
Network Design for Vertex Connectivity

Tanmoy Chakraborty
∗

Dept. of CIS
University of Pennsylvania

Philadelphia PA
tanmoy@seas.upenn.edu

Julia Chuzhoy
Toyota Technological Institute

Chicago, IL 60637
cjulia@tti-c.org

Sanjeev Khanna
†

Dept. of CIS
University of Pennsylvania

Philadelphia PA
sanjeev@cis.upenn.edu

ABSTRACT
We study the survivable network design problem (SNDP)
for vertex connectivity. Given a graph G(V, E) with costs
on edges, the goal of SNDP is to find a minimum cost sub-
set of edges that ensures a given set of pairwise vertex con-
nectivity requirements. When all connectivity requirements
are between a special vertex, called the source, and ver-
tices in a subset T ⊆ V , called terminals, the problem is
called the single-source SNDP. Our main result is a random-

ized kO(k2) log4 n-approximation algorithm for single-source
SNDP where k denotes the largest connectivity requirement
for any source-terminal pair. In particular, we get a poly-
logarithmic approximation for any constant k. Prior to our
work, no non-trivial approximation guarantees were known
for this problem for any k ≥ 3. We also show that SNDP is
kΩ(1)-hard to approximate and provide an elementary con-
struction that shows that the well-studied set-pair linear
programming relaxation for this problem has an Ω̃(k1/3) in-
tegrality gap.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory.

Keywords
Approximation Algorithms, Hardness of Approximation, Net-
work Design, Vertex Connectivity.

∗Supported by NSF Award CCF-0635084.
†Supported in part by a Guggenheim Fellowship, an IBM
Faculty Award, and by NSF Award CCF-0635084.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

1. INTRODUCTION
A fundamental problem in network design is to construct

a minimum cost network that satisfies some specified con-
nectivity requirements between pairs of vertices. One of the
most well-studied problems in this framework is the surviv-
able network design problem (SNDP) where we are given an
undirected graph with costs on its edges, and a connectivity
requirement rij for each pair i, j of vertices. The goal is to
find a minimum cost subset of edges that ensures that there
exist rij disjoint paths for each pair i, j of vertices. When
the paths are required to be only edge-disjoint, we get the
edge-connectivity variant of SNDP, denoted by EC-SNDP.
If we require the paths to be vertex-disjoint, we obtain the
vertex-connectivity variant of SNDP, denoted by VC-SNDP.
When all rij ∈ {0, k} for some integer k, we will refer to
these problems as simply k-edge connectivity and k-vertex
connectivity, respectively.

An interesting special case of the k-edge connectivity and
k-vertex connectivity problems is the single-source version
where we are given a special vertex s called the source, and
a collection T ⊆ V of terminals. The connectivity require-
ments are rst = k for all t ∈ T , and all other requirements
are 0. We will refer to these versions as the single-source
k-edge connectivity and single-source k-vertex connectivity.
Even when k = 1, the single-source version of the k-edge con-
nectivity and the k-vertex connectivity problems corresponds
to the extensively studied minimum Steiner tree problem.
The Steiner tree problem is known to be APX-hard [5].

It is thus not surprising that SNDP and its variants have
received a considerable attention in the approximation al-
gorithms community. In fact, a study of these problems is
tied to the development of several powerful algorithmic de-
sign paradigms. Most known algorithmic results for these
problems are based on rounding of a natural “cut-based”LP
relaxations of these problems. In one of the first applications
of the primal-dual approach to approximation algorithms de-
sign, Agarwal, Klein, and Ravi [1] gave a 2-approximation
algorithm for 1-edge connectivity (and hence 1-vertex connec-
tivity) using a primal-dual approach. Subsequent research
(see, for instance, [16, 14]) successfully extended the primal-
dual approach to higher connectivity values, culminating in
an O(log k)-approximation algorithm for EC-SNDP [15]; here
k denotes the largest connectivity requirement between any
pair. Shortly afterwards, a beautiful result of Jain [17] de-
veloped an iterative rounding scheme to show that EC-SNDP
is 2-approximable, precisely matching a lower bound of 2 on
the integrality gap of the LP relaxation. Jain’s approach is
based on showing that in any basic feasible solution of the

cut-based LP relaxation, at least one variable is assigned
a value of 1

2
or larger. The algorithm then rounds up the

value of such a variable to 1, and iterates until all variables
become {0, 1}. Jain’s approach may be viewed as a gener-
alization of the classical paradigm of showing existence of
1/p-integral solutions for some integer p, and using this to
bound the integrality gap of the relaxation to be at most p.

In a sharp contrast to edge-connectivity problems, progress
has been hard to come by for vertex connectivity problems.
Fleischer, Jain, and Williamson [11], building on the iter-
ative rounding approach of [17], showed that the set-pair
relaxation of Frank and Jordan [12] gives a 2-approximation
for VC-SNDP when each connectivity requirement rij ∈ {0, 1, 2}.
This result improves upon a previous 3-approximation algo-
rithm due to Ravi and Williamson [23] for the same problem.
For higher connectivity values, when k ≥ 3, no non-trivial
approximation ratios have been known for VC-SNDP even in
the single source setting. We note however that some special
cases of the problem are better understood. The iterative
rounding technique has been used to give a 2-approximation
for arbitrary rij values for a special case of VC-SNDP known
as the element connectivity problem [11, 8]. A special case of
k-vertex connectivity where we require all pairs of vertices in
G to be k-connected, called the k-vertex-connected spanning
subgraph problem, has also been widely studied. Cheriyan
et al. [7, 8] gave an O(log k)-approximation algorithm for

this case when k ≤
p

n/6, and an O(
p

n/ε)-approximation
algorithm for k ≤ (1 − ε)n. The first result is based on a
graph-theoretic characterization due to Mader [22], while the
second algorithm is based on iterative rounding. For large k,
Kortsarz and Nutov [21] improved the preceding bound to

an O(ln k ·min{
√

k, n
n−k

ln k})-approximation. Fakcharoen-

phol and Laekhanukit [10] recently improved this bound
to O(log n log k), and obtained O(log2 k)-approximation for
k < n/2. For k ≤ 7, d k+1

2
e-approximation are known for

k-vertex-connected spanning subgraph problem ([9, 4, 20]).
Frank and Tardos [13] gave a polynomial time algorithm

for finding a minimum cost k-outconnected subdigraph of a
directed graph which has been used to obtain a 2-approximation
algorithm for single-source k-vertex connectivity, when T con-
tains all vertices in G except the source [18]. Better approxi-
mation ratios have also been obtained for variants of vertex-
connectivity problems assuming uniform cost or metric cost
on the edges (see, for example, [18, 20, 6]).

On the hardness front, Kortsarz et al. [19] recently showed
that in a strong contrast to k-edge connectivity, the k-vertex

connectivity problem is 2log1−ε n-hard to approximate for any
ε > 0, when k is polynomially large in n. In addition, they
showed an Ω(log n)-hardness of approximation for the single-
source k-vertex connectivity problem, also for the case when
k is a polynomial function of n.

Results.
Our main result is summarized in the following theorem:

Theorem 1 There is a randomized polynomial-time algo-
rithm for the single-source k-vertex connectivity problem that

produces a kO(k2) log4 n-approximate solution.

In particular, for k ≤ O(
p

log log n/ log log log n), we get
a poly-logarithmic approximation algorithm.

We note that an O(|T |)-approximation is straightforward
to achieve for this problem as follows. For each t ∈ T , opti-

mally solve the minimum cost k-connected subgraph prob-
lem to connect s to t, and take a union of all |T | solutions.
To our knowledge, no better approximation guarantees were
known previously for any k ≥ 3. Two immediate corollaries
of our result are as follows:

• There is a kO(k2) log4 n-approximation for a generaliza-
tion of the single source problem where rst ∈ {1, 2 . . . k}
for each terminal t ∈ T .

• The subset k-vertex connectivity problem, where the
goal is to find a minimum cost subset of edges that
makes a given subset of vertices T pairwise k-vertex

connected, can be approximated to within a kO(k2) log4 n
factor in randomized polynomial time.

Our next result is hardness of approximation for the gen-
eral version of k-vertex connectivity, where the connectivity
requirements can be for arbitrary pairs of vertices. Kortsarz
et. al. [19] have shown that for any ε > 0, the k-vertex con-
nectivity problem is hard to approximate within a factor of

2log1−ε n, when k is polynomially large in n. We strengthen
this result to show a kΩ(1) hardness of approximation for
any sufficiently large connectivity requirement k.

Theorem 2 There exists an ε > 0 and a constant k0 > 0,
such that the k-vertex connectivity problem is hard to approx-
imate to within a factor of kε for all k > k0. For constant
k, the result holds under the assumption that P 6= NP. For

super-constant k, the result holds if NP 6⊆ DTIME
“
nO(log k)

”
.

We also give a simple construction that shows that the
integrality gap of the well-studied set-pair relaxation for this
problem [12] is polynomially large in k. We note that a
similar integrality gap can be shown by suitably modifying
the hardness construction of Kortsarz et al. [19] for the k-
vertex connectivity problem.

Theorem 3 The set-pair relaxation for k-vertex connectiv-
ity has an integrality gap of Ω̃(k1/3).

Techniques.
We start with a brief overview of the algorithmic ideas

underlying Theorem 1. Our starting point is the cut-based
set-pair relaxation for the problem. Using the cut-flow du-
ality, one may view the relaxation as providing a fractional
vertex-disjoint flow of value k between each terminal and
the source. This flow solution is non-aggregating in that an
edge e that is allocated a capacity of xe, can be used by any
number of terminals to route up to xe units of flow each.

We view the paths as originating at the terminals and
terminating at the source. The fractional solution can be
well-approximated by randomized rounding when the flow
paths connecting distinct terminals to the source s do not
overlap extensively. But if many paths traverse an edge e
(that is, the edge e has high“congestion”), then independent
rounding for each terminal ends up “over-charging” against
the cost of edge e in the fractional solution. However, in
the latter case, we show that the support of the fractional
solution provides high connectivity among the many termi-
nals that share the edge e. This fact is exploited by our
algorithm as follows. We show that there exists a subset T ′

containing at most half the terminals, such that all terminals
in T \T ′, connect to s by paths that either satisfy the prop-
erty that every edge on the path has low congestion, or by
paths that contain terminals of T ′. We can then reduce the
problem to that of (recursively) solving single-source k-vertex
connectivity on the subset T ′ of terminals.

A key idea underlying our algorithm is the following com-
binatorial lemma that may have other applications. Let P
be any collection of paths such that each path p ∈ P origi-
nates at a distinct terminal, and all paths in P go through
a common vertex v. Let H(P) be the graph induced by the

paths in P , and let f(k) = kO(k2). Then one can always
identify a path p ∈ P , such that if we delete any subset X of
(k−1) vertices in H(P), none of which lies on the path p, the
terminal of p remains connected to at least |P |/f(k) other
terminals in graph H(P). Our algorithm uses this lemma to
reduce congestion on the edges by randomly rerouting paths
for some of the terminals to other terminals.

For our hardness result, we take the bipartite graph given
by the Raz verifier [24], and modify it to create an instance
of k-vertex connectivity. Our construction is similar to that
of [19], and the essence of our result lies in reducing the
connectivity requirement k. In both our construction as
well as that of [19], for every source-sink pair there are k−1
vertex-disjoint paths of length 2 and cost 0, and the last
path, of non-zero cost, corresponds to a pair of consistent
answers by the provers in the Raz verifier. Restricting the
structure of this last path relies on the fact that it cannot
use the k − 1 vertices belonging to the other k − 1 paths.
A careful analysis of the construction of [19] shows that in
order to preserve the restricted structure of this special path,
it is enough to block a smaller number of such vertices, which
enables us to reduce the value of k.

Our integrality gap construction builds on similar ideas
to the hardness of approximation proof, where instead of a
bipartite graph given by the Raz verifier, we use a randomly
generated bipartite graph.

2. PRELIMINARIES

Problem Statement.
The input to the VC-SNDP problem is an undirected n-

vertex graph G = (V, E), with edge costs ce ≥ 0 for all
e ∈ E, and integer connectivity requirements rij for every
pair of vertices (i, j). The goal is to choose a minimum-cost
subset E′ of edges, such that in the graph G′ = (V, E′), every
pair of vertices (i, j) has at least rij vertex-disjoint paths
connecting them. The special case where each rij ∈ {0, k}
is known as the k-vertex connectivity problem.

The single-source k-vertex connectivity problem is a special
case of k-vertex connectivity, in which there is one special
vertex, source s ∈ V , and a collection of terminals T ⊆
V \ {s}. The connectivity requirements are rst = k for all
terminals t ∈ T , and rij = 0 for all other pairs.

The subset k-vertex connectivity is another special case of
k-vertex connectivity, in which there is a subset T of termi-
nals, and the connectivity requirements are rtt′ = k for all
t, t′ ∈ T , and all other requirements are 0.

The following simple lemma, whose proof appears in ap-
pendix, allows us to assume that edge costs are polynomially
bounded, without any loss of generality.

Lemma 2.1 With at most a constant factor loss in approx-
imation ratio, we can reduce any instance of the k-vertex
connectivity problem to one where all edge costs are in [0..n6].

LP Relaxation and Flow-Paths Decomposition.
We start with a linear programming formulation for the

k-vertex connectivity problem. Let R denote the set of all
pairs (WL, WR) of subsets of vertices (i.e., WL, WR ⊆ V)
such that WL ∩WR = ∅, |V \ (WL ∪WR)| ≤ k, and for some
pair (i, j) with rij = k, i ∈ WL and j ∈ WR. For any such
pair W = (WL, WR), let δ(W) denote the set of all edges
with one endpoint in WL and the other endpoint in WR.
Notice that a feasible integral solution must contain at least
k − (n − |WL| − |WR|) of the edges in δ(W). In our linear
program, for each edge e ∈ E, there is an indicator variable
xe showing whether or not e is in the solution.

(LP) min
P

e∈E cexe

s.t. P
e∈δ(W) xe ≥ k − (n− |WL| − |WR|)

∀ W = (WL, WR) ∈ R (1)

0 ≤ xe ≤ 1 ∀e ∈ E

We focus here on the single-source k-vertex connectivity
problem, where R consists of set-pairs (WL, WR) such that
s ∈ WL, WR ∩ T 6= ∅.

Let x∗ be an optimal solution to (LP), and let OPT denote
the cost of this solution. In our next step we define, for
each terminal t, a collection of k-tuples of paths, denoted by
Dt. Each k-tuple H ∈ Dt consists of k vertex disjoint paths
connecting t to s and is associated with a coefficient ρH ≥ 0,
where

P
H∈Dt

ρH = 1. For a k-tuple H ∈ Dt, we say that
edge e ∈ H iff e belongs to one of the k paths in H (notice
that e may belong to at most one such path). We require
that for all e ∈ E and t ∈ T ,

P
H∈Dt:
e∈H

ρH ≤ xe. We will

use the following lemma whose proof follows from standard
arguments, and is deferred to the full version of the paper.

Lemma 2.2 Let G∗ = (V ∗, E∗) be any graph with two spe-
cial vertices s, t ∈ V and values 0 ≤ xe ≤ 1 for edges
e ∈ E satisfying constraint (1) for all W = (WL, WR) with
s ∈ WL, t ∈ WR, WR ∩WL = ∅ and |V ∗ \ (WR ∪WL)| ≤ k.
Then we can find, in polynomial time, a collection Dt of
k-tuples of vertex disjoint paths connecting s and t, and co-
efficients ρH > 0 for all H ∈ Dt, such that

P
H∈Dt

ρH = 1

and for each e ∈ E,
P

H∈Dt:
e∈H

ρH ≤ xe.

3. Single-Source k-Vertex Connectivity Algo-
rithm

A straightforward way to round the LP-solution, using
Lemma 2.2, is as follows. For each terminal t ∈ T , choose
a k-tuple H ∈ Dt with probability ρH . Output the union
of all the paths in the chosen k-tuples. The main problem
with this approach is that there might be “congested” edges:
informally, an edge is congested if it participates in k-tuples
H ∈ Dt for many terminals t ∈ T . For a congested edge e,
the probability that it belongs to the solution may be much
higher than xe. However, the advantage of such congested
edges is that many of the terminals fractionally connect to

them. Assume that e is congested and belongs to some k-
tuple H ∈ Dt for some terminal t. Let p ∈ H be the specific
path in H on which e lies. If k-tuple H is chosen for t, then,
instead of buying all edges on path p, we can buy the portion
of the path that lies between t and e, and then buy more
edges to connect to other terminals t′ ∈ T which are also
fractionally connected to e. We can then randomly sample
a sufficiently large subset T ′ ⊆ T of terminals and solve
the problem recursively for T ′. Each terminal t 6∈ T ′ will
either connect directly to s by edges we have bought in the
current iteration, or will connect via terminals in T ′ (or do
a combination of both). In order for this approach to work,
we need to ensure that the cost paid in each iteration is
not much higher than OPT, and that the recursive solution
to the problem with set T ′ of terminals, together with the
edges chosen in the current iteration indeed define a feasible
solution to the entire problem.

3.1 Algorithm Description
We now present the algorithm formally. Throughout, we

will use a parameter α = 16k10k2
log n. The algorithm works

in iterations. The input to iteration i is a subset Ti ⊆ T of
terminals, and the output is a subset Ei ⊆ E of edges, to-
gether with a subset Ti+1 ⊆ Ti of terminals that become the
input for the next iteration. We set T1 = T . An execution
of iteration i is successful iff the following conditions hold:

C1. |Ti+1| ≤ |Ti|/2.

C2.
P

e∈Ei
ce ≤ O(α2 log n)OPT.

C3. For every t ∈ Ti \ Ti+1, for every set X ⊆ V \ {s, t} of
(k− 1) vertices, there is a path p connecting t to some
vertex in Ti+1 ∪{s} such that p only contains edges in
Ei, and p does not contain any vertex from X.

The algorithm stops when |Ti| ≤ O(α2 log n) for some itera-
tion i. At this point, for each terminal t ∈ Ti, we choose the
cheapest possible collection of k vertex disjoint paths from t
to s, which can be found by a simple min-cost flow compu-
tation. Let Ei denote the union of edges participating in all
such paths. Notice that since |Ti| ≤ O(α2 log n), the cost of
Ei is at most O(α2 log n)OPT. The output of the algorithm
is ∪j≤iEj .

Theorem 4 If every iteration is successful, then the algo-
rithm outputs a feasible solution whose cost is bounded by

kO(k2) log4 n · OPT.

Proof. The cost of every successful iteration is at most

O(α2 log n)OPT = kO(k2) log3 n · OPT. If every iteration is
successful, then we will have at most log n iterations in total.

Thus, the solution cost is at most kO(k2) log4 n · OPT.
It now only remains to show that the algorithm outputs

a feasible solution. We do so by induction on the recursion
depth. Consider the iteration i and set Ti of corresponding
terminals. If i is the last iteration, then clearly the solution
is feasible with respect to Ti. Assume now that i is not the
last iteration. It is enough to show that if E∗ is any feasible
solution for the problem defined by Ti+1, then Ei ∪ E∗ is a
feasible solution for the problem defined by Ti.

Let G∗ be the graph defined on the set V of vertices,
whose edge set is Ei ∪ E∗. Clearly, if t ∈ Ti+1, then by
assumption, there are k vertex disjoint paths connecting t

to s. Suppose now that for some t ∈ Ti \ Ti+1, there do not
exist k vertex disjoint paths connecting t to s. Then there
is a collection X ⊆ V \ {s, t} of k − 1 vertices, such that
when X is removed from the graph, t and s do not belong
to the same connected component. But since iteration i is
successful, there must be at least one path p, which consists
of edges in Ei and does not contain vertices in X connecting
t to some t′ ∈ Ti+1 ∪ {s}. Since t and s lie in different
components, t′ 6= s. Moreover, since E∗ is a feasible solution
to the problem defined by Ti+1, there is at least one path p′,
which consists of edges in E∗ and does not contain vertices
of X, connecting t′ to s. Therefore, t must be connected to
s even after X is removed from G∗. A contradiction.

3.2 Iteration Description
Fix some i, and let Ti ⊆ T be a subset of terminals, which

is the input to the current iteration. We now describe an
algorithm for iteration i and we show that our algorithm
produces a successful iteration with probability at least 1/2.
Notice that given a set Ei of edges and a set Ti+1 of termi-
nals, conditions C1–C3 can be checked in polynomial time
for k ≤ n. Therefore, if an execution of an iteration is
not successful, we can repeat the algorithm until we have
a successful execution. Overall, our algorithm always re-

turns an kO(k2) log4 n-approximate solution, and it runs in
expected polynomial time. For any path p in the graph, let
cost(p) =

P
e∈p ce be the cost of p. Each iteration consists of

three phases: path truncation, path sampling, and terminal
sampling.

Path Truncation: Let P denote the set of all the paths
that appear in k-tuples H ∈ Dt for all t ∈ Ti. Notice that
each path f ∈ P connects some terminal t to the source s.
Let t(f) denote the terminal that is connected to s by path
f . In the path-truncation step, for each path f ∈ P , we
define a prefix p(f). This is a portion of path between t(f)
and some vertex v(f) that lies on f (possibly v(f) = s).
Additionally, for each f ∈ P , we define a subset R(f) of
paths, such that:

P1. If v(f) 6= s then |R(f)| = α. Otherwise, R(f) = ∅

P2. For every path p ∈ R(f), one endpoint of p is a termi-
nal t(p) and the other endpoint lies on the prefix p(f).
All terminals t(p) for p ∈ R(f) are distinct.

P3. For each p ∈ R(f), cost(p) ≤ 2cost(p(f)).

P4. If v(f) 6= s, and X is any collection of k − 1 vertices

that do not lie on f , then at least α/k10k2−1 of the
paths in R(f) do not contain any vertex of X.

Consider some edge e in the graph and terminal t. We
say that edge e belongs to t iff there is H ∈ Dt, such that
for some path f ∈ H, the prefix p(f) contains e. Additional
condition that the path-truncation step guarantees:

P5. Each edge e ∈ E belongs to O(α log n) terminals t ∈
Ti.

The path-truncation step is the heart of the algorithm and
we defer its description to the next section. We now com-
plete the description of an iteration assuming we can guar-
antee properties P1–P5.

Path Sampling: The second stage, namely path-sampling,
is performed as follows. For each terminal t ∈ Ti, we select
a k-tuple H ∈ Dt of paths with probability ρH . For each
f ∈ H thus selected, we add the edges on prefix p(f), and
edges on all paths in R(f) to Ei. Let P ′ be the set of
all the prefixes p(f) that we selected in this step. Thus,
every terminal t contributes exactly k prefixes to P ′: the k
prefixes of the paths in H ∈ Dt that has been chosen by the
algorithm. The lemma below bounds the cost of this stage.

Lemma 3.1 The expected cost of Ei is O(α2 log n)OPT.

Proof. Notice first that since property P3 holds, the cost
of edges in Ei is at most 2α times the cost of P ′. We now
bound the expected cost of P ′.

Consider some edge e ∈ E. Since property P5 holds, edge
e belongs to at most O(α log n) terminals in Ti. For each
such terminal t, we have that

P
H∈Dt:
e∈H

ρH ≤ xe. Therefore,

if e belongs to t, the probability that t chooses a k-tuple H
that contains e is at most xe. In total, the probability that
e belongs to some prefix in P ′ is O(α log n)xe. Thus the
expected cost of P ′ is O(α log n)OPT, and the expected cost
of Ei can thus be bounded by O(α2 log n)OPT.

Therefore, condition C2 holds with high probability.

Terminal Sampling: The third, and the final stage of an
iteration is terminal sampling. Each terminal t ∈ Ti is se-
lected to be in Ti+1 independently with probability 1/8. By
Markov’s inequality, the probability that more than |Ti|/2
terminals are selected is at most 1/4. Therefore, condition
C1 holds with probability 3/4. Finally, we need to show that
C3 holds with high probability. We conclude the analysis in
the following theorem.

Theorem 5 Assume the path truncation step can be exe-
cuted in polynomial time, guaranteeing properties P1–P5.
Then the above algorithm produces a successful iteration with
probability at least 1/2.

Proof. As observed above, condition C1 holds with prob-
ability at least 3/4 and condition C2 holds with high prob-
ability. It is enough to show that condition C3 holds with
probability at least 9/10. We need the following lemma:

Lemma 3.2 Let X ⊆ V \ {s} be any set of (k− 1) vertices
in the graph, and let Gi = (V, Ei). Then after X is removed
from Gi, each connected component that does not contains

s, contains either no terminals or more than α/k10k2−1 ter-
minals.

Proof. Assume otherwise. Let X be such a set of (k−1)
vertices, and let t be any terminal in a connected component
that does not contain s. We show that this component must

contain more than α/k10k2−1 terminals. Let H ∈ Dt be the
k-tuple of vertex disjoint paths that has been chosen for t.
At least one of these paths does not contain vertices in X.
Let f be this path. Then v(f) 6= s (otherwise s belongs
to the same connected component as t). Consider the set
R(f) of paths. All edges that lie on these paths belong to

Ei. According to property P4, at least α/k10k2−1 of the
paths in R(f) do not contain any vertex of X. Recall that
each such path connects some vertex on p(f) to a distinct
terminal t′ ∈ Ti. Therefore, the connected component of t

must contain more than α/k10k2−1 terminals.

Consider now any set of (k−1) vertices X ⊆ V \{s}. When
vertices in X are removed from Gi, we obtain a collection of
connected components. Let C be the collection of resulting
components that do not contain s but contain one or more
terminals. We say that a bad event B(X, C) happens for
C ∈ C , iff no terminal of C is chosen to Ti+1. Since C

contains at least α/k10k2−1 terminals, the probability that
B(X, C) happens is at most

„
1− 1

8

« α

k10k2−1
≤ e

− α

8k10k2−1 ≤ e−2k log n,

since α = 16k10k2
log n. For each possible set X of (k−1)

vertices, we have at most n such components. Therefore, us-
ing the union bound, the probability that B(X, C) happens
for any X, C is at most e−2k log nnk < 1/10.

It is easy to see that if the bad event B(X, C) does not
happen for any X and C, then condition C3 holds: fix some
terminal t ∈ Ti\Ti+1 and a set X ⊆ V \{s, t} of k−1 vertices.
Consider the connected component C to which t belongs if
we remove X from the graph Gi = (V, Ei). If this connected
component contains s, then we are done. Otherwise, since
B(X, C) does not happen, the connected component must
contain at least one terminal t′ ∈ Ti+1.

Putting it all together, we get a randomized kO(k2) log4 n-
approximation for single-source vertex k-connectivity. This
completes the proof of Theorem 1, except for the description
of the path truncation stage.

3.3 Path Truncation Stage
We now focus on the path truncation step, and show an

efficient algorithm that, given the set P of paths containing
the union of paths in H ∈ Dt for all t ∈ Ti, produces, for
each path f ∈ P , prefix p(f) and set R(f) of paths, such
that properties P1–P5 hold.

Recall that for each f ∈ P , one endpoint of the prefix p(f)
is fixed to be the terminal t(f), and the other endpoint is
denoted by v(f). Throughout the algorithm, for each path
f , we maintain the vertex v(f). At the beginning, v(f) = s,
but as algorithm proceeds, v(f) can become any vertex on
path f , and then we will think of f as being trimmed at
v(f).

A collection F of paths is called independent iff for all
f ∈ F , the terminals t(f) are distinct. Throughout the al-
gorithm, for each f ∈ P , if v(f) 6= s, we will have a set R(f)
of α independent paths that connect α distinct terminals to
vertices on p(f), where the cost of every path in R(f) is at
most 2cost(p(f)). Moreover, for any (k− 1)-tuple X of ver-

tices none of which lie on f , at least α/k10k2−1 of the paths
in R(f) do not contain any vertex of X. Hence properties
P1–P4 are maintained throughout the execution of the algo-
rithm. The problem is with property P5: some edges may
have too many terminals using them to connect to s.

At each step of the algorithm, we will identify one “heavy”
vertex v, which is used by many of the terminals, and then
we will trim at least one of the paths f that goes through
v (by setting v(f) = v). This is how we make progress. In
the end, when no more heavy vertices exist in the graph, we
have a solution obeying properties P1–P5. We now describe
the path truncation stage more formally.

At the beginning of the algorithm, for each f ∈ P , v(f) =
s and R(f) = ∅. Consider some vertex v, and let F (v) be

the set of all prefixes p(f) for f ∈ P that go through v (i.e.,
v(f) 6= v and v lies between t(f) and v(f) on the path f).
For each prefix p(f) ∈ F (v), let cv(f) be the cost of the
portion of p(f) starting from t(f) and ending at v. For each
j : 0 ≤ j ≤ O(log n), let Fj(v) ⊆ F (v) be the subset of
prefixes p(f) with 2j ≤ cv(f) < 2j+1. We say that v is j-
heavy iff the set T ′

j of all terminals from which paths in Fj

originate has size |T ′
j | > α. Our goal is to show that if v is

j-heavy, then at least one path in Fj can be trimmed at v
(and a corresponding set R(f) of α paths can be defined).
In each iteration, we select one j-heavy vertex (for some j),
and perform the trimming. The algorithm ends when no
j-heavy vertices remain for any j.

Claim 1 If no j-heavy vertices v remain for any j, then the
solution has property P5.

Proof. We will show that if no j-heavy vertices exist
for any j, then every edge belongs to at most 16α log n ter-
minals, thus satisfying the property P5. Assume by way
of contradiction that some edge e = (u, v) belongs to more
than 16α log n terminals t ∈ Ti. Let F be the set of 16α log n
prefixes p(f) containing e, that originate from distinct ter-
minals. Let F ′ ⊆ F be the set of prefixes p(f) that contain
e and where v lies between u and t(f). We can assume
w.l.o.g. that the set of terminals T ′ where paths F ′ orig-
inate contains at least 8α log n terminals. As before, for
each prefix p(f) ∈ F ′, we define cv(f) to be the cost of
the portion of p(f) between t(f) and v. Note that Lemma
2.1 implies that cv(f) < n8 for each f ∈ F . For each
j : 1 ≤ j ≤ 8 log n, let Fj ⊆ F be the subset of prefixes
p(f) for which 2j−1 ≤ cv(f) < 2j . Let T ′

j be the subset of
terminals where paths Fj originate. Then for at least one j,
|T ′

j | > α must hold, and thus v is j-heavy.

We now focus on one j-heavy vertex v and the correspond-
ing set Fj of paths. Let P ′ ⊆ Fj be a collection of exactly
α + 1 independent paths. The following lemma shows that
one of the paths in P ′ can be trimmed at v.

Lemma 3.3 Let P ′ = {p1, p2, . . . , pα+1} be a set of paths
where each path pi connects a distinct terminal ti to a fixed
vertex v. Then there exists a path p ∈ P ′ and a collection R
of paths such that:

• the set R contains α paths, where for every path p′ ∈
P ′ \{p}, R contains the portion of the path p′ that lies
between the terminal of p′ and the first vertex appearing
on both p and p′.

• for any subset X of at most k − 1 vertices, none of
which lie on the path p, at least α

2·(2k)4k2+1 ≥ α

k10k2−1

of the paths in R do not contain vertices of X.

Proof. Fix an integer β ∈
˘
1, . . . , (4k2)

¯
. We say that

a vertex u is type-β congested iff more than α/(2k)β of the
paths in P ′ go through it. Every path in p′ ∈ P ′ assigns
a type-β token to the first α/(2k)β distinct paths that it
meets on its way to the vertex v. If path p′ meets several
paths simultaneously, we order them arbitrarily. The to-
tal number of type-β tokens that get distributed is at least
α2/(2k)β . We consider two cases, namely, when there exists
a β ∈

˘
1, . . . , (4k2)

¯
such that some path receives more than

α/(2k)β−1 type-β tokens, and when every path receives at
most α/(2k)β−1 type-β tokens for each β ∈

˘
1, . . . , (4k2)

¯
.

If there exists a path p that receives more than α/(2k)β−1

type-β tokens for some β ∈ {1, . . . , (4k2)}, then we claim
that p is the desired path. The set R of paths contains
then, for every path p′ ∈ P \ {p}, the portion of p′ between
the terminal of p′ and the first vertex of p on p′. At least
α/(2k)β−1 paths in P ′ have the property that they meet the
path p for the first time before passing through a type-β
congested vertex (note that the vertex where these paths
meet p may be a type-β congested vertex itself). Let Q ⊆ R
be the set of corresponding sub-paths. Thus for any vertex
x that does not belong to p, at most α/(2k)β paths in Q
contain x. In particular, for any set X of up to (k − 1)

vertices, at most α(k−1)

(2k)β paths in Q contain vertices of X.

The lemma follows since |Q| ≥ α/(2k)β−1.
We now focus on the second case. We say a path p is

type-β good iff it receives at least α/(2·(2k)β) type-β tokens.
Since we allocate at least α2/(2k)β type-β tokens in total,
and each path receives at most α/(2k)β−1 tokens of type-β,
there must be at least α/(4k − 1) type-β good paths, for
each β ∈

˘
1, . . . , (4k2)

¯
. It then follows that there exists

a path p that is good for at least k distinct types. Let
1 ≤ i1 ≤ i2 ≤, . . . ,≤ ik ≤ 4k2 be the k distinct indices such
that the path p is type-ij good for 1 ≤ j ≤ k, and let R be
the set of α paths, containing, for each one of the remaining
paths p′ ∈ P ′, the sub-path lying between its terminal and
the first vertex belonging to p. Moreover, let Qij ⊆ R denote
the subset whose corresponding paths gave a type-ij token
to the path p. Recall that |Qij | ≥ α/(2 · (2k)ij) for all
1 ≤ j ≤ k.

We now claim that for any subset X of (k − 1) vertices,
none of which reside on p, at least a (1/k)-fraction of the
paths in one of the sets Qij does not contain vertices of
X. For any x ∈ X, let ϕ(x) denote the least integer `
such that x is a type-` congested vertex. Thus, if the num-
ber of paths going through x is η, then α/(2k)ϕ(x) < η ≤
α/(2k)ϕ(x)−1. Clearly, a vertex x ∈ X cannot lie on a path
in Qij if ϕ(x) ≤ ij , since a path in Qij reaches p before going
through a type-ϕ(x) congested vertex. Moreover, x lies on

at most α/(2k)ϕ(x)−1 paths from any Qij when ϕ(x) > ij .
By pigeonhole principle, there exists an index ij such that
ϕ(x) 6= ij + 1 for each x ∈ X. For such Qij , we have that

|Qij | ≥ α/(2 · (2k)ij), while any vertex in X lies on at most

α/(2k)ij+1 paths in Qij . Thus any vertex in X belongs to at
most a (1/k)-fraction of paths in Qij . The claim follows.

In the path truncation stage, we start by setting p(f) = s
and R(f) = ∅ for all f ∈ P . While there exists a j-heavy
vertex v for some j, we use Lemma 3.3 to find path p and
set R of paths. Note that p and R can be computed in
polynomial time. Let f ∈ P be such that p is the prefix of
f . We then set v(f) = v and R(f) = R. It is easy to see
that conditions P1-P4 hold throughout the algorithm. The
algorithm stops when no j-heavy vertices exist for any j.
Claim 1 implies that properties P1–P5 hold at the end of
the algorithm.

4. Algorithms for Generalized Single-Source
and Subset k-Connectivity

We consider the following generalization of single-source k-
vertex connectivity: there is a source s and a set of terminals
T , and a positive integer rst ≤ k for every t ∈ T , which is
the connectivity requirement between s and t.

As a corollary to Theorem 1, we obtain approximation
algorithms for the generalized single-source k-vertex connec-
tivity, and also for subset k-vertex connectivity.

Theorem 6 There is a randomized polynomial-time algo-
rithm for the generalized single-source k-vertex connectivity

problem that produces a kO(k2) log4 n-approximate solution.

Proof. For every integer i, 1 ≤ i ≤ k, define T i = {t |
rst = i}. Find a solution Ei to single-source k-vertex connec-
tivity with k = i, s as the source and T i as the set of termi-
nals. ∪1≤i≤kEi gives a solution to the generalized problem,
with the required approximation guarantee.

Theorem 7 There is a randomized polynomial-time algo-
rithm for the subset k-vertex connectivity problem that pro-

duces a kO(k2) log4 n-approximate solution.

Proof. Let T be the set of terminals that are required
to be k-connected to each other. If |T | ≤ k, then for every
t ∈ T , run the single-source k-vertex connectivity algorithm
with t as the source and T \ {t} as the set of terminals.
If |T | > k, then choose any subset T ′ ⊂ T containing k
terminals, and then for every t ∈ T ′, run the single-source k-
vertex connectivity algorithm with t as the source and T \{t}
as the set of terminals. The union of these solutions gives a
solution to the subset k-vertex connectivity problem with the
required approximation guarantee.

5. A kε-Hardness for k-Vertex Connectivity
In this section we prove Theorem 2. Recall that in k-vertex

connectivity, we are given a graph G = (V, E) with costs ce

on edges, and a collection of source-sink pairs (si, ti). The
goal is to find a minimum cost subset E′ ⊆ E of edges, such
that for each source-sink pair (si, ti), there are k vertex-
disjoint paths from si to ti in G′ = (V, E′).

The Starting Point.
We will perform the reduction from the 3SAT(5) problem.

In this problem we are given a 3SAT formula ϕ on n variables
and 5n/3 clauses. Each clause contains 3 distinct literals and
each variable participates in exactly 5 different clauses. We
say that ϕ is a Yes-Instance if it is satisfiable. We say that
ϕ is a No-Instance with respect to some parameter δ, iff
no assignment satisfies more than δ-fraction of clauses. The
following well-known theorem follows from the PCP theorem
[3, 2].

Theorem 8 There is a constant δ : 0 < δ < 1, such that it
is NP-hard to distinguish between Yes-Instances and No-
Instances of the 3SAT(5) problem.

We use the Raz verifier for 3SAT(5) with ` parallel rep-
etitions. This is an interactive proof system, in which two
provers try to convince the verifier that the input 3SAT(5)
formula ϕ is satisfiable. The verifier chooses, independently
at random, ` clauses C1, . . . , C`, and for each i : 1 ≤ i ≤ `, a
variable xi participating in clause Ci is chosen. The verifier
then sends one query to each one of the two provers, while
the query to the first prover consists of the indices of the vari-
ables x1 . . . , x`, and the query to the second prover contains
the indices of the clauses C1, . . . , C`. The first prover returns
an assignment to variables x1, . . . , x`. The second prover

is expected to return an assignment to all the variables in
clauses C1, . . . , C`, which must satisfy the clauses. Finally,
the verifier checks that the answers of the two provers are
consistent, i.e., for each i : 1 ≤ i ≤ `, the assignment to xi,
returned by the first prover, is identical to the assignment to
xi, obtained by projecting the assignment to the variables
of Ci, returned by the second prover, onto xi. (We assume
that the answers sent by the second prover always satisfy
the clauses appearing in its query). The following theorem
is obtained by combining the PCP theorem with the parallel
repetition theorem [24].

Theorem 9 ([2, 24]) There exists a constant γ > 0, such
that:

• If ϕ is a Yes-Instance, then there is a strategy of the
provers, for which the acceptance probability is 1.

• If ϕ is a No-Instance, then for any strategy of the
provers, the acceptance probability is at most 2−γ`.

We denote the set of all the random strings of the verifier
by R, |R| = (5n)`, and the sets of all the possible queries of
the first and the second prover by Q1 and Q2 respectively,
|Q1| = n`, |Q2| = (5n/3)`, and set Q = Q1 ∪ Q2. For each
query q ∈ Q, let A(q) be the collection of all the possible an-
swers to q (if q is a query of the second prover, then A(q) only
contains answers that satisfy all the clauses of the query).
Let A = 2`, A′ = 7`. Then for each q ∈ Q1, |A(q)| = A,
and for each q′ ∈ Q2, |A(q′)| = A′. Given a random string
r ∈ R, let q1(r), q2(r) be the queries sent to the first and the
second prover respectively, when the verifier chooses r.

Construction.
Given any k ≥ k0 for some sufficiently large constant k0,

we now construct a gap instance for k-vertex connectivity.
We will set the Raz verifier repetition parameter ` to be
Θ(log k), and show that the cost of an optimal solution when

ϕ is a No-Instance is 2Ω(`) times larger than the optimal
cost when ϕ is a Yes-Instance. Our construction is as
follows.

The set of vertices is V = V1 ∪V2. We start by describing
the set V1, and define V2 later on. For every query q ∈ Q,
there is a vertex u(q) ∈ V1. For each q ∈ Q, a ∈ A(q), there
is a vertex v(q, a) ∈ V1. For each random string r ∈ R, there
are two vertices (that form a source-sink pair) s(r), t(r) ∈
V1. Thus, V1 = {u(q) | q ∈ Q}∪{v(q, a) | q ∈ Q, a ∈ A(q)}∪
{s(r), t(r) | r ∈ R}.

The set E of edges is the union of three edge sets E0, E1, E2.
Edges in E0 are called special edges, and are defined as fol-
lows. For every q ∈ Q and a ∈ A(q), we add a special
edge between u(q) and v(q, a). The cost of this edge is C1 if
q ∈ Q1, and it is C2 otherwise. We set C1 = 5` and C2 = 3`.
Notice that |Q1|C1 = (5n)` = |Q2|C2.

The set E1 of edges consists of non-special edges of type
1, which are defined as follows. For each random string
r ∈ R, if q1 = q1(r) and q2 = q2(r), we add edges from
s(r) to u(q1), from u(q2) to t(r), and for every pair a1, a2

of matching answers to q1 and q2, we add an edge between
v(q1, a1) and v(q2, a2). Edges of this type have cost 0.

Finally, the set E2 consists of non-special edges of type
2. To define set E2 of edges, we first construct an auxiliary
graph H = (R, U) of random strings. Each random string

r ∈ R is represented by a vertex in H. There is an edge be-
tween r and r′ iff q1(r) = q1(r

′) or q2(r) = q2(r
′). Thus, the

degree of every vertex in H is 2O(`). The distance between
r, r′ ∈ R is the length of the shortest path from r to r′ in H.
For each random string r ∈ R, we define a set X(r) ⊆ V1 of
vertices, as follows:

• If r′ is within distance at most 2 from r, and r′ 6= r,
add s(r′) and t(r′) to X(r).

• Let r′ ∈ R \ {r}, such that q1(r
′) = q1(r). Then for

each a ∈ A(q2(r
′)), add v(q2(r

′), a) to X(r). Similarly,
let r′′ ∈ R \ {r}, such that q2(r

′′) = q2(r). Then for
each a ∈ A(q1(r

′′)), add v(q1(r
′′), a) to X(r).

The following properties of sets X(r) will be used later:

A1. Let x ∈ {s(r), t(r)} and y ∈ {s(r′), t(r′)} for some
r, r′ ∈ R. Then x ∈ X(r′) iff y ∈ X(r).

A2. Let v(q, a) ∈ X(r) for some r ∈ R, q ∈ Q, a ∈ A(q),
and let r′ ∈ R, such that q1(r

′) = q or q2(r
′) = q.

Then s(r′), t(r′) ∈ X(r) and s(r), t(r) ∈ X(r′).

The reason why A2 is true is that if v(q, a) ∈ X(r) then
there is some r′′ ∈ R for which q1(r

′′) = q or q2(r
′′) = q,

and r, r′′ are within distance 1 from each other. But then
r′, r′′ share a query q, and thus r, r′′ are within distance 2
from each other.

Let ∆r = |X(r)|, and let ∆ = maxr {∆r}. For each r ∈ R,
we create a set Y (r) of ∆ − ∆r distinct vertices, which are
also added to X(r). These vertices define the set V2: V2 =

{Y (r) | r ∈ R}. Note that at this point |X(r)| = ∆ = 2O(`)

for all r ∈ R. Finally, we add for each r ∈ R, non-special
edges of type 2 from s(r) to every vertex in X(r), and from
every vertex in X(r) to t(r). The costs of these edges is set
to 0.

In the final graph, the set of vertices is V1∪V2, and the set
of edges is E = E0∪E1∪E2, where E0 are the special edges,
and E1, E2 are non-special edges of type 1 and 2 respectively.
We set k = ∆ + 1 to be the demand for every source-sink
pair. Notice that the construction size is N = nO(`).

Yes-Instance Analysis.
Assume ϕ is the Yes-Instance, and let g(q) for every q ∈

Q denote the “correct” answer to query q, such that under
the strategy defined by g the verifier accepts with probability
1. We claim that E′

0 ∪E1 ∪E2, where E′
0 ⊆ E0 contains the

special edge (u(q), v(q, g(q))) for each q ∈ Q, is a feasible
solution for the k-vertex connectivity instance. Solution cost
is CY I = C1|Q1| + C2|Q2|. Consider any random string r,
with q = q1(r), q′ = q2(r). The demand of ∆ + 1 between
s(r) and t(r) is satisfied as follows. For every vertex v ∈
X(r), we have a path from s(r) to v to t(r). All these paths
use type-2 non-special edges, and they are vertex disjoint.
Additionally, if a = g(q) and a′ = g(q′), then we have path
(s(r) → u(q) → v(q, a) → v(q′, a′) → u(q′) → t(r)).

No-Instance Analysis.
Assume that ϕ is a No-Instance. Consider any solution

E′. We can assume w.l.o.g. that E′ = E′
0 ∪ E1 ∪ E2, where

E′
0 ⊆ E0. We now claim the following.

Claim 2 Let r ∈ R be any random string, and let q1 =
q1(r), q2 = q2(r). Then there is a pair a, a′ of matching an-
swers to q1 and q2 respectively such that edges (u(q1), v(q1, a))
and (u(q2), v(q2, a

′)) belong to E′
0.

Before proving the claim, we show that it suffices to claim
the desired hardness gap.

Lemma 5.1 The cost of E′ is at least 2γ`/3CY I .

Proof. Assume otherwise. For each q ∈ Q, we define
set Bq ⊆ A(q) of answers as follows: a ∈ Bq iff the edge
(u(q), v(q, a)) ∈ E′. We say that a query q is good iff |Bq| ≤
8 ·2γ`/3. By averaging arguments, at least 3/4 of the queries
in Q1 and at least 3/4 of the queries in Q2 must be good.
Let R′ be the set of all random strings for which both q1(r)
and q2(r) are good. Then |R′| ≥ |R|/2. We now define the
strategy for the two provers as follows. For each good query
q ∈ Q, the corresponding prover will choose one of the at
most 8 · 2γ`/3 answers in Bq. Notice that the probability
that a random string r ∈ R′ is chosen is at least 1/2. From
Claim 2, for each r ∈ R, there is a pair a ∈ Bq1(r), a′ ∈
Bq2(r) of matching answers. Therefore, for each r ∈ R′, the
probability that a matching pair of answers is chosen is at
least 1/(64·22γ`/3). In total, the probability that the verifier

accepts is at least 1/(128 ·22γ`/3) > 2−γ` when ` (and hence
k) is sufficiently large. This is a contradiction since ϕ is a
No-Instance.

The hardness of approximation gap that we obtain is 2Ω(`),
while k = 2O(`) and the construction size is N = nO(`).
Therefore, we obtain a kε-hardness of approximation for
some constant 0 < ε < 1. For constant k, this holds un-
der the assumption that P 6= NP. For super-constant k we

use the assumption that NP 6⊆ DTIME
“
nO(log k)

”
.

We now prove Claim 2.

Proof. Fix a random string r, and let q1 = q1(r), q2 =
q2(r). Consider the ∆ + 1 vertex-disjoint paths connecting
s(r) to t(r). Our main claim is that at least one such path
has to use two special edges (u(q1), v(q1, a)), (u(q2, a

′), u(q2)),
where a and a′ are matching answers to q1 and q2, respec-
tively. This will finish the proof of the claim.

Consider the ∆ + 1 vertex-disjoint paths connecting s(r)
to t(r). Discard those paths that use vertices in X(r). There
must be at least one remaining path, P , and it is not allowed
to use vertices in X(r).

Let S(r) be the following set of vertices:

S(r) = {s(r), t(r), u(q1), u(q2)}∪{v(q, a) | q ∈ {q1, q2} , a ∈ A(q)}

We will use the following claim:

Claim 3 Let e be any edge incident on a vertex in S(r).
Then the other end-point of e belongs to the set S(r)∪X(r).

Proof. We consider all three types of edges. Recall that
edges in E0 connect, for each query q ∈ Q, vertex u(q) to
vertices v(q, a) for a ∈ A(q). Clearly, any such edge that is
incident on a vertex in S(r) has both endpoints in S(r).

We now consider edges in E1. Recall that such edges
connect, for each r′ ∈ R, s(r′) to u(q1(r

′)) and t(r′) to
u(q2(r

′)). Any such edge that is incident on s(r) or t(r) has
its other endpoint in S(r). An edge in E1 that is incident

on u(q1) or u(q2) has s(r′) or t(r′) as its other endpoint, for
some r′ which is within distance 1 from r in the graph H of
random strings. Therefore, s(r′), t(r′) ∈ X(r). Additionally,
edges in E1 connect, for each random string r′ and pair
a, a′ of matching answers to q1(r

′) and q2(r
′), respectively,

v(q1(r
′), a) to v(q2(r

′), a′). Consider any such edge that is
incident on vertices in S(r). If one endpoint is v(q1, a) for
some a ∈ A(q1), and the other endpoint is not in S(r), then
it must be v(q′2, a

′) for some q′2 6= q2, a′ ∈ A(q′2), such that
for some random string r′, q1(r

′) = q1 and q2(r
′) = q′2. But

then v(q′2, a
′) ∈ X(r).

Similarly, if one endpoint of the edge is v(q2, a) for some
a ∈ A(q2), and the other endpoint is not in S(r), then it
must be v(q′1, a

′) for some q′1 6= q1, a′ ∈ A(q′1), such that
for some random string r′, q2(r

′) = q2 and q1(r
′) = q′1. But

then v(q′1, a
′) ∈ X(r).

Finally, we consider edges in E2. Assume that such an
edge is incident on some vertex y ∈ S(r). Let y′ be the
other endpoint of this edge, and assume that y′ 6∈ S(r).
Two causes are possible for the existence of edge (y, y′):
either y′ ∈ X(r), and then we are done; or y ∈ X(r′) for
some r′ ∈ R. In the latter case, if y ∈ {s(r), t(r)} then
y′ ∈ {s(r′), t(r′)} must hold, and by property A1, y ∈ X(r).
Otherwise, y = v(q, a) for some q ∈ {q1, q2} and a ∈ A(q).
In this case, y′ ∈ {s(r′), t(r′)} must hold and by property
A2, y′ ∈ X(r).

Since path P begins and ends in S(r) and does not contain
any vertex in X(r), Claim 3 implies that P only contains
vertices in S(r), and hence it has to be of the form: (s(r) →
u(q1) → v(q1, a) → v(q2, a

′) → u(q2) → t(r)), where a and
a′ are matching answers to queries q1, q2. Therefore a pair
(u(q1, v(q1, a)), (u(q2), v(q2, a

′) of special edges where a and
a′ are matching answers for q1 and q2, respectively, must
belong to the solution.

6. Integrality gap for k-Vertex Connectivity
We prove here Theorem 3, namely, an integrality gap of

Ω̃(k1/3) for the set-pair LP relaxation given in Section 2.
We start by constructing a random bipartite graph G(V1∪

V2, E) where V1 and V2 denote the left and the right parti-
tion of vertices respectively. Each of the sets V1, V2 consists
of b blocks of vertices with each block containing exactly L
vertices. Let A1, A2, ..., Ab denote the blocks of vertices in
V1, and similarly, let B1, B2, ..., Bb denote the block of ver-
tices in V2. The edge set E is obtained by adding a random
perfect matching between each pair of blocks Ai, Bj where
1 ≤ i, j ≤ b. We now modify G to obtain our final instance
G′(V ′, E′). Initially, V ′ = V1 ∪ V2 and E′ = E. For each
block Ai of vertices, we add a new vertex ui that is con-
nected by an edge of cost 1 to every vertex in Ai. Similarly,
for each block Bj of vertices, we add a new vertex vj that
is connected by an edge of cost 1 to every vertex in Bj . We
refer to these edges of unit cost as special edges. In addition,
for each pair of blocks Ai, Bj , we now add a source-sink pair
of vertices s(i, j)-t(i, j) to V ′. We add edges of cost 0 from
s(i, j) to ui and from t(i, j) to vj .

We now define a set of vertices X(i, j) for every pair i, j.
X(i, j) consists of all vertices in V1 ∪ V2 except Ai ∪ Bj ,
and all source and sink vertices except s(i, j) and t(i, j). We
connect each s(i, j) to every vertex in X(i, j) with edges of
cost 0. Similarly, each t(i, j) is connected by an edge of
cost 0 to every vertex in X(i, j). Finally, all edges in E

(the matching edges) are assigned a cost of 0. Total number
of vertices in G′ is N = 2b(L + 1) + 2b2. We now set a
connectivity requirement for each s(i, j)-t(i, j) pair to be
k = N + 1− 2(b + L) = |X(i, j)|+ 1. Note that each s(i, j)-
t(i, j) pair is already |X(i, j)| = (k − 1)-connected in the
graph G′ if we include all edges of cost 0 in the solution.

Fractional Solution.
Consider the fractional solution that assigns fraction 1 to

all 0-cost edges, and fraction 1/L to all the edges of cost 1.
This solution has cost 2b. We now argue the feasibility of
this solution.

Consider two disjoint sets WL and WR of vertices, con-
taining s(i, j) and t(i, j) respectively, for some i, j. Let
Q = V \(WL∪WR), |Q| = q. We need to show that the frac-
tional solution satisfies the inequality

P
e∈δ(W) xe ≥ k − q

where W = (WL, WR).
There are |X(i, j)\Q| vertex disjoint paths from s(i, j) to

t(i, j) using only 0-cost edges, that do not intersect Q, and
hence contribute at least 1 each to

P
e∈δ(W) xe. If Q is not a

subset of X(i, j), then |X(i, j)\Q| ≥ |X(i, j)|−(q−1) = k−q,
and the inequality is satisfied.

Now suppose Q ⊆ X(i, j). Then, the above paths still
contribute k − q − 1 to

P
e∈δ(W) xe. Let S(i, j) ⊆ V consist

of Ai, Bj , ui, vj , s(i, j) and t(i, j). Then S(i, j) ⊆ WL ∪WR.
The contribution to

P
e∈δ(W) xe by the subgraph induced

by S(i, j) is at least the smallest edge cut that separates
s(i, j) from t(i, j) in this subgraph, which is 1. Hence the
inequality is satisfied.

Integral solution.
Consider any integral solution of cost less than γb/2 where

γ is a parameter to be specified later. It means that less
than γb/2 special edges are chosen in the integral solution.
W.l.o.g., we assume that the solution contains all edges that
have 0 cost. Each special edge is incident on some block
Ai or Bj . Clearly, at most b/2 blocks can have more than
γ special edges chosen in the solution. We focus on the
remaining blocks, at least b/2 of them on each side that have
fewer than γ special edges chosen. We say that a vertex in
Ai or Bj is selected if the special edge incident on it is present
in the integral solution.

It is easy to see that every edge incident on a vertex in
S(i, j) has its other end-point in the set S(i, j)∪X(i, j) where
S(i, j) is defined to be Ai∪Bj ∪{ui, vj , s(i, j), t(i, j)}. Thus
for each s(i, j)−t(i, j) pair, the construction ensures that the
connectivity requirement is satisfied if and only if there is a
path from s(i, j) to t(i, j) of length 5 that passes through ui,
a vertex w1 ∈ Ai, a vertex w2 ∈ Bj , and vj , in that order.
This is equivalent to saying that the w1 and w2 are selected,
and that w1 and w2 are adjacent in the random matching
between Ai and Bj .

Consider any pair i, j such that both Ai and Bj have
less than γ selected vertices each. There are at least b2/4
such pairs. The probability that a fixed vertex w1 ∈ Ai is
matched with a fixed vertex w2 ∈ Bj by the random perfect
matching is 1/L. Taking the union bound over all pairs of
chosen vertices w1 ∈ Ai and w2 ∈ Bj , we get that the prob-
ability that there is a pair of matched selected vertices is
less than γ2/L. For the assignment to be feasible, it should
satisfy the above condition for every pair i, j. These events
are independent, since the random matchings between differ-

ent pairs of blocks are independent. Hence, the probability
that any such integral assignment is feasible, is less than

(γ2/L)b2/4.
The number of integral assignments of cost bounded by

γb/2 and containing all zero-cost edges is at most
`

2bL
γb/2

´
. To

rule out that there always exists an integral solution of cost

at most (γb)/2, it suffices to show that
`

2bL
γb/2

´
.(γ2/L)b2/4 <

1. It is easy to verify that this condition is satisfied if we
choose L = b2 and γ ≤ b/10 log b. Thus we have k = Θ(b3),

and the integrality gap is Ω(γ) = Ω(k1/3/ log k).

7. ACKNOWLEDGEMENTS
We are grateful to Chandra Chekuri for his valuable com-

ments.

8. REFERENCES
[1] A. Agrawal, P. N. Klein, and R. Ravi. When trees

collide: An approximation algorithm for the
generalized steiner problem on networks. SIAM
Journal of Computing, 24(3):440–456, 1995.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM,
45(3):501–555, 1998.

[3] S. Arora and S. Safra. Probabilistic checking of proofs:
A new characterization of NP. Journal of the ACM,
45(1):70–122, 1998.

[4] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente. A
2-approximation algorithm for finding an optimum
3-vertex-connected spanning subgraph. Journal of
Algorithms, 32(1):21–30, 1999.

[5] M. Bern and P. Plassmann. The steiner problem with
edge lengths 1 and 2. Information Processing Letters,
32:171–176, 1989.

[6] J. Cheriyan, T. Jordan, and Z. Nutov. On rooted
node-connectivity problems. Algorithmica,
30(3):353–375, 2001.

[7] J. Cheriyan, S. Vempala, and A. Vetta. An
approximation algorithm for the minimum-cost
k-vertex connected subgraph. SIAM Journal of
Computing, 32(4):1050–1055, 2003.

[8] J. Cheriyan, S. Vempala, and A. Vetta. Network
design via iterative rounding of setpair relaxations.
Combinatorica, 26(3):255–275, 2006.

[9] Y. Dinitz and Z. Nutov. A 3-approximation algorithm
for finding optimum 4, 5-vertex-connected spanning
subgraphs. Journal of Algorithms, 32(1):31–40, 1999.

[10] J. Fakcharoenphol and B. Laekhanukit. An
O(log2 k)-approximation algorithm for the k-vertex
connected subgraph problem. In STOC 2008, to
appear.

[11] L. Fleischer, K. Jain, and D. P. Williamson. Iterative
rounding 2-approximation algorithms for minimum
cost vertex connectivity problems. Journal of
Computer and System Sciences, 72(5):838–867, 2006.

[12] A. Frank and T. Jordan. Minimal edge-coverings of
pairs of sets. Journal of Combinatorial Theory, Series
B, 65(1):73–110, 1995.

[13] A. Frank and E. Tardos. An application of
submodular flows. Linear Algebra and its Applications,
114-115:329–348, 1989.

[14] M. Goemans and D. Williamson. The primal-dual
method for approximation algorithms and its
application to network design problems. In
Approximation Algorithms, D. Hochbaum, Ed., PWS,
1997.

[15] M. X. Goemans, A. V. Goldberg, S. A. Plotkin, D.

B. Shmoys, É. Tardos, and D. P. Williamson.
Improved approximation algorithms for network
design problems. In Proceedings of the fifth annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 223–232, 1994.

[16] M. X. Goemans, M. Mihail, V. Vazirani, and D. P.
Williamson. A primal-dual approximation algorithm
for generalized steiner network problems.
Combinatorica, 15(3):435–454, 1995.

[17] K. Jain. Factor 2 approximation algorithm for the
generalized steiner network problem. In Proceedings of
the thirty-ninth annual IEEE Foundations of
Computer Science (FOCS), pages 448–457, 1998.

[18] S. Khuller and B. Raghavachari. Improved
approximation algorithms for uniform connectivity
problems. Journal of Algorithms, 21(2):434–450, 1996.

[19] G. Kortsarz, R. Krauthgamer, and J. R. Lee.
Hardness of approximation for vertex-connectivity
network design problems. SIAM Journal of
Computing, 33(3):704–720, 2004.

[20] G. Kortsarz and Z. Nutov. Approximating node
connectivity problems via set covers. Algorithmica,
37(2):75–92, 2003.

[21] G. Kortsarz and Z. Nutov. Approximating k-node
connected subgraphs via critical graphs. SIAM
Journal of Computing, 35(1):247–257, 2005.

[22] W. Mader. Endlichkeitsätze für k-kritische graphen
(german). Mathematische Annalen, 229:143–153, 1977.

[23] R. Ravi and D. P. Williamson. An approximation
algorithm for minimum-cost vertex-connectivity
problems. Algorithmica, 18(1):21–43, 1997.

[24] R. Raz. A parallel repetition theorem. SIAM Journal
of Computing, 27(3):763–803, 1998.

APPENDIX
Proof of Lemma 2.1: Let U0 be the set of edges whose
cost is 0. We can assume w.l.o.g. that for all e 6∈ U0,
ce ≥ 1, by multiplying all edge costs by an appropriate large
integer. Let i∗ be the smallest integer such that the set
of all edges with costs less than ni∗ forms a feasible solu-
tion to our problem. We can assume w.l.o.g. that i∗ > 0.
Therefore, the optimal solution cost OPT is bounded by:
ni∗−1 ≤ OPT < n2 ·ni∗ . It follows that in any optimal solu-
tion, (a) an edge with cost greater than ni∗+2 is never used,

and (b) total contribution to OPT by edges of cost ni∗−4 or

less does not exceed ni∗−2 ≤ OPT/n. We now transform

our instance as follows: every edge of cost ni∗−4 or less is
assigned a cost of 0, all edges with cost greater than ni∗+2

are removed from the graph, the cost of each remaining edge
e is set to be d ce

ni∗−4 e. Thus in the modified graph, all new

non-zero edge costs are integers between 1 and n6. Clearly, a
β-approximate solution for the transformed instance defines
an O(β)-approximate solution for the original instance.

