrival streams.

We note in passing two other results also: (i) our bounds
for α-approximation/estimation also prove tight bounds on
the one-way communication complexity of the two-player
communication model of the set cover problem (see The-
orem 2 and Theorem 5), previously studied in [25, 11, 8];
(ii) the use of randomization in our α-estimation algorithm
is inevitable: any deterministic α-estimation algorithm for
the set cover requires Ω(mn/α) bits of space (see the full
version of the paper [2]).

1.2 Our Techniques
Upper bounds. An α-approximation using Õ(mn/α) bits
of space can be simply achieved as follows. Merge (i.e., take
the union of) every α sets in the stream into a single set;
at the end of the stream, solve the set cover problem over
the merged sets. To recover a certificate of covering, we also
record for each element e in each merged set, any set in the
merge that covers e. It is an easy exercise to verify that this
algorithm indeed achieves an α-approximation and can be

implemented in space Õ(mn/α) bits.

Our Õ(mn/α2)-space α-estimation algorithm is more in-
volved and in fact works for any covering integer program
(henceforth, a covering ILP for short). We follow the line of
work in [11] and [18] by performing “dimensionality reduc-
tion”over the sets (in our case, columns of the constraint ma-
trix A) and storing their projection over a randomly sampled
subset of the universe (here, constraints) during the stream.
However, the goal of our constraint sampling approach is

3In random arrival streams, the input (in our case, the col-
lection of sets) is randomly permuted before being presented
to the algorithm



entirely different from the ones in [11, 18]. The element
sampling approach of [11, 18] aims to find a “small” cover
of the sampled universe which also covers the vast majority
of the elements in the original universe. This allows the al-
gorithm to find a small set cover of the sampled universe in
one pass while reducing the number of remaining uncovered
elements for the next pass; hence, applying this approach
repeatedly over multiple passes on the input allows one to
obtain a complete cover.

On the other hand, the goal of our constraint sampling
approach is to create a smaller instance of set cover (in gen-
eral, covering ILP) with the property that the minimum set
cover size of the sampled instance is a “proxy” for the min-
imum set cover size of the original instance. We crucially
use the fact that the algorithm does not need to identify
the actual cover and hence it can estimate the size of the
solution based on the optimum set cover size in the sampled
universe.

At the core of our approach is a simple yet very gen-
eral lemma, referred to as the constraint sampling lemma
(Lemma 4.1) which may be of independent interest. Infor-
mally, this lemma states that for any covering ILP instance
I, the optimal value of a sub-sampled instance IR, obtained
by picking roughly 1/α fraction of the constraints uniformly
at random from I, is an α estimator of the optimum value
of I whenever no constraint is “too hard” to satisfy.

Nevertheless, the constraint sampling is not enough for

reducing the space to meet the desired Õ(mn/α2) bound
(see Theorem 3). Hence, we combine it with a pruning step,
similar to the “set filtering” step of [18] for (unweighted) set
cover (see also “GreedyPass” algorithm of [8]) to sparsify
the columns in the input matrix A before performing the
sampling. We point out that as the variables in I can have
different weights in the objective function (e.g. for weighted
set cover), our pruning step needs to be sensitive to the
weights.

Lower bounds. As is typical in the streaming literature,
our lower bounds are obtained by establishing communica-
tion complexity lower bounds; in particular, in the one-way
two-player communication model. To prove these bounds,
we use the information complexity paradigm, which allows
one to reduce the problem, via a direct sum type argument,
to multiple instances of a simpler problem. For our lower
bound for α-estimation, this simpler problem turned out
to be a variant of the well-known Set Disjointness prob-
lem. However, for the lower bound of α-approximation algo-
rithms, we introduce and analyze a new intermediate prob-
lem, called the Trap problem.

The Trap problem is a non-boolean problem defined as fol-
lows: Alice is given a set S, Bob is given a set E such that
all elements of E belong to S except for a special element e∗,
and the goal of the players is to “trap” this special element,
i.e., to find a small subset of E which contains e∗. For our
purpose, Bob only needs to trap e∗ in a set of cardinality
|E| /2. To prove a lower bound for the Trap problem, we
design a novel reduction from the well-known Index prob-
lem, which requires Alice and Bob to use the protocol for
the Trap problem over non-legal inputs (i.e., the ones for
which the Trap problem is not well-defined), while ensuring
that they are not being “fooled” by the output of the Trap
protocol over these inputs.

To prove our lower bound for α-estimation in random ar-
rival streams, we follow the approach of [6] in proving the

communication complexity lower bounds when the input
data is randomly allocated between the players (as opposed
to adversarial partitions). However, the distributions and
the problem considered in this paper are different from the
ones in [6].

1.3 Related Work
Communication complexity of the set cover problem was

first studied by Nisan [25]. Among other things, Nisan
showed that the two-player communication complexity of
( 1

2
− ε) logn-estimating the set cover is Ω(m). In particu-

lar, this implies that any constant-pass streaming algorithm
that ( 1

2
−ε) logn-estimates the set cover must use Ω(m) bits

of space.
Saha and Getoor [28] initiated the study of set cover in

the semi-streaming model [15] where the sets are arriving in

a stream and the algorithms are required to use Õ(n) space,
and obtained an O(logn)-approximation via an O(logn)-
pass algorithm that uses O(n logn) space. A similar per-
formance was also achieved by [9] in the context of “disk
friendly” algorithms. As designed, algorithm of [9] achieves
(1 + β lnn)-approximation by making O(logβ n) passes over
the stream using O(n logn) space.

The single-pass semi-streaming setting for set cover was
initially and throughly studied by Emek and Rosén [13].

They provided an O(
√
n)-approximation using Õ(n) space

(also extends to the weighted set cover problem) and a lower
bound that states that no semi-streaming algorithm (i.e., an

algorithm using only Õ(n) space) that O(n1/2−ε)-estimates
set cover exists. Recently, Chakrabarti and Wirth [8] gen-
eralized the space bounds in [13] to multi-pass algorithms,
providing an almost complete understanding of the pass vs
approximation tradeoff for semi-streaming algorithms. In
particular, they developed a deterministic p-pass (p + 1) ·
n1/(p+1)-approximation algorithm in Õ(n) space and prove

that any p-pass n1/(p+1)/(c · (p+ 1)2)-estimation algorithm
requires Ω(nc/p3) space for some constant c > 1 (m in their
“hard instances” is Θ(ncp)). This, in particular, implies that
any single-pass o(

√
n)-estimation algorithm requires Ω(m)

space.
Demaine et al. [11] studied the trade-off between the num-

ber of passes, the approximation ratio, and the space re-
quirement of general streaming algorithms (i.e., not nec-
essarily semi-streaming) for the set cover problem and de-
veloped an algorithm that for any δ = Ω(1/ logn), makes

O(41/δ) passes over the stream and achieves an O(41/δρ)-

approximation using Õ(mnδ) space; here ρ is the approxima-
tion factor of the off-line algorithm for solving the set cover
problem. The authors further showed that any constant-pass
deterministic O(1)-estimation algorithm for the set cover re-
quires Ω(mn) space. Very recently, Indyk et al. [18] (see
also [16]) made a significant improvement on the trade-off
achieved by [11]: they presented an algorithm that for any
δ > 0, makes O(1/δ) passes over the stream while achiev-

ing an O(ρ/δ)-approximation using Õ(mnδ) space. The au-
thors also established two lower bounds: for multi-pass al-
gorithms, any algorithm that computes an optimal set cover

solution while making only ( 1
2δ
−1) passes must use Ω̃(mnδ)

space. More relevant to our paper, they also showed that
any single-pass streaming algorithm (possibly randomized)
that can distinguish between the instances with set cover
size of 2 and 3 with error probability 1/poly(m), must use



Ω(mn) bits.

Organization. We introduce in Section 2 some prelimi-
naries needed for the rest of the paper. In Section 3, we
present our Ω(mn/α) space lower bound for computing an
α-approximate set cover in a single-pass. In Section 4, we
present a single-pass streaming algorithm for estimating the
optimal value of a covering integer program and prove an

Õ(mn/α2) upper bound on space complexity of α-estimating
the (weighted) set cover problem. In Section 5, we present
our Ω(mn/α2) space lower bound for α-estimating set cover
in a single-pass. Omitted details are deferred to the full
version of the paper [2].

2. PRELIMINARIES
Notation. We use bold face letters to represent random
variables. For any random variable X, supp(X) denotes
its support set. We define |X| := log |supp(X)|. For any
k-dimensional tuple X = (X1, . . . , Xk) and any i ∈ [k],
we define X<i := (X1, . . . , Xi−1), and similarly X−i :=
(X1, . . . , Xi−1, Xi+1, . . . , Xk). The notation “X ∈R U” in-
dicates that X is chosen uniformly at random from a set
U . Finally, we use upper case letters (e.g. M) to represent
matrices and lower case letter (e.g. v) to represent vectors.

Concentration Bounds. In this paper, we use an ex-
tension of the Chernoff bound for negatively correlated ran-
dom variables. Random variables X1, . . . ,Xn are nega-
tively correlated if for every set S ⊆ [n], Pr (∧i∈SXi = 1) ≤∏
i∈S Pr (Xi = 1). It was first proved in [26] that the Cher-

noff bound continues to hold for the case of random variables
that satisfy this generalized version of negative correlation
(see also [17]).

2.1 Tools from Information Theory
We briefly review some basic concepts from information

theory needed for establishing our lower bounds. For a
broader introduction to the field, we refer the reader to the
excellent text by Cover and Thomas [10].

In the following, we denote the Shannon Entropy of a
random variable A by H(A) and the mutual information of
two random variables A and B by I(A;B) = H(A)−H(A |
B) = H(B)−H(B | A). If the distribution D of the random
variables is not clear from the context, we use HD(A) (resp.
ID(A;B)).

We use the following basic properties of entropy and mu-
tual information (proofs can be found in [10], Chapter 2).

Claim 2.1. Let A, B, and C be three random variables.

1. 0 ≤ H(A) ≤ |A|. H(A) = |A| iff A is uniformly
distributed over its support.

2. I(A;B) ≥ 0. The equality holds iff A and B are in-
dependent.

3. Conditioning on a random variable reduces entropy:
H(A | B,C) ≤ H(A | B). The equality holds iff A
and C are independent conditioned on B.

4. Subadditivity of entropy: H(A,B | C) ≤ H(A | C) +
H(B | C).

5. The chain rule for mutual information: I(A,B;C) =
I(A;C) + I(B;C | A).

6. For any event E independent of A,B and C, I(A;B |
C, E) = I(A;B | C).

We also use the following simple claim, which states that
conditioning on independent random variables can only in-
crease the mutual information (see the full version [2] for a
proof).

Claim 2.2. For any random variables A,B,C, and D, if
A and D are independent conditioned on C, then I(A;B |
C) ≤ I(A;B | C,D).

2.2 Communication Complexity and Informa-
tion Complexity

Communication complexity and information complexity
play an important role in our lower bound proofs. We now
provide necessary definitions for completeness.

Communication complexity. We prove our lower bounds
for single-pass streaming algorithms are through communi-
cation complexity lower bounds. Here, we briefly provide
some context necessary for our purpose; for a more detailed
treatment of communication complexity, we refer the reader
to the excellent text by Kushilevitz and Nisan [22].

In this paper, we focus on the two-player one-way commu-
nication model. Let P be a relation with domain X ×Y×Z.
Alice receives an input X ∈ X and Bob receives Y ∈ Y,
where (X,Y ) are chosen from a joint distribution D over
X × Y. In addition to private randomness, the players also
have an access to a shared public tape of random bits R. Al-
ice sends a single message M(X,R) and Bob needs to output
an answer Z := Z(M(X,R), Y, R) such that (X,Y, Z) ∈ P .

We use Π to denote a protocol used by the players. Unless
specified otherwise, we always assume that the protocol Π
can be randomized (using both public and private random-
ness), even against a prior distribution D of inputs. For any
0 < δ < 1, we say Π is a δ-error protocol for P over a distri-
bution D, if the probability that for an input (X,Y ), Bob
outputs some Z where (X,Y, Z) /∈ P is at most δ (the prob-
ability is taken over the randomness of both the distribution
and the protocol).

Definition 3. The communication cost of a protocol Π
for a problem P on an input distribution D, denoted by ‖Π‖,
is the worst-case size of the message sent from Alice to Bob
in the protocol Π, when the inputs are chosen from the dis-
tribution D.
The communication complexity CCδD(P ) of a problem P
with respect to a distribution D is the minimum commu-
nication cost of a δ-error protocol Π over D.

Information complexity. There are several possible defi-
nitions of information complexity of a communication prob-
lem that have been considered depending on the application
(see, e.g., [4, 5, 7, 3]). Our definition is tuned specifically for
one-way protocols, similar in the spirit of [4] (see also [19]).

Definition 4. Consider an input distribution D and a
protocol Π (for some problem P ). Let X be the random vari-
able for the input of Alice drawn from D, and let Π := Π(X)
be the random variable denoting the message sent from Alice
to Bob concatenated with the public randomness R used by
Π. The information cost ICostD(Π) of a one-way protocol Π
with respect to D is ID(Π;X).
The information complexity ICδD(P ) of P with respect to a



distribution D is the minimum ICostD(Π) taken over all one-
way δ-error protocols Π for P over D.

Note that any public coin protocol is a distribution over
private coins protocols, run by first using public randomness
to sample a random string R = R and then running the
corresponding private coin protocol ΠR. We also use ΠR to
denote the random variable of the message sent from Alice
to Bob, assuming that the public randomness is R = R. We
have the following well-known claim (see the full version [2]
for a proof).

Claim 2.3. For any distribution D and any protocol Π,
let R denote the public randomness used in Π; then,

ICostD(Π) = E
R∼R

[
ID(ΠR;X | R = R)

]
The following well-known proposition (see, e.g., [7]) relates

communication complexity and information complexity. A
short proof is provided in the full version of the paper [2].

Proposition 2.4. For every 0 < δ < 1 and every distri-
bution D: CCδD(P ) ≥ ICδD(P ).

3. A LOWER BOUND FOR APPROXIMAT-
ING SET COVER

In this section, we prove that the simple α-approximation
algorithm described in Section 1.2 is in fact optimal in terms
of the space requirement. Formally,

Theorem 1. For any α = o(
√
n

logn
) and m = poly(n), any

randomized single-pass streaming algorithm (possibly ran-
domized) that α-approximates the set cover problem with
probability at least 2/3 requires Ω(mn/α) bits of space.

Fix a (sufficiently large) value for n, m = poly(n) (also

m = Ω(α logn)), and α = o(
√
n

logn
); throughout this section,

SetCoverapx refers to the problem of α-approximating the set
cover problem for instances with m+1 sets4 defined over the
universe [n] in the one-way communication model, whereby
the sets are partitioned between Alice and Bob.

Overview. We design a hard input distribution Dapx for
SetCoverapx, whereby Alice is provided with a collection of
m sets S1, . . . , Sm, each of size (roughly) n/α and Bob is
given a single set T of size (roughly) n − 2α. The input to
the players are correlated such that there exists a set Si∗ in
Alice’s collection (i∗ is unknown to Alice), such that Si∗ ∪T
covers all elements in [n] except for a single special element.
This in particular ensures that the optimal set cover size in
this distribution is at most 3 w.h.p.

On the other hand, we “hide” this special element among
the 2α elements in T in a way that if Bob does not have (es-
sentially) full information about Alice’s collection, he cannot
even identify a set of α elements from T that contain this
special element (w.p strictly more than half). This implies
that in order for Bob to be sure that he returns a valid set
cover, he should additionally cover a majority of T with sets
other than Si∗ . We design the distribution in a way that the
sets in Alice’s collection are “far” from each other and hence
Bob is forced to use a distinct set for (roughly) each element
in T that he needs to cover with sets other than Si∗ . This

4To simplify the exposition, we use m + 1 instead of m as
the number of sets.

implies that Bob needs to output a set cover of size α (i.e.,
an (α/3)-approximation) to ensure that every element in [n]
is covered.

3.1 A Hard Input Distribution for SetCoverapx

Consider the following distribution.

Distribution Dapx. A hard input distribution for
SetCoverapx.

Notation. Let F be the collection of all subsets of [n]
with cardinality n

10α
, and ` := 2α logm.

• Alice. The input of Alice is a collection of m sets
S = (S1, . . . , Sm), where for any i ∈ [m], Si is a set
chosen independently and uniformly at random from
F .

• Bob. Pick an i∗ ∈ [m] (called the special index) uni-
formly at random; the input to Bob is a set T = [n]\E,
where E is chosen uniformly at random from all sub-
sets of [n] with |E| = ` and |E \ Si∗ | = 1.a

aSince α = o(
√
n/ logn) and m = poly(n), the size of E

is strictly smaller than the size of Si∗ .

The claims below summarize some useful properties of the
distribution Dapx.

Claim 3.1. For any instance (S, T ) ∼ Dapx, with proba-
bility 1− o(1), opt(S, T ) ≤ 3.

Proof. Let e∗ denote the element in E \ Si∗ . S−i
∗

con-
tains m − 1 random subsets of [n] of size n/10α, drawn

independent of the choice of e∗. Therefore, each set in S−i
∗

covers e∗ with probability 1/10α. The probability that none
of these m− 1 sets covers e∗ is at most

(1− 1/10α)m−1 ≤ (1− 1/10α)Ω(α logn)

≤ exp(−Ω(α logn)/10α) = o(1)

Hence, with probability 1 − o(1), there is at least one set

S ∈ S−i
∗

that covers e∗. Now, it is straightforward to verify
that (Si∗ , T, S) form a valid set cover.

Lemma 3.2. With probability 1−o(1), no collection of 3α

sets from S−i
∗

covers more than `/2 elements of E.

Proof. Recall that the sets in S−i
∗

and the set E are
chosen independent of each other. For each set S ∈ S−i

∗

and for each element e ∈ E, we define an indicator binary
random variable Xe, where Xe = 1 iff e ∈ S. Let X :=∑
eXe, which is the number of elements in E covered by S.

We have,

E[X] =
∑
e

E[Xe] =
|E|
10α

=
logm

5

Moreover, the variables Xe are negatively correlated since



for any set S′ ⊆ E,

Pr

( ∧
e∈S′

Xe = 1

)
=

( n−|S′|
n

10α
−|S′|

)(
n
n

10α

)
=

(
n

10α

)
·
(
n

10α
− 1
)
. . .
(
n

10α
− |S′|+ 1

)
(n) · (n− 1) . . . (n− |S′|+ 1)

≤
(

1

10α

)|S′|
=
∏
e∈S′

Pr (Xe = 1)

Hence, by the extended Chernoff bound (see Section 2),

Pr

(
X ≥ logm

3

)
= o(

1

m
)

Therefore, using a union bound over all m− 1 sets in S−i
∗
,

with probability 1 − o(1), no set in S−i
∗

covers more than
logm/3 elements in E, which implies that any collection of
3α sets can only cover up to 3α · logm/3 = `/2 elements in
the set E.

3.2 The Lower Bound for the Distribution Dapx

In order to prove our lower bound for SetCoverapx on Dapx,
we define an intermediate communication problem which we
call the Trap problem.

Problem 1 (Trap problem). Alice is given a set S ⊆
[n] and Bob is given a set E ⊆ [n] such that E \ S = {e∗};
Bob needs to output a set L ⊆ E with |L| ≤ |E| /2 such that
e∗ ∈ L.

In the following, we use Trap to refer to the trap problem
with |S| = n/10α and |E| = ` = 2α logm (notice the sim-
ilarity to the parameters in Dapx). We define the following
distribution DTrap for Trap. Alice is given a set S ∈R F (re-
call that F is the collection of all subsets of [n] of size n/10α)
and Bob is given a set E chosen uniformly at random from
all sets that satisfy |E \ S| = 1 and |E| = 2α logm. We first
use a direct sum style argument to prove that under the dis-
tributions Dapx and DTrap, information complexity of solving
SetCoverapx is essentially equivalent to solving m copies of
Trap. Formally,

Lemma 3.3. For any constant δ < 1/2,

ICδDapx
(SetCoverapx) ≥ m · ICδ+o(1)

DTrap
(Trap).

Proof. Let ΠSC be a δ-error protocol for SetCoverapx; we
design a δ′-error protocol ΠTrap for solving Trap over DTrap

with parameter δ′ = δ+ o(1) such that the information cost
of ΠTrap on DTrap is at most 1

m
· ICostDapx(ΠSC). The protocol

ΠTrap is as follows.

Protocol ΠTrap. The protocol for solving Trap using a
protocol ΠSC for SetCoverapx.

Input: An instance (S,E) ∼ DTrap. Output: A set L
with |L| ≤ |E| /2, such that e∗ ∈ L.

1. Using public randomness, the players sample an index
i∗ ∈ [m] uniformly at random.

2. Alice creates a tuple S = (S1, . . . , Sm) by assigning
Si∗ = S and sampling each remaining set uniformly

at random from F using private randomness. Bob
creates a set T := E.

3. The players run the protocol ΠSC over the input
(S, T ).

4. Bob computes the set L of all elements in E = T
whose certificate (i.e., the set used to cover them) is
not Si∗ , and outputs L.

We first argue the correctness of ΠTrap and then bound
its information cost. To argue the correctness, notice that
the distribution of instances of SetCoverapx constructed in
the reduction is exactly Dapx. Consequently, it follows from
Claim 3.1 that, with probability 1−o(1), any α-approximate

set cover can have at most 3α sets. Let Ŝ be the set cover
computed by Bob minus the sets Si∗ and T . As e∗ ∈ E = T
and moreover is not in Si∗ , it follows that e∗ should be

covered by some set in Ŝ. This means that the set L that
is output by Bob contains e∗. Moreover, by Lemma 3.2, the

number of elements in E covered by the sets in Ŝ is at most
`/2 w.p. 1 − o(1). Hence, |L| ≤ `/2 = |E| /2. This implies
that:

Pr
DTrap

(
ΠTrap errs

)
≤ Pr
Dapx

(
ΠSC errs

)
+ o(1) ≤ δ + o(1)

We now bound the information cost of ΠTrap. Let I be the
random variable for the choice of i∗ ∈ [m] in the protocol
ΠTrap (which is uniform in [m]). Using Claim 2.3, we have,

ICostDTrap(ΠTrap) = E
i∼I

[
IDTrap

(
Πi

Trap;S | I = i
)]

=
1

m
·
m∑
i=1

IDTrap

(
ΠSC;Si | I = i

)
=

1

m
·
m∑
i=1

IDapx

(
ΠSC;Si | I = i

)
=

1

m
·
m∑
i=1

IDapx

(
ΠSC;Si

)
where the last two equalities hold since (i) the joint distri-
bution of ΠSC and Si conditioned on I = i under DTrap is
equivalent to the one under Dapx, and (ii) the random vari-
ables ΠSC and Si are independent of the event I = i (by the
definition of Dapx) and hence we can “drop” the conditioning
on this event (by Claim 2.1-(6)).

We can further derive,

ICostDTrap(ΠTrap) =
1

m
·
m∑
i=1

IDapx

(
ΠSC;Si

)
≤ 1

m
·
m∑
i=1

IDapx

(
ΠSC;Si | S<i

)
The inequality holds since Si and S<i are independent and
conditioning on independent variables can only increase the
mutual information (i.e., Claim 2.2). Finally,

ICostDTrap(ΠTrap) ≤
1

m
·
m∑
i=1

IDapx

(
ΠSC;Si | S<i

)
=

1

m
· IDapx

(
ΠSC;S

)
=

1

m
· ICostDapx(ΠSC)



where the first equality is by the chain rule for mutual in-
formation (see Claim 2.1-(5)).

Having established Lemma 3.3, our task now is to lower
bound the information complexity of Trap over the distribu-
tion DTrap. We prove this lower bound using a novel reduc-
tion from the well-known Index problem, denoted by Indexnk .
In Indexnk over the distribution DIndex, Alice is given a set
A ⊆ [n] of size k chosen uniformly at random and Bob is
given an element a such that w.p. 1/2 a ∈R A and w.p. 1/2
a ∈R [n] \ A; Bob needs to determine whether a ∈ A (the
YES case) or not (the NO case).

We remark that similar distributions for Indexnk have been
previously studied (see, e.g., [27], Section 3.3). For the
sake of completeness, a self-contained proof of the follow-
ing lemma is provided in the full version [2].

Lemma 3.4. For any k < n/2, and any constant δ′ <

1/2, ICδ
′
DIndex

(Indexnk ) = Ω(k).

Using Lemma 3.4, we prove the following lemma, which
is the key part of the proof.

Lemma 3.5. For any constant δ < 1/2, ICδDTrap
(Trap) =

Ω(n/α).

Proof of Lemma 3.5. Let k = n/10α; we design a δ′-
error protocol ΠIndex for Indexnk using any δ-error protocol
ΠTrap (over DTrap) as a subroutine, for some constant δ′ <
1/2.

Protocol ΠIndex. The protocol for reducing Indexnk to
Trap.

Input: An instance (A, a) ∼ DIndex. Output: YES if
a ∈ A and NO otherwise.

1. Alice picks a set B ⊆ A with |B| = ` − 1 uniformly
at random using private randomness.

2. To invoke the protocol ΠTrap, Alice creates a set S :=
A and sends the message ΠTrap(S), along with the set
B to Bob.

3. If a ∈ B, Bob outputs YES and terminates the pro-
tocol.

4. Otherwise, Bob constructs a set E = B ∪ {a} and
computes L := ΠTrap(S,E) using the message re-
ceived from Alice.

5. If a ∈ L, Bob outputs NO, and otherwise outputs
YES.

We should note right away that the distribution of in-
stances for Trap defined in the previous reduction does not
match DTrap. Therefore, we need a more careful argument
to establish the correctness of the reduction.

We prove this lemma in two claims; the first claim es-
tablishes the correctness of the reduction and the second
one proves an upper bound on the information cost of ΠIndex

based on the information cost of ΠTrap.

Claim 3.6. ΠIndex is a δ′-error protocol for Indexnk over
DIndex for the parameter k = n/10α and a constant δ′ < 1/2.

Proof. Let R denote the private coins used by Alice to
construct the set B. Also, define DY

Index (resp. DN
Index) as the

distribution of YES instances (resp. NO instances) of DIndex.
We have,

Pr
DIndex,R

(
ΠIndex errs

)
=

1

2
· Pr
DY

Index
,R

(
ΠIndex errs

)
+

1

2
· Pr
DN

Index
,R

(
ΠIndex errs

)
(1)

Note that we do not consider the randomness of the proto-
col ΠTrap (used in construction of ΠIndex) as it is independent
of the randomness of the distribution DIndex and the pri-
vate coins R. We now bound each term in Equation (1)
separately. We first start with the easier case which is the
second term.

The distribution of instances (S,E) for Trap created in the
reduction by the choice of (A, a) ∼ DN

Index and the random-
ness of R, is the same as the distribution DTrap. Moreover,
in this case, the output of ΠIndex would be wrong iff a ∈ E\S
(corresponding to the element e∗ in Trap) does not belong
to the set L output by ΠTrap. Hence,

Pr
DN

Index
,R

(
ΠIndex errs

)
= Pr
DTrap

(
ΠTrap errs

)
≤ δ (2)

We now bound the first term in Equation (1). Note that
when (A, a) ∼ DY

Index, there is a small chance that ΠIndex is
“lucky” and a belongs to the set B (see Line (3) of the proto-
col). Let this event be E . Conditioned on E , Bob outputs the
correct answer with probability 1; however note that proba-
bility of E happening is only o(1). Now suppose E does not
happen. In this case, the distribution of instances (S,E)
created by the choice of (A, a) ∼ DY

Index (and randomness of
R) does not match the distribution DTrap. However, we have
the following important property: Given that (S,E) is the
instance of Trap created by choosing (A, a) from DY

Index and
sampling `−1 random elements of A (using R), the element
a is uniform over the set E. In other words, knowing (S,E)
does not reveal any information about the element a.

Note that since (S,E) is not chosen according to the dis-
tribution DTrap (actually it is not even a “legal” input for
Trap), it is possible that ΠTrap terminates, outputs a non-
valid set, or outputs a set L ⊆ E. Unless L ⊆ E (and
satisfies the cardinality constraint), Bob is always able to
determine that ΠTrap is not functioning correctly and hence
outputs YES (and errs with probability at most δ < 1/2).
However, if L ⊆ E, Bob would not know whether the in-
put to ΠTrap is legal or not. In the following, we explicitly
analyze this case.

In this case, L is a subset of E chosen by the (inner)
randomness of ΠTrap for a fixed S and E and moreover |L| ≤
|E| /2 (by definition of Trap). The probability that ΠIndex

errs in this case is exactly equal to the probability that a ∈
L. However, as stated before, for a fixed (S,E), the choice
of L is independent of the choice of a and moreover, a is
uniform over E; hence a ∈ L happens with probability at
most 1/2. Formally,

Pr
DY

Index
,R

(ΠIndex errs | E) = Pr
DY

Index
,R

(
a ∈ L = ΠTrap(S,E) | E

)
Let RTrap denote the inner randomness of ΠTrap. For brevity,
we define (S,E,RTrap) as the event that S = S,E = E and
RTrap = RTrap. Using this notation, we can write the RHS



above as,

E
(S,E)∼(S,E)|E

E
RTrap∼RTrap

[
Pr

DY
Index

,R

(
a ∈ L | (S,E,RTrap), E

)]
(L = ΠTrap(S,E) is a fixed set conditioned on (S,E,RTrap))

= E
(S,E)∼(S,E)|E

E
RTrap∼RTrap

[ |L|
|E|

]
(a is uniform on E conditioned on (S,E,RTrap) and E)

Hence, we have, PrDY
Index

,R(ΠIndex errs | E) ≤ 1
2
, since by

definition, for any output set L, |L| ≤ |E| /2.
As stated earlier, whenever E happens, ΠIndex makes no

error; hence,

Pr
DY

Index
,R

(ΠIndex errs) = Pr
DY

Index
,R

(E) · Pr
DY

Index
,R

(ΠIndex errs | E)

≤ 1− o(1)

2
(3)

Finally, by plugging the bounds in Equations (2,3) in Equa-
tion (1) and assuming δ is bounded away from 1/2, we have,

Pr
DIndex,R

(ΠIndex errs) ≤ 1

2
· 1− o(1)

2
+

1

2
· δ

=
1− o(1)

4
+
δ

2
≤ 1

2
− ε

for some constant ε bounded away from 0.

We now bound the information cost of ΠIndex under DIndex.

Claim 3.7. We have,

ICostDIndex(ΠIndex) ≤ ICostDTrap(ΠTrap) +O(` logn)

Proof.

ICostDIndex(ΠIndex)

= IDIndex

(
ΠIndex(A);A

)
= IDIndex

(
ΠTrap(S),B;A

)
= IDIndex

(
ΠTrap(S);A

)
+ IDIndex

(
B;A | ΠTrap(S)

)
(the chain rule for mutual information, Claim 2.1-(5))

≤ IDIndex

(
ΠTrap(S);A

)
+HDIndex

(
B | ΠTrap(S)

)
≤ IDIndex

(
ΠTrap(S);A

)
+O(` logn)

(|B| = O(` logn) and Claim 2.1-(1))

= IDIndex

(
ΠTrap(S);S

)
+O(` logn)

= IDTrap

(
ΠTrap(S);S

)
+O(` logn)

((ΠTrap(S),S) is distributed the same under DIndex,DTrap)

= ICostDTrap(ΠTrap) +O(` logn)

The lower bound now follows from Claims 3.6 and 3.7, and
Lemma 3.4 for the parameters k = |S| = n

10α
and δ′ < 1/2,

and using the fact that α = o(
√
n/ logn), ` = 2α logm, and

m = poly(n), and hence Ω(n/α) = ω(` logn).

To conclude, by Lemma 3.3 and Lemma 3.5, for any set

of parameters δ < 1/2, α = o(
√
n

logn
), and m = poly(n),

ICδDapx
(SetCoverapx) ≥ m ·

(
Ω(n/α)

)
= Ω(mn/α)

Since the information complexity is a lower bound on the
communication complexity (Proposition 2.4), we have,

Theorem 2. For any constant δ < 1/2, α = o(
√
n

logn
),

and m = poly(n),

CCδDapx
(SetCoverapx) = Ω(mn/α).

Finally, since one-way communication complexity is also a
lower bound on the space complexity of single-pass stream-
ing algorithms, we obtain Theorem 1 as a corollary of The-
orem 2.

4. AN UPPER BOUND FOR ESTIMATING
COVERING ILPS

In this section, we show that if we are only interested
in estimating the size of a minimum set cover (instead of
finding the actual sets), we can bypass the Ω(mn/α) lower
bound established in Section 3. In fact, we prove this up-
per bound for the more general problem of estimating the
optimal solution of a covering integer program (henceforth,
covering ILP) in the streaming setting.

A covering ILP can be formally defined as follows.

min c · x s.t. Ax ≥ b

where A is a matrix with dimension n×m, b is a vector of
dimension n, c is a vector of dimension m, and x is an m-
dimensional vector of non-negative integer variables. More-
over, all coefficients in A, b, and c are also non-negative in-
tegers. We denote this linear program by ILPCover(A, b, c).
We use amax, bmax, and cmax, to denote the largest entry of,
respectively, the matrix A, the vector b, and the vector c. Fi-
nally, we define the optimal value of the I := ILPCover(A, b, c)
as c · x∗ where x∗ is the optimal solution to I, and denote
it by opt := opt(I).

We consider the following streaming setting for covering
ILPs. The input to a streaming algorithm for an instance
I := ILPCover(A, b, c) is the n-dimensional vector b, and a
stream of the m columns of A presented one by one, where
the i-th column of A, Ai, is presented along with the i-th
entry of c, denoted by ci (we will refer to ci as the weight
of the i-th column). It is easy to see that this streaming
setting for covering ILPs captures, as special cases, the set
cover problem, the weighted set cover problem, and the set
multi-cover problem. We prove the following theorem for
α-estimating the optimal value of a covering ILPs in the
streaming setting.

Theorem 3. There is a randomized algorithm that given
a parameter α ≥ 1, for any instance I := ILPCover(A, b, c)
with poly(n)-bounded entries, makes a single pass over a
stream of columns of A (presented in an arbitrary order),
and outputs an α-estimation to opt(I) w.h.p. using space

Õ
(
(mn/α2) · bmax +m+ nbmax

)
bits.

In particular, for the weighted set cover problem with
poly(n) bounded weights and α ≤

√
n, the space complex-

ity of this algorithm is Õ(mn/α2 + n).5

To prove Theorem 3, we design a general approach based
on sampling constraints of a covering ILP instance. The

5Note that Ω(n) space is necessary to even determine
whether or not a given instance is feasible.



goal is to show that if we sample (roughly) 1/α fraction of
the constraints from an instance I := ILPCover(A, b, c), then
the optimum value of the resulting covering ILP, denoted by
IR, is a good estimator of opt(I). Note that in general, this
may not be the case; simply consider a weighted set cover
instance that contains an element e which is only covered
by a singleton set of weight W (for W � m) and all the
remaining sets are of weight 1 only. Clearly, opt(IR) �
opt(I) as long as e is not sampled in IR, which happens w.p.
1− 1/α.

To circumvent this issue, we define a notion of cost for
covering ILPs which, informally, is the minimum value of
the objective function if the goal is to only satisfy a single
constraint (in the above example, the cost of that weighted
set cover instance is W ). This allows us to bound the loss
incurred in the process of estimation by sampling based on
the cost of the covering ILP.

Constraint sampling alone can only reduce the space re-
quirement by a factor of α, which is not enough to meet the
bounds given in Theorem 3. Hence, we combine it with a
pruning step to sparsify the columns in A before perform-
ing the sampling. We should point out that as columns
are weighted, the pruning step needs to be sensitive to the
weights.

In the rest of this section, we first introduce our constraint
sampling lemma (Lemma 4.1) and prove its correctness, and
then provide our algorithm for Theorem 3.

4.1 Covering ILPs and Constraint Sampling
Lemma

In this section, we provide a general result for estimating
the optimal value of a Covering ILP using a sampling based
approach. For a vector v, we will use vi to denote the i-th
dimension of v. For a matrix A, we will use Ai to denote the
i-th column of A, and use aj,i to denote the entry of A at the
i-th column and the j-th row (to match the notation with
the set cover problem, we use aj,i instead of the standard
notation ai,j).

For each constraint j ∈ [n] (i.e., the j-th constraint) of
a covering ILP instance I := ILPCover(A, b, c), we define the
cost of the constraint j, denoted by Cost(j), as,

Cost(j) := min
x
c · x s.t

m∑
i=1

aj,i · xi ≥ bj

which is the minimum solution value of the objective func-
tion for satisfying the constraint j. Furthermore, the cost of
I, denoted by Cost(I), is defined to be

Cost(I) := max
j∈[n]

Cost(j)

Clearly, Cost(I) is a lower bound on opt(I).

Constraint Sampling. Given any instance of covering
ILP I := ILPCover(A, b, c), let IR be a covering ILP instance

ILPCover(A, b̃, c) obtained by setting b̃j := bj with probability

p, and b̃j := 0 with probability 1 − p, for each dimension

j ∈ [n] of b independently. Note that setting b̃j := 0 in IR
is equivalent to removing the j-th constraint from I, since
all entries in I are non-negative. Therefore, intuitively, IR
is a covering ILP obtained by sampling (and keeping) the
constraints of I with a sampling rate of p.

We establish the following lemma that asserts that opt(IR)
is a good estimator of opt(I) (under certain conditions). As

opt(IR) ≤ opt(I) trivially holds (removing constraints can
only decrease the optimal value), it suffices to give a lower
bound on opt(IR).

Lemma 4.1 (Constraint Sampling Lemma). Fix an
α ≥ 32 lnn; for any covering ILP I with n constraints, sup-
pose IR is obtained from I by sampling each constraint with
probability p := 4 lnn

α
; then

Pr
(
opt(IR) + Cost(I) ≥ opt(I)

8α

)
≥ 3

4

Proof. Suppose by contradiction that the lemma state-
ment is false and throughout the proof let I be any instance

where w.p. at least 1/4, opt(IR) + Cost(I) < opt(I)
8α

(we de-
note this event by E1(IR), or shortly E1). We will show that
in this case, I has a feasible solution with a value smaller
than opt(I). To continue, define E2(IR) (or E2 in short) as

the event that opt(IR) < opt(I)
8α

. Note that whenever E1 hap-
pens, then E2 also happens, hence E2 happens w.p. at least
1/4.

For the sake of analysis, suppose we repeat, for 32α times,
the procedure of sampling each constraint of I indepen-
dently with probability p, and obtain 32α covering ILP in-
stances S :=

{
I1
R, . . . , I32α

R

}
. Since E2 happens with prob-

ability at least 1/4 on each instance IR, the expected num-
ber of times that E2 happens for instances in S is at least
8α > 12 lnn. Hence, by the Chernoff bound, with probabil-
ity at least 1 − 1/n, E2 happens on at least 4α of instances
in S. Let T ⊆ S be a set of 4α instances for which E2 hap-
pens. In the following, we show that if I has the property
that Pr(E1(IR)) ≥ 1/4, then w.p. at least 1 − 1/n, every
constraint in I appears in at least one of the instances in
T . Since each of these 4α sampled instances admits a so-

lution of value at most opt(I)
8α

(by the definition of E2), the
“max” of their solutions, i.e., the vector obtained by setting
the i-th entry to be the largest value of xi among all these
solutions, gives a feasible solution to I with value at most

4α · opt(I)
8α

= opt(I)
2

; a contradiction.
We use “j ∈ IR” to denote the event that the constraint

j of I is sampled in IR, and we need to show that w.h.p.
for all j, there exists an instance IR ∈ T where j ∈ IR. We
establish the following claim.

Claim 4.2. For any j ∈ [n], Pr
(
j ∈ IR | E2(IR)

)
≥ lnn

2α
.

Before proving Claim 4.2, we show how this claim would
imply the lemma. By Claim 4.2, for each of the 4α in-
stances IR ∈ T , and for any j ∈ [n], the probability that
the constraint j is sampled in IR is at least lnn

2α
. Then, the

probability that j is sampled in none of the 4α instances of
T is at most:(

1− lnn

2α

)4α

≤ exp(−2 lnn) =
1

n2

Hence, by union bound, w.p. at least 1 − 1/n, every con-
straint appears in at least one of the instances in T , and this
will complete the proof. It remains to prove Claim 4.2.

Proof of Claim 4.2. Fix any j ∈ [n]; by Bayes rule,

Pr
(
j ∈ IR | E2(IR)

)
=

Pr
(
E2(IR) | j ∈ IR

)
· Pr (j ∈ IR)

Pr
(
E2(IR)

)



Since Pr
(
E2(IR)

)
≤ 1 and Pr (j ∈ IR) = p = 4 lnn

α
, we have,

Pr
(
j ∈ IR | E2(IR)

)
≥ Pr

(
E2(IR) | j ∈ IR

)
· 4 lnn

α
(4)

and hence it suffices to establish a lower bound of 1/8 for

Pr
(
E2(IR) | j ∈ IR

)
.

Consider the following probabilistic process (for a fixed
j ∈ [n]): we first remove the constraint j from I (w.p. 1)
and then sample each of the remaining constraints of I w.p.
p. Let I′R be an instance created by this process. We prove
Pr (E2(IR) | j ∈ IR) ≥ 1/8 in two steps by first showing that
the probability that E1 happens to I′R (i.e., Pr (E1(I′R))) is at
least 1/8, and then use a coupling argument to prove that
Pr (E2(IR) | j ∈ IR) ≥ Pr (E1(I′R)).

We first show that Pr (E1(I′R)) (which by definition is the

probability that opt(I′R) + Cost(I) ≤ opt(I)
16α

) is at least 1/8.
To see this, note that the probability that E1 happens to I′R
is equal to the probability that E1 happens to IR conditioned
on j not being sampled (i.e., Pr (E1(IR) | j /∈ IR)). Now, if
we expand Pr (E1(IR)),

Pr
(
E1(IR)

)
= Pr (j ∈ IR) Pr

(
E1(IR) | j ∈ IR

)
+ Pr (j /∈ IR) Pr

(
E1(IR) | j /∈ IR

)
≤ Pr (j ∈ IR) + Pr

(
E1(IR) | j /∈ IR

)
= p+ Pr

(
E1(I′R)

)
As Pr (E1(IR)) ≥ 1/4 and p = 4 lnn

α
≤ 1/8 (since α ≥

32 lnn), we have,

1/4 ≤ 1/8 + Pr
(
E1(I′R)

)
and therefore, Pr (E1(I′R)) ≥ 1/8.

It remains to show that Pr (E2(IR) | j ∈ IR) ≥ Pr (E1(I′R)).
To see this, note that conditioned on j ∈ IR, the distribution
of sampling all constraints other than j is exactly the same
as the distribution of I′R. Therefore, for any instance I′R
drawn from this distribution, there is a unique instance IR
sampled from the original constraint sampling distribution
conditioned on j ∈ IR. For any such (I′R, IR) pair, we have
opt(IR) ≤ opt(I′R) + Cost(j) (≤ opt(I′R) + Cost(I)) since
satisfying the constraint j ∈ IR requires increasing the value
of the objective function in I′R by at most Cost(j). Therefore
if opt(I′R) + Cost(I) ≤ opt

8α
(i.e., E1 happens to I′R), then

opt(IR) ≤ opt
8α

(i.e., E2 happens to IR conditioned on j ∈ IR).
Hence,

Pr
(
E2(IR) | j ∈ IR

)
≥ Pr

(
E1(I′R)

)
≥ 1/8

Plugging in this bound in Equation (4), we obtain that
Pr (j ∈ IR | E2) ≥ lnn

2α
.

4.2 An α-estimation of Covering ILPs in the
Streaming Setting

We now prove Theorem 3. Throughout this section, for
simplicity of exposition, we assume that α ≥ 32 lnn (other-
wise the space bound in Theorem 3 is enough to store the
whole input and solve the problem optimally), the value of
cmax is provided to the algorithm, and x is a vector of binary
variables, i.e., x ∈ {0, 1}m (hence covering ILP instances are

always referring to covering ILP instances with binary vari-
ables). In the full version of the paper [2], we describe how
to eliminate the later two assumptions.

Algorithm overview. For any covering ILP instance I :=
ILPCover(A, b, c), our algorithm estimates opt := opt(I) in
two parts running in parallel. In the first part, the goal is
simply to compute Cost(I) (see Claim 4.3). For the second
part, we design a tester algorithm (henceforth, Tester) that
given any “guess” k of the value of opt, if k ≥ opt, Tester
accepts k w.p. 1 and for any k where Cost(I) ≤ k ≤ opt

32α
,

w.h.p. Tester rejects k.
Let K := {2γ}γ∈[dlog(mcmax)e]; for each k ∈ K (in parallel),

we run Tester(k). At the end of the stream, the algorithm
knows Cost(I) (using the output of the part one), and hence
it can identify among all guesses that are at least Cost(I),
the smallest guess accepted by Tester (denoted by k∗). On
one hand, k∗ ≤ opt since for any guess k ≥ opt, k ≥ Cost(I)
also (since opt ≥ Cost(I)) and Tester accepts k. On the
other hand, k∗ ≥ opt

32α
w.h.p. since (i) if Cost(I) ≥ opt

32α
,

k∗ ≥ Cost(I) ≥ opt
32α

and (ii) if Cost(I) < opt
32α

, the guess
opt
32α

will be rejected w.h.p. by Tester . Consequently, 32α·k∗
is an O(α)-estimation of opt(I).

There is a simple dynamic programming algorithm that
can compute the Cost of a covering ILP presented in a
stream (see the full version [2] for a proof).

Claim 4.3. For any I := ILPCover(A, b, c) presented in a
stream, Cost(I) can be computed in space O(nbmax log cmax)
bits.

To continue, we need the following notation. For any vec-
tor v with dimension d and any set S ⊆ [d], v(S) denotes the
projection of v onto the dimensions indexed by S. For any
two vectors u and v, let min(u, v) denote a vector w where
at the i-th dimension: wi = min(ui, vi), i.e., the coordinate-
wise minimum. We now provide the aforementioned Tester
algorithm.

Tester(k): An algorithm for testing a guess k of the
optimal value of a covering ILP.

Input: An instance I := ILPCover(A, b, c) presented as a
stream 〈A1, c1〉, . . ., 〈Am, cm〉, a parameter α ≥ 32 lnn,
and a guess k ∈ K.

Output: ACCEPT if k ≥ opt and REJECT if Cost(I) ≤
k ≤ opt

32α
. The answer could be either ACCEPT or RE-

JECT if opt
32α

< k < opt.

1. Preprocessing:

(i) Maintain an n-dimensional vector bres ← b, an m-
dimensional vector c̃← 0m, and an n×m dimen-

sional matrix Ã← 0n×m.

(ii) Let V be a subset of [n] obtained by sampling each
element in [n] independently with probability p :=
4 lnn/α.

2. Streaming: when a pair 〈Ai, ci〉 arrives:

(i) If ci > k, directly continue to the next input pair
of the stream. Otherwise:



(ii) Prune step: Let ui := min(bres, Ai) (the
coordinate-wise minimum). If ‖ui‖1 ≥

n·bmax
α

, up-
date bres ← bres − ui (we say 〈Ai, ci〉 is pruned

by Tester in this case). Otherwise, assign Ãi ←
ui(V ), and c̃i ← ci.

3. At the end of the stream, solve the following covering
ILP (denoted by Itester):

min c̃ · x s.t. Ãx ≥ bres(V )

If opt(Itester) is at most k, ACCEPT; otherwise RE-
JECT.

We first make the following observation. In the prune

step of Tester , if we replace Ãi ← ui(V ) by Ãi ← Ai(V ),
the solution of the resulting covering ILP instance (denoted
by I′tester) has the property that opt(I′tester) = opt(Itester)
(we use Itester only to control the space requirement). To
see this, let bres

i denotes the content of the vector bres when
〈Ai, ci〉 arrives. By construction, (ui)j := min((bres

i)j , aj,i),
and hence if (ui)j 6= aj,i, then both (ui)j and aj,i are at least
(bres

i)j , which is at least (bres)j (since every dimension of bres
is monotonically decreasing). However, for any integer pro-
gram ILPCover(A, b, c), changing any entry aj,i of A between
two values that are at least bj does not change the optimal
value, and hence opt(I′tester) = opt(Itester). To simplify the
proof, in the following, when concerning opt(Itester), we re-
define Itester to be I′tester.

We now prove the correctness of Tester in the following
two lemmas.

Lemma 4.4. For any guess k ≥ opt, Pr
(

Tester(k) =

ACCEPT
)

= 1.

Proof. Fix any optimal solution x∗ of I; we will show
that x∗ is a feasible solution for Itester, and since by the
construction of c̃, we have c̃ ·x∗ ≤ c ·x∗ ≤ opt, this will show
that opt(Itester) ≤ opt ≤ k and hence Tester(k) = ACCEPT.

Fix a constraint j in Itester:
{∑

i∈[m] ãj,ixi ≥ bres(V )j
}

.

If j /∈ V , bres(V )j = 0 and hence the constraint is trivially
satisfied for any solution x∗. Suppose j ∈ V and let P
denote the set of (indices of) pairs that are pruned. By
construction of the Tester , bres(V )j = max(bj−

∑
i∈P aj,i, 0).

If bres(V )j = 0, again the constraint is trivially satisfied.
Suppose bres(V )j = bj −

∑
i∈P aj,i. The constraint j can be

written as
{∑

i ãj,ixi ≥ bj −
∑
i∈P aj,i

}
. By construction of

the tester, ãj,i = 0 for all i that are pruned and otherwise
ãj,i = aj,i. Hence, we can further write the constraint j as{∑

i/∈P aj,ixi ≥ bj −
∑
i∈P aj,i

}
.

Now, since x∗ satisfies the constraint j in I,∑
i∈[m]

aj,ix
∗
i ≥ bj∑

i/∈P

aj,ix
∗ ≥ bj −

∑
i∈P

aj,ix
∗
i

≥ bj −
∑
i∈P

aj,i (x∗i ≤ 1)

and the constraint j is satisfied by x∗ in Itester as well.
Therefore, x∗ is a feasible solution of Itester; this completes
the proof.

We now show that Tester will reject guesses that are
smaller than opt

32α
. We will only prove that the rejection

happens with probability 3/4; however, the probability of
error can be reduced to any δ < 1 by running O(log 1/δ)
parallel instances of the Tester and for each guess, REJECT
if any one of the instances outputs REJECT and otherwise
ACCEPT. In our case δ = O(|K|−1) so we can apply union
bound for all different guesses.

Lemma 4.5. For any guess k where Cost(I) ≤ k < opt
32α

,

Pr
(

Tester(k) = REJECT
)
≥ 3/4.

Proof. By construction of Tester(k), we need to prove

that Pr
(
opt(Itester) > k

)
≥ 3/4. Define the following cov-

ering ILP I′:

min c̃ · x s.t. Âx ≥ bres(V )

where Âi = Ai if 〈Ai, ci〉 is not pruned by Tester , and

Âi = 0n otherwise. In Tester(k), for each pair 〈Ai, ci〉 that
is not pruned, instead of storing the entire vector Ai, we
store the projection of Ai onto dimensions indexed by V

(which is the definition of Ãi in Itester). This is equivalent
to performing constraint sampling on I′ with a sampling
rate of p = 4 lnn/α. Therefore, by Lemma 4.1, with prob-

ability at least 3/4, opt(Itester) + Cost(I′) ≥ opt(I′)
8α

. Since

Cost(I′) ≤ Cost(I) ≤ k < opt(I)
32α

, this implies that

opt(Itester) ≥
opt(I′)

8α
− Cost(I′) > opt(I′)

8α
− opt(I)

32α
.

Therefore, we only need to show that opt(I′) ≥ opt(I)
2

since

then opt(Itester) > opt(I)
16α

− opt(I)
32α

= opt(I)
32α

> k and Tester
will reject k.

To show that opt(I′) ≥ opt(I)
2

, we first note that for any
optimal solution x∗ of I′, if we further set x∗i = 1 for any
pair 〈Ai, ci〉 that are pruned, the resulting x∗i is a feasible
solution for I. Therefore, if we show that the total weight
of the 〈Ai, ci〉 pairs that are pruned is at most opt

2
, opt(I′)

must be at least opt
2

or we will have a solution for I better
than opt(I).

To see that the total weight of the pruned pairs is at most
opt/2, since only pairs with ci ≤ k (≤ opt

32α
) will be consid-

ered, we only need to show that at most 16α pairs can be
pruned. By the construction of the prune step, each pruned
pair reduces the `1-norm of the vector bres by an additive
factor of at least nbmax

α
. Since bres is initialized to be b and

‖b‖1 ≤ nbmax, at most α (≤ 16α) pairs can be pruned. This
completes the proof.

We now finalize the proof of Theorem 3.

Proof of Theorem 3. We run the algorithm described
in the beginning of this section. The correctness of the al-
gorithm follows from Claim 4.3 and Lemmas 4.4 and 4.5.
We now analyze the space complexity of this algorithm. We
need to run the algorithm in Claim 4.3 to compute Cost(I),

which require Õ(nbmax) space. We also need to run Tester
for O(log (m · cmax)) different guesses of k.

In Tester(k), we need O(n log bmax) bits to store the vector
bres and O(m log cmax) bits to maintain the vector c̃. Finally,

the matrix Ã requiresO(mnbmax/α·(logn/α)·(log amax logn))

bits to store. This is because each column Ãi of Ã is either 0n



or ui(V ) where ‖ui‖1 <
n·bmax
α

. Since ‖ui‖1 <
n·bmax
α

, there

are at most n·bmax
α

non-zero entries in ui. Therefore, after

projecting ui to V (to obtain Ãi) in expectation the number

of non-zero entries in Ãi is at most Õ(nbmax/α
2). Using the

Chernoff bound w.h.p at mostO(nbmax
α2 ) non-zero entries of ui

remain in each Ãi, where each entry needs O(log amax logn)
bits to store. Note that the space complexity of the algo-
rithm can be made deterministic by simply terminating the

execution when at least one set Ãi has (c · nbmax
α2 ) non-zero

entries (for a sufficiently large constant c > 1); as this event
happens with o(1) probability, the error probability of the
algorithm increases only by o(1). Finally, as all entries in
(A, b, c) are poly(n)-bounded, the total space requirement of

the algorithm is Õ((mn/α2) · bmax +m+ nbmax).

We also make the following remark about α-approximating
covering ILPs.

Remark 4.6. The algorithm described in Section 1.2 for
α-approximating set cover can also be extended to obtain
an α-approximation algorithm for covering ILPs in space

Õ(mnbmax/α): Group the columns by the weights and merge
every α sets for each group independently.

5. A LOWER BOUND FOR ESTIMATING
SET COVER

Our algorithm in Theorem 3 establish a factor α gap on
the space requirement of α-approximation and α-estimation
algorithms for the set cover problem. We now show that
this gap is the best possible. In other words, the space com-
plexity of our algorithm in Theorem 3 for the original set
cover problem is tight (up to logarithmic factors) even for
random arrival streams. Formally,

Theorem 4. Let S be a collection of m subsets of [n]
presented one by one in a random order. For any α =

o(
√

n
logn

) and any m = poly(n), any randomized algorithm

that makes a single pass over S and outputs an α-estimation
of the set cover problem with probability 0.9 (over the ran-
domness of both the stream order and the algorithm) must

use Ω̃(mn
α2 ) bits of space.

Fix a (sufficiently large) value for n, m = poly(n), and

α = o(
√

n
logn

); throughout this section, SetCoverest refers

to the problem of α-estimating the set cover problem with
m + 1 sets (see footnote 4) defined over the universe [n]
in the one-way communication model, whereby the sets are
partitioned between Alice and Bob.

Overview. We start by introducing a hard distribution
Dest for SetCoverest in the spirit of the distribution Dapx in
Section 3. However, since in SetCoverest the goal is only to
estimate the size of the optimal cover, “hiding” one single
element (as was done in Dapx) is not enough for the lower
bound. Here, instead of trying to hide a single element, we
give Bob a “block” of elements and his goal would be to
decide whether this block appeared in one set of Alice as
a whole or was it partitioned across many different sets6.

6The actual set given to Bob is the complement of this block;
hence the optimal set cover size varies significantly between
the two cases.

Similar to Dapx, distribution Dest is also not a product dis-
tribution; however, we introduce a way of decomposing Dest

into a convex combination of product distributions and then
exploit the simplicity of product distributions to prove the
lower bound.

Nevertheless, the distribution Dest is still “adversarial”and
hence is not suitable for proving the lower bound for ran-
dom arrival streams. Therefore, we define an extension to
the original hard distribution as Dext which randomly par-
titions the sets of distribution Dest between Alice and Bob.
We prove a lower bound for this distribution using a re-
duction from protocols over Dest. Finally, we show how an
algorithm for set cover over random arrival streams would be
able to solve instances of SetCoverest over Dext and establish
Theorem 4.

5.1 A Hard Input Distribution for SetCoverest

Consider the following distribution Dest for SetCoverest.

Distribution Dest. A hard input distribution for
SetCoverest.

Notation. Let F be the collection of all subsets of [n]
with cardinality n

10α
.

• Alice. The input of Alice is a collection of m sets
S = (S1, . . . , Sm), where for any i ∈ [m], Si is a set
chosen independently and uniformly at random from
F .

• Bob. Pick θ ∈ {0, 1} and i∗ ∈ [m] independently and
uniformly at random; the input of Bob is a single set
T defined as follows.

− If θ = 0, then T is a set of size α logm chosen
uniformly at random from all subsets of Si∗ with
size α logm.a

− If θ = 1, then T is a set of size α logm chosen
uniformly at random from all subsets of [n] \ Si∗
with size α logm.

aSince α = o(
√
n/ logn) and m = poly(n), the size of T

is strictly smaller than the size of Si∗ .

Recall that opt(S, T ) denotes the set cover size of the in-
put instance (S, T ). The following lemma can be proven
analogous to Lemma 3.2 and its proof is deferred to the full
version of the paper [2].

Lemma 5.1. For (S, T ) ∼ Dest:

(i) Pr (opt(S, T ) = 2 | θ = 0) = 1.

(ii) Pr (opt(S, T ) > 2α | θ = 1) = 1− o(1).

Furthermore, using similar techniques as in the proof of
Theorem 2, we can prove the following theorem. The proof
is deferred to the full version of the paper [2].

Theorem 5. For any constant δ < 1/2, α = o(
√

n
logn

),

and m = poly(n),

CCδDest
(SetCoverest) = Ω̃(mn/α2).

As a corollary of this result, we have that the space com-
plexity of single-pass streaming algorithms for the set cover

problem on adversarial streams is Ω̃(mn/α2).



5.2 Extension to Random Arrival Streams
We now show that the lower bound established in Theo-

rem 5 can be further strengthened to prove a lower bound
on the space complexity of single-pass streaming algorithms
in the random arrival model. To do so, we first define an
extension of the distribution Dest, denoted by Dext, prove a
lower bound for Dext, and then show that how to use this
lower bound on the one-way communication complexity to
establish a lower bound for the random arrival model.

We define the distribution Dext as follows.

Distribution Dext. An extension of the hard distribu-
tion Dest for SetCoverest.

1. Sample the sets S = {S1, . . . , Sm, T} in the same way
as in the distribution Dest.

2. Assign each set in S to Alice with probability 1/2,
and the remaining sets are assigned to Bob.

We prove that the distribution Dext is still a hard distri-
bution for SetCoverest.

Lemma 5.2. For any constant δ < 1/8, α = o(
√

n
logn

),

and m = poly(n),

CCδDext
(SetCoverest) = Ω̃(mn/α2).

Proof. We design a reduction from SetCoverest over the
distribution Dest to prove this lemma. Let ΠExt be a δ-error
protocol over the distribution Dext. Let δ′ = 3/8 + δ; in the
following, we create a δ′-error protocol ΠSC for the distribu-
tion Dest (using ΠExt as a subroutine).

Consider an instance of the problem from the distribution
Dest. Define a mapping σ : [m+ 1] 7→ S such that for i ≤ m,
σ(i) = Si and σ(m + 1) = T . Alice and Bob use public
randomness to partition the set of integers [m+ 1] between
each other, assigning each number in [m+ 1] to Alice (resp.
to Bob) with probability 1/2. As shown in the full version
of the paper [2], in Theorem 5, we may assume that Bob
additionally knows the special index i∗.

Consider the random partitioning of [m+ 1] done by the
players. If i∗ = σ−1(Si∗) is assigned to Bob, or m + 1 =
σ−1(T ) is assigned to Alice, Bob always outputs 2. Other-
wise, Bob samples one set from F for each j assigned to him
independently and uniformly at random and treat these sets
plus the set T as his “new input”. Moreover, Alice discards
the sets Sj = σ(j), where j is assigned to Bob and similarly
treat the remaining set as her new input. The players now
run the protocol ΠExt over this distribution and Bob outputs
the estimate returned by ΠExt as his estimate of the set cover
size.

Let R denote the randomness of the reduction (excluding
the inner randomness of ΠExt). Define E as the event that
in the described reduction, i∗ is assigned to Alice and m +
1 is assigned to Bob. Let Dnew be the distribution of the
instances over the new inputs of Alice and Bob (i.e., the
input in which Alice drops the sets assigned to Bob, and
Bob randomly generates the sets assigned to Alice) when E
happens. Similarly, we define Ê to be the event that in the
distribution Dext, Si∗ is assigned to Alice and T is assigned

to Bob. It is straightforward to verify that Dnew = (Dext | Ê).

We now have,

Pr
Dest,R

(
ΠSC errs

)
=

1

2
· Pr

R

(
E
)

+ Pr
R

(
E
)
· Pr
Dnew

(
ΠExt errs

)
(PrDest,R

(
ΠSC errs | E

)
= 1/2)

=
1

2
· Pr

R

(
E
)

+ Pr
R

(
E
)
· Pr
Dext

(
ΠExt errs | Ê

)
(Dnew = (Dext | Ê))

≤ 1

2
· Pr

R

(
E
)

+ Pr
R

(
E
)
·

PrDext

(
ΠExt errs

)
PrDext

(
Ê
)

=
1

2
· Pr

R

(
E
)

+ Pr
Dext

(
ΠExt errs

)
(PrR(E) = PrDext(Ê))

≤ 3

8
+ δ (PrR(E) = 3/4)

Finally, since δ < 1/8, we obtain a (1/2 − ε)-error protocol
(for some constant ε bounded away from 0) for the distribu-
tion Dest. The lower bound now follows from Theorem 5.

We can now prove the lower bound for the random arrival
model.

Proof of Theorem 4. Suppose A is a single-pass algo-
rithm satisfying the conditions in the theorem statement.
We use A to create a δ-error protocol SetCoverest over the
distribution Dext with parameter δ = 0.1 < 1/8.

Consider any input S in the distribution Dext and denote
the sets given to Alice by SA and the sets given to Bob by
SB . Alice creates a stream created by a random permuta-
tion of SA denoted by sA, and Bob does the same for SB and
obtains sB . The players can now compute A (〈sA, sB〉) to es-
timate the set cover size and the communication complexity
of this protocol equals the space complexity of A. Moreover,
partitioning made in the distribution Dext together with the
choice of random permutations made by the players, ensures
that 〈sA, sB〉 is a random permutation of the original set S.
Hence, the probability that A fails to output an α-estimate
of the set cover problem is at most δ = 0.1. The lower bound
now follows from Lemma 5.2.
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