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ABSTRACT
Given as input a directed graph on N vertices and a set
of source-destination pairs, we study the problem of routing
the maximumpossible number of source-destination pairs on
paths, such that at most c(N) paths go through any edge.
We show that the problem is hard to approximate within
an NΩ(1/c(N)) factor even when we compare to the optimal
solution that routes pairs on edge-disjoint paths, assuming
NP doesn't have NO(log log N)-time randomized algorithms.
Here the congestion c(N) can be any function in the range
1 6 c(N) 6 α log N/ log log N for some absolute constant
α > 0. The hardness result is in the right ballpark since a
factor NO(1/c(N)) approximation algorithm is known for this
problem, via rounding a natural multicommodity-�ow re-
laxation. We also give a simple integrality gap construction
that shows that the multicommodity-�ow relaxation has an
integrality gap of NΩ(1/c) for c ranging from 1 to Θ( log n

log log n
).

A solution to the routing problem involves selecting which
pairs to be routed and what paths to assign to each routed
pair. Two natural restrictions can be placed on input in-
stances to eliminate one of these aspects of the problem
complexity. The �rst restriction is to consider instances with
perfect completeness; an optimal solution is able to route
all pairs with congestion 1 in such instances. The second
restriction to consider is the unique paths property where
each source-destination pair has a unique path connecting
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it in the instance. An important aspect of our result is that
it holds on instances with any one of these two restrictions.
Our hardness construction with the perfect completeness re-
striction allows us to conclude that the directed congestion
minimization problem, where the goal is to route all pairs
with minimum congestion, is hard to approximate to within
a factor of Ω(log N/ log log N). On the other hand, the hard-
ness construction with unique paths property allows us to
conclude an NΩ(1/c) inapproximability bound also for the
all-or-nothing �ow problem. This is in a sharp contrast to
the undirected setting where the all-or-nothing �ow problem
is known to be approximable to within a poly-logarithmic
factor.

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems

General Terms: Algorithms, Theory.

Keywords: All-or-Nothing Flow, Congestion Minimization,
Edge-disjoint Paths, Hardness of approximation, Integrality
Gap, Multicommodity Flow.

1. INTRODUCTION
We study the approximability of routing problems with

bounded congestion in directed graphs. The input to all
problems in our study is a directed graph on N vertices and
a collection of source-destination pairs. When the goal is
to route a maximum number of pairs with the restriction
that at most c(N) paths go through any edge, we refer to
the problem as DirEDPwC (directed edge-disjoint paths with
congestion). The parameter c(N) is refered to as the con-
gestion. When c(N) = 1, we get the classical maximum
edge-disjoint paths problem. If we relax the notion of rout-
ing in DirEDPwC to be a fractional routing of a unit of �ow
from a source to its destination, we get the DirANFwC (di-
rected all-or-nothing �ow with congestion) problem. Finally,
if the objective is to route all source-destination pairs with
minimum congestion, we get the congestion minimization
problem.
Our main result is that DirEDPwC is hard to approxi-

mate within an NΩ(1/c(N)) factor for all integer valued func-
tions c : N → N satisfying 1 6 c(N) 6 α log N/ log log N ,



even when compared to an optimal solution that routes
with congestion 1. Here α > 0 is an absolute constant,
and the hardness holds under the assumption that NP 6⊂
BPTIME(NO(log log N)). An important aspect of our inap-
proximability result is that it holds even on two restricted
classes of input instances: on instances with perfect com-
pleteness and on instances with the unique paths property.
Speci�cally, the perfect completeness property means that
our result holds even on input instances where all the source-
destination pairs can be routed on edge-disjoint paths (i.e.,
with no congestion). In other words, it is hard to �nd a
good solution with congestion c(N) even if a (perfect) so-
lution with congestion 1 exists. As a corollary, we get an
Ω(log N/ log log N) hardness for the directed congestion min-
imization problem, where one must route all the pairs and
the quality of the solution is measured by the maximum
congestion incurred on any edge. This is a slight improve-
ment to the recent factor Ω(log1−ε N) hardness shown by
Andrews and Zhang [4]. But the nice aspect is that this in-
approximability factor is tight up to constant factors since
a classic randomized rounding based algorithm of Ragha-
van and Thompson [21] achieves an approximation ratio of
O(log N/ log log N) for the congestion minimization prob-
lem. A second restriction, under which our hardness re-
sult holds, is the unique paths property which means that
each source-destination pair is connected by a unique path
in the input instance. As a corollary, we get an NΩ(1/c(N))-
hardness for DirANFwC. This is in a sharp contrast to the
undirected case where an O(log2 N) approximation ratio is
known even with congestion 1 [6, 7].
We note that all problems in our study are trivially solv-

able in polynomial-time on instances that simultaneously
possess the perfect completeness and the unique paths prop-
erty.

1.1 Prior Work
When the congestion c = 1, DirEDPwC is identical to

the classic edge-disjoint paths problem (on directed graphs).

This was shown to be hard to approximate within a N1/2−ε

factor for any ε > 0 [12], and a natural greedy algorithm is

known to give an O(min{N2/3,
√

M})-approximation (where
M is the number of edges) [19, 5, 23].
For the DirEDPwC problem with congestion c > 1, factor

O(cN1/c) approximation algorithms based on randomized
rounding of the standard multicommodity �ow relaxation
are known [22, 20]. Hardness results for DirEDPwC with
congestion c > 1 have been elusive until recently. The re-
duction in [12] does not give any hardness result once c ex-
ceeds 1. Spurred by the breakthrough results of Andrews
and Zhang on undirected edge-disjoint paths and conges-
tion minimization [3, 2], a factor (log N)Ω(1/c) hardness for
the above problem on undirected graphs has been shown [1,
13]. This hardness also holds for directed graphs.
For directed congestion minimization problem, Chuzhoy

and Naor [9] were the �rst to obtain a non-trivial inap-
proximability result � they established a factor Ω(log log N)
hardness result. Prior to [9], even a factor 2 hardness was
not known (a factor (2 − ε) hardness is trivial since it is
NP-hard to tell if all source-destination pairs can be routed
in an edge-disjoint manner).

1.2 Our Results and Reduction Techniques
The results reported here are a merged version of results

from the two technical reports [8, 14]. The reader can re-
fer to these reports for any details or proofs omitted in this
version. We brie�y describe the results that appear in these
reports. In [8], two hardness of approximation results are

presented. The �rst result shows N1/(3c+O(1))-hardness for
DirEDPwC for values of c up to logλ N for some suitably
small λ. This construction has the unique paths property
but not perfect completeness. We note that the unique
paths property automatically gives a similar hardness of
approximation result for DirANFwC. The second result is
an NΩ(1/c)-hardness for values of c ranging from logλ N to
Ω(log N/ log log N) for any 0 < λ < 1. This result also has
the unique paths property, and moreover, [8] shows a simple
transformation that achieves perfect completeness by trad-
ing o� the unique paths property. Consequently, this estab-
lishes an Ω(log N/ log log N)-hardness for congestion mini-
mization. In [14], a reduction from general constraint sat-
isfaction problem to DirEDPwC is presented that gives an
NΩ(1/c)-hardness for values of c up to Ω(log N/ log log N).
This reduction has the perfect completeness property, and
thus gives as a corollary Ω(log N/ log log N) hardness for
congestion minimization. For large values of c this construc-
tion can be modi�ed to give the unique paths property.
A common theme in the recent hardness proofs for rout-

ing problems is the idea of �canonical� and �non-canonical�
paths. Roughly speaking, each source-destination pair is as-
signed a set of special paths in the graph, called its canoni-
cal paths, and any other path connecting the pair is a non-
canonical path. The canonical paths are used to encode
some desirable property, and when the solutions are re-
stricted to choose canonical paths only, the problem is shown
to be hard to approximate. The main obstacle to proving
hardness of approximation for this type of routing problems
is therefore the existence of non-canonical paths. As a way
to overcome this problem in the context of directed graphs,
in a beautiful work, Andrews and Zhang [4] proposed to use
�labeling schemes�. Roughly speaking, a labeling scheme
is a mechanism to enforce that the only paths connecting
source-destination pairs are the canonical paths. The hard-
ness result thus obtained depends on the e�ciency of the la-
beling scheme. Andrews and Zhang [4] designed a labeling
scheme that gives Ω

(
log1−ε N

)
-hardness for directed con-

gestion minimization, for any constant ε > 0. It is also
possible to adapt their ideas in a straightforward manner to

show that DirEDPwC is 2Ω(log
1
2−ε

N)-hard to approximate
for constant congestion.
A key idea underlying all our results is a more e�cient

labeling scheme, which is described in De�nition 2.6. This
labeling scheme combined with the framework of [4] would
su�ce for our hardness result for DirEDPwC when the con-
gestion is at least logε n for some ε > 0. For smaller values
of congestion, one needs to use a di�erent approach. For
example, for constant congestion c, we are seeking a NΩ(1)

hardness, while the soundness of the Raz 2-prover system,
which is the starting point for the reduction to congestion
minimization in [4] is not polynomially small.
As one approach to overcome this problem, we present

a simple reduction from the independent set problem that

establishes a N
1

3c+O(1) hardness for DirEDPwC with con-
gestion c for 1 6 c 6 logλ N for some absolute constant
λ > 0. It is easy to show that graphs where the maximum
independent set size is small, necessarily contain a large



clique. We establish an interesting generalization of this
property, namely, such graphs in fact contain many large
cliques. Speci�cally, we show that if an n-vertex graph does

not have an independent set of size nO(1/c6), then it con-
tains nΩ(c) cliques of size c. Our reduction translates cliques
of size c into edges with congestion c in the DirEDPwC in-
stance. This reduction creates instances with the unique
paths property, and therefore also gives hardness of DirANF
and DirANFwC.
Our result with perfect completeness is based on a re-

duction from general constraint satisfaction problems over
large domains. Conceptually, our reduction is presented in
a rather general framework and can start from an arbitrary
constraint satisfaction problem (CSP). We analyze the e�-
cacy of the reduction in this extreme generality, and quan-
tify its performance in terms of few crucial parameters of the
original CSP. We then plug in appropriate CSPs as starting
point to deduce our hardness results. The bene�t of this
uni�ed approach is that it clearly highlights what one needs
as a starting point from the CSP in order to obtain strong
hardness results for DirEDPwC. For example, when the con-
gestion is a constant, we are seeking an NΩ(1) inapproxima-
bility factor. As we mentioned above, in order to obtain this
one needs to start from a hard CSP with soundness that is
inverse polynomial in the size of the instance. The 2-variable
CSP underlying Label Cover (or Raz's parallel repetition
theorem), which formed the starting point of the reduction
in [4], does not achieve such small soundness. A crucial (but
quite natural) technique we use is to boost the soundness of
a hard CSP using a derandomized expander-walk based se-
rial repetition. This results in the low soundness CSP which
we then plug into our general reduction to DirEDPwC. Do-
ing this to the standard 2-variable �Label Cover� CSP gets
us a uni�ed NΩ(1/c(N)) inapproximability factor for DirED-
PwC for the entire range 1 6 c(N) 6 O(log N/ log log N).
The instances produced by this reduction do not have the
unique paths property, and they cannot, since the problem
with perfect completeness and unique paths property is of
course trivial. But with a small modi�cation to the con-
struction, we can also get unique paths instances and show
a NΩ(1/c(N)) for congestions larger than logΩ(1) N . Together
with the reduction from independent set, we get the hard-
ness on unique paths instances, and hence also for ANFwC,
for the entire range [1, Θ(log N/ log log N)] of congestions.
The drawback of the above reduction from general CSPs

is that the constant in the exponent Ω(1/c(N)) is rather
small as it is inherited from the constant in Raz's paral-
lel repetition theorem. In order to improve the constant, we
start from a di�erent 3-variable CSP. For us, the crucial fea-
ture of this CSP is that the maximum number of satisfying
assignments to any of its constraints is comparable to the
inverse of the soundness of the CSP. This gives an improved
N1/((9+ε)(c(N)+6)) hardness factor for any desired constant
ε > 0. However, the size of this 3-variable CSP, for a similar
size of the domain of the variables, is somewhat larger than
the Raz system. This limits the range of applicability of the
improved bound to 1 6 c(N) 6 logβ N for some β > 0 that
depends on ε. The hardness result still holds with perfect
completeness.
If we start from an even �better� CSP, our reduction will

yield a factor N
1

(3+ε)(c(N)+O(1)) hardness result. The CSPs
shown to hard to approximate by Håstad and Khot [17] have
the correct parameters to function as our needed starting

point, except that they are not k-partite (where each con-
straint depends on k variables) which is a structural feature
we �nd useful in our analysis. We feel that hardness results
for CSPs similar to those proved in [17] should continue to
hold even with the restriction of k-partiteness.

1.3 Organization
We begin with some background and de�nitions in Sec-

tion 2; in particular, we de�ne the problems and their vari-
ants that are of interest to us, review the natural multicom-
modity �ow LP relaxation for DirEDPwC, and also de�ne the
labeling scheme that will be crucial in our reductions. Using
this labeling scheme, we prove a strong integrality gap result
for the natural �ow relaxation of DirEDPwC in Section 3.
In Section 4, we give a reduction from the maximum in-

dependent set problem to DirEDPwC. This reduction yields

a hardness of N
1

3c+23 for low congestion values (less than
logλ N for some constant λ > 0). This reduction addi-
tionally gives unique path instances: i.e., for each source-
destination pair in the instance, there is a unique path from
the source to the corresponding destination in the graph.
Consequently, this immediately yields similar hardness re-
sults for DirANF and DirANFwC.
In Section 5, we give a di�erent reduction from a general

CSP to DirEDPwC. For an appropriately chosen CSP, this

proves a hardness of NΩ( 1
c
) for large congestion values (all

the way up to Θ(log N/ log log N)). In addition, this gives
instances with perfect completeness, thus also proving an
Ω(log N/ log log N) hardness for the congestion minimiza-
tion problem.

2. BACKGROUND AND DEFINITIONS

2.1 Problems and their variants
We start with a de�nition of the problems that we study.

Definition 2.1 (Congestion Minimization). Given
a graph G(V, E) and a collection of source-destination pairs
{(s1, t1), (s2, t2), . . . , (sk, tk)}, �nd a routing that connects
each source si to its destination ti by a path, with at most c
paths going through any edge, such that the congestion c is
minimized.

Definition 2.2 (DirEDP). Given a directed graph G(V, E)
and a collection of source-destination pairs {(s1, t1), (s2, t2), . . . ,
(sk, tk)}, route as many pairs as possible on edge-disjoint
paths.

Definition 2.3 (DirEDPwC). Given a directed graph
G(V, E), a collection {(s1, t1), (s2, t2), . . . , (sk, tk)} of source-
destination pairs, and an integer c > 1, route as many pairs
as possible such that at most c paths go through any edge.
The performance of algorithms for DirEDPwC is compared
to optimal solutions with congestion 1.

All-or-Nothing Flow: DirANF (All-or-Nothing Flow) and
DirANFwC (All-or-Nothing Flow with congestion) are de-
�ned analogously to DirEDP and DirEDPwC by relaxing the
notion of routing: a source-destination pair is routed if the
solution sends a unit of �ow fractionally from the source to
its destination.
We note that all the above problems can be de�ned more

generally where each edge e in the graph has a capacity u(e)



and each pair (si, ti) has a demand di. A solution with con-
gestion c allows up to c · u(e) demand to be routed through
each edge e. However, since all our hardness results hold for
the restricted version above, we will work throughout this
paper with the simple versions de�ned above. Moreover, we
will assume that all source-destination pairs are distinct; in-
stances created by our reductions will satisfy this property.

Unique Paths Instance: We will say an instance of DirED-
PwC is a unique paths instance if every source-destination
pair in the instance has a unique path that connects the
source to the destination. Note that a hardness result for
DirEDP or DirEDPwC based on a unique paths instance im-
mmediately implies the same hardness result for DirANF and
DirANFwC respectively.

Perfect Completeness: We will say that a factor f in-
approximability result for directed EDP with congestion c
holds with perfect completeness, if given a set of (si, ti) pairs
all of which can be routed on edge-disjoint paths, i.e., with
congestion 1, it is NP-hard to route more than a fraction
1/f of the pairs, even if congestion c is allowed. Note that
a hardness result for EDP with congestion c that holds with
perfect completeness immediately implies a factor c inap-
proximability result for congestion minimization.

Multicommodity Flow Relaxation: Given an instance
of DirEDPwC let Pi denote the set of paths joining si and
ti in G and let P = ∪iPi. We de�ne for each path P ∈ P,
a variable f(P ) which is the amount of �ow sent on P . We
also let xi denote the total �ow sent on paths for pair si-ti.
Then the multicommodity �ow relaxation for DirEDP is as
follows:

max

k∑
i=1

xi s.t

xi −
∑

P∈Pi

f(P ) = 0 ∀i : 1 6 i 6 k

∑
P :e∈P

f(P ) 6 1 ∀e ∈ E

xi, f(P ) ∈ [0, 1] ∀i : 1 6 i 6 k, ∀P ∈ P.

We use the same multicommodity �ow relaxation for DirED-
PwC and we are interested in comparing fractional solutions
with no congestion to integral solutions with congestion less
than c. Even though as stated above, the formulation is of
exponential-size, there is a standard equivalent �ow-based
encoding of this linear program that is polynomial-size.

2.2 Convexly Independent vectors
Our reductions crucially use a certain labeling scheme to

group vertices that prevents paths connecting certain pairs
of vertices from taking untoward detours in the graph. The
labeling scheme uses a collection of vectors with a restricted
linear independence property, de�ned below.

Definition 2.4. A set of vectors u1, . . . , un over reals is
convexly independent if for any i and for any set of nonneg-
ative coe�cients αj > 0, if

∑
j αj = 1 and ui =

∑n
j=1 αjuj,

then αi = 1 and αj = 0 for j 6= i.

Our goal is to construct a large set of convexly indepen-
dent vectors in a low dimensional space. Note that we can
take ui = ei in R

n, and being linearly independent, this set
of vectors is also convexly independent. Andrews and Zhang
show how to do better: let ui be a 0-1 vector with k

3
1's in

R
k, where k is chosen so that

(
k
k
3

)
> n. It is easy to verify

that the resulting ui's are convexly independent and that k
is only O(log n).
We now give a simple construction in two dimensions.

Given our goal of �convex� independence, it is natural to
turn to one of the simplest convex functions: the squaring
function. We omit the easy proof.

Lemma 2.5. For every integer n > 1, the set of vectors
u1, u2, . . . , un ∈ R

2 given by ui = (i, i2) is convexly indepen-
dent.

Definition 2.6 (Labeling Scheme). The labeling scheme
is parameterized by two integers A, Z, and consists of two
ingredients:

1. A set U of A increment vectors u1, u2, . . . , uA, each in
Z

2, de�ned by ui = (i, i2)

2. A label set L = L(A, Z), together with an addition
operator ′+′ (under which the set is closed), de�ned as
follows: L = [2AZ] × [2A2Z], where the notation [M ]
stands for {0, 1, . . . , M − 1}. The addition operation
on L is de�ned to be coordinate wise addition w.r.t.
the appropriate modulus. Formally, for (a, b) ∈ L and
(a′, b′) ∈ L, their sum (a, b) + (a′, b′) ∈ L is de�ned to
be ((a + a′) mod (2AZ), (b + b′) mod (2A2Z)).

We now record the crucial property of the above labeling
scheme, which follows immediately from Lemma 2.5.

Lemma 2.7. Let l, l′ ∈ L be a pair of labels such that there
is some 1 6 j 6 A for which l + Zuj = l′. Let ui1 , . . . , uiZ

be any collection of Z increment vectors from U . Then l +
ui1 + · · · + uiZ = l′ i� ui1 = ui2 = · · · = uiZ = uj.

3. INTEGRALITY GAP
We present an elementary construction that shows that

the integrality gap of the multicommodity �ow relaxation is

Ω

(
N

1
3c′+13

c′

)
for directed EDP with congestion c′, where c′

can be any integer between 1 and δ log N/ log log N , for some
�xed constant δ. We will use the labeling scheme described
above, consisting of a set U of increment vectors and a set
L = L(A, Z) of labels. We will set the parameter A = n;
the value of Z will be speci�ed later. Let {ui}n

i=1 be the
increment vectors in U . Let c = c′ + 1. We also denote
L = |L|.
Our instance is a layered graph with Z layers and nL

source-destination pairs. For each y ∈ L, for each i : 1 6
i 6 n, there is a source-destination pair s(y, i)-t(y, i), and
we will later de�ne the corresponding canonical path P (y, i).
For each layer z : 1 6 z 6 Z, for each label y ∈ L, we have a
set E(y, z) of n/c special edges, whose endpoints are disjoint.
A canonical path P (y, i) starts at source s(y, i) and then

traverses, for each z : 1 6 z 6 Z one special edge at layer
z. After traversing a special edge at layer Z, it �nishes
at destination t(y, i). Thus, in order to de�ne a canonical
path P (y, i) we need to specify, for each layer z, what is the
special edge at layer z that is being traversed by P (y, i).
We will then add additional edges to the graph, called the
non-special edges, which are needed to realize the canonical
paths.



It now only remains to assign to each path P (y, i) one
special edge at each layer z : 1 6 z 6 Z. Fix some y ∈ L,
i : 1 6 i 6 n. We �rst de�ne, for each z ∈ Z, the label of
P (y, i) at layer z to be y + (zui).
Fix some layer z ∈ Z and some label y ∈ L. Let Pz(y) be

the set of all the canonical paths P (y′, i) such that the label
of P (y′, i) for layer z is y. Notice that for each i : 1 6 i 6 m,
there is exactly one such path P (y′, i), and thus |Pz(y)| = n.
We randomly partition the set Pz(y) into sets of size c each.
We will refer to each set as a c-tuple. Each c-tuple is assigned
one edge in the set E(y, z), and all the canonical paths in
this c-tuple go through this edge at layer z. Finally, we add
non-special edges needed to realize the canonical paths. No
parallel edges are added. This completes the construction
description. Notice that the size of the construction is N 6
O(nZL) = O(nZ · 4n3Z2) = O(n4Z3).

Fractional Solution: In the fractional solution, we can
route 1/c-fraction of �ow on each canonical path, causing
congestion 1. Thus the fractional solution routes at least
nL/c units of �ow.

Integral Solution: We now proceed to analyze integral
solution. Consider any integral solution with congestion
strictly less than c. We will show that it routes at most
nL/cg pairs where g will be the integrality gap, and we
specify its value later.

Lemma 3.1. For each source-destination pair in our con-
struction, there is only one path connecting the source to the
destination (the canonical path).

Proof. Consider any source-destination pair s(y, i)-t(y, i).
Assume for contradiction that there is a non-canonical path
P ′ connecting s(y, i) to t(y, i). Let y = y0, y1, y2, . . . , yZ be
the sequence of labels of the source and the special edges
appearing on path P ′, and let uj1 , . . . , ujZ be the collection
of increment vectors used along this path, such that for each
k : 1 6 k 6 Z, yk = yk−1 + ujk . Since P ′ is a non-canonical
path, and since for each special edge in the graph, there is
at most one edge corresponding to each increment vector
leaving it, it must be the case that at least one of the incre-
ment vectors ujp , 1 6 p 6 Z di�ers from ui. But then, by
Lemma 2.7, it is impossible that P ′ reaches t(y, i).

Lemma 3.2. Suppose Z > (8c)c+3gc+2 and g 6 n/8c2.
Then if more than nL/cg pairs are routed, then at least one
edge has congestion c, with high probability.

Proof. Let S be any collection of at least nL/cg canon-
ical paths. We say a label y at a layer z is good if there
are at least n/2cg paths P (y′, i) ∈ S, which have label y at
layer z. At least L/2cg labels must be good at each layer z.
Otherwise, total number of paths contained in S is strictly

less than
(

L
2cg

)
n+L

(
n

2cg

)
=

(
nL
cg

)
, a contradiction! Thus

there must be at least (L)/2cg good labels at each layer.
Consider a good label y at a layer z. We say that the

bad event B(y, z) happens i� there is no edge e ∈ E(y, z)
with congestion c. We now bound the probability of B(y, z).
We consider the �rst n/4c2g edges e1, . . . , en/4c2g in E(y, z),
and assume that each edge chooses a c-tuple of paths in this
order. For each j : 1 6 j 6 n/4c2g, no matter what is the
con�guration of edges e1, . . . , ej−1, the probability that edge
ej has chosen all its c paths from S is at least:( n

4cg
c

)
(

n
c

) >
( n

4cg
− c + 1

n

)c

>
(

1

8cg

)c

Thus the probability that B(y, z) occurs is at most

(
1 − 1

(8cg)c

)n/4c2g

6 e
− n

(4c2g)(8cg)c 6 e
− n

(8c)c+2gc+1 .

Let B be the event de�ned by the intersection of all events
B(y, z) for all pairs (y, z) such that the label y is good at
layer z. Using the assumption Z > (8c)c+3gc+2, we get

Pr[B occurs] 6 e
− nLZ

2cg(8c)c+2gc+1 6 e−nL.

On the other hand, the number of possible solutions S of
size nL/cg can be bounded by 2nL = o(enL). Using union
bounds, we conclude that with high probability there is an
edge with congestion c.

Recall that the construction size is N 6 O(n4Z3). Substi-
tuting Z = (8c)c+3gc+2 and g = n/8c2, we get construction
size N 6 O(n4(8c)3c+9g3c+6) 6 O((8c2)4(8c)3c+9g3c+10)

6 O((8c)3c+20g3c+10). Thus g = Ω(N
1

3c+10

c
), and we obtain

the following theorem.

Theorem 3.3. There exists a constant δ > 0, such that
the integrality gap of the multicommodity �ow relaxation for

DirEDPwC is Ω(N
1

3c′+13 /c′) for any congestion value c′, 1 6
c′ 6 (δ log N)/(log log N), where N is the number of vertices
in the graph.

4. HARDNESS OFDirEDPwC WITH UNIQUE
PATHS PROPERTY

In this section we show that DirEDPwC is hard on in-
stances with unique paths property. We present here only
the hardness result for congestion values up to logλ N , for
some absolute positive constant λ.
We start by establishing hardness for any constant con-

gestion c′, and later show how it can be extended to higher
values of c′. The hardness applies to unique paths instances
of DirEDPwC and therefore immediately implies a similar
hardness for All-or-Nothing �ow with congestion as well.

The Construction: We perform a reduction from the
independent set problem. Given a graph G = (V, E), a
subset S ⊆ V of vertices is called independent set i� the
subgraph induced by S does not contain any edges of E.
Our starting point is the following result of Håstad [15].

Theorem 4.1. [15] For any ε > 0, no polynomial-time
algorithm can distinguish between n-vertex graphs that have
an independent set of size at least n1−ε (the Yes-Instance)
and graphs that have no independent sets of size greater than
nε (the No-Instance), unless NP is contained in ZPP.

Let c = c′ + 1. Given an instance G of the independent set
problem above, we will construct a unique paths instance I
of directed EDP such that if G is a Yes-Instance, then we
can route an Ω(1/nε)-fraction of the pairs with congestion
1. On the other hand, if G is a No-Instance, we will show
that even when a congestion of c − 1 is allowed, no more
than O(1/

√
n)-fraction of pairs can be routed. We assume

that ε < 1
2c6

.
We will use the labeling scheme of De�nition 2.6 with pa-

rameters A, Z. We will set A = n, where n is the number of
vertices in the independent set instance, and the parameter
Z will be speci�ed later. We will denote by U the set of
increment vectors, and by L = L(n, Z) the set of labels. As



in the integrality gap construction above, we build a layered
graph with Z layers. For each layer z : 1 6 z 6 Z, and
for each label y ∈ L, we have n/c blobs B(y, z, i) of special
edges, where 1 6 i 6 n/c. Each blob will either contain one
special edge, or c special edges. This is determined as fol-
lows. For each label y ∈ L, for each layer z ∈ Z, we choose
a random partition P1(y, z), . . . ,Pn/c(y, z) of the vertices in
V (G) into c-tuples. For each i : 1 6 i 6 n/c, if Pi(y, z)
is a clique in G, then the blob B(y, z, i) is called a type-1
blob, and it has just one special edge. If Pi(y, z) is not a
clique, then blob B(y, z, i) is called a type-2 blob, and it has
c special edges.
For each vertex v ∈ V (G), for each label y ∈ L, there is

a source-destination pair s(y, v)-t(y, v), and a corresponding
canonical path P (y, v). This canonical path starts at s(y, v),
and then traverses, for each z : 1 6 z 6 Z, one special edge
at level z, in this order. After visiting a special edge from
layer Z, the path ends at t(y, v). Next we specify what
are the special edges that each canonical path visits at each
layer. After this we add all the non-special edges that are
needed to realize the canonical paths.
We �rst de�ne, for each layer z : 1 6 z 6 Z, for each

1 6 v 6 m and for each y ∈ L, the label of P (y, v) at layer z
to be y+(zuv). At each layer z : 1 6 z 6 Z, the path P (y, v)
goes through the blob B(y′, z, i), where y′ = y + (zuv), and
i is such that v belongs to Pi(y, z). If blob B(y′, z, i) is a
type-1 blob, then P (y, v) traverses the unique special edge
belonging to this blob. If blob B(y′, z, i) is a type-2 blob,
then path P (y, v) traverses the unique edge in blob B(y′, z, i)
which is assigned to it (we note that since there are exactly
c canonical paths visiting any blob, we can assign a unique
special edge to each path visiting a type-2 blob). We add
all the non-special edges to the graph that are needed to
realize the canonical paths. No parallel edges are added.
Let N denote the size of the instance I constructed above.
Then N = O(ZLn) = O(Z3n4).

Yes-Instance: If G is a Yes-Instance, then it has an
independent set S of size at least n1−ε. For each v ∈ S and
y ∈ L, we route the source-destination pair s(y, v)-t(y, v) on
its canonical path P (y, v). This gives a set of L|S| > Ln1−ε

edge disjoint paths.

No-Instance: We show that any subset M of 4L
√

n
source-destination paths causes congestion c = b + 1, with
high probability. The next lemma follows immediately from
the construction and Lemma 2.7.

Lemma 4.2. For each source-destination pair in the above
instance, the associated canonical path is the unique path
connecting them.

In what follows, let s = nε. Let T (α, c) denote the mini-
mum number of c-cliques in any graph on α vertices, which
does not contain an independent set of size s′. We need the
following technical fact.

Lemma 4.3. Let c > 2 be a positive integer. Then for any
α > (4s′)c, T (α, c) > αc

(2c)c(4s′)c3 .

Proof. We will use the following simple fact: if a graph
has at least k vertices with degree at most d, then it contains
an independent set of size at least k/(d + 1). This follows
easily by restricting attention to vertices of degree at most
d and choosing a maximal independent set from them.
We will prove the lemma by induction on c. Base case

is c = 2. Assume that α > (4s′)2. Let H be any graph

with α vertices such that the average degree is d. Then H
contains an independent set of size at least α/(4d + 2) since
at least half the vertices have degree at most 2d. Therefore,
α/(4d + 2) < s′ and d > α/5s′. Thus the number of edges
(cliques of size 2) in the graph is αd/2 > α2/10s′.
For the induction step, observe that at least α/2 vertices

in H must have degree at least d = α/2s′ − 1 > α/4s′:
otherwise, we can �nd an independent set of size s′ in H.
Let v be a vertex in H of degree at least d. Consider

the neighborhood of v. Since α > (4s′)c, the number of
neighbors of v is at least d > α/4s′ > (4s′)c−1. Therefore, by
induction hypothesis, the neighborhood of v contains at least
T (d, c−1) cliques of size c−1. Each such clique is a c-clique
in H. Counting these cliques for all vertices in H with degree
at least d and compensating for the fact that a c-clique may
get counted up to c times, we get T (α, c) > α

2c
T (α/4s′, c−1).

Iterating, we get

T (α, c) > α

2c
· α/4s′

2(c − 1)
· α/(4s′)2

2(c − 2)
· · · α/(4s′)c−3

2(3)
T (α/(4s′)c−2, 2)

> αc−2

(2c)c−2(4s′)c2/2
T (α/(4s′)c−2, 2)

> αc

(2c)c(4s′)c3
.

Using the above lemma with the facts that ε < 1/c6 and
c < logλ N for some small λ < 1/4, we can conclude:

Lemma 4.4. Any graph H on α =
√

n vertices that does

not contain an independent set of size s has at least n
c
2− 1

c2 /cc

distinct cliques of size c.

Assume now that there is a solution that routes a setM of
4L

√
n canonical paths. We show that with high probability,

there is at least one edge with congestion c. A label y is
called a good label for layer z, i� the number of canonical
paths P (y, v) ∈ M whose label at layer z is y is at least
2
√

n. It is easy to see that for each layer z : 1 6 z 6 Z,
the fraction of labels y which are good for layer z is at least
2/

√
n: Assume otherwise. The number of paths of M that

go through good labels at layer z is at most 2Ln/
√

n =
2L

√
n. The number of paths of M that go through non-

good labels is less than L · 2√n. Thus, in total, M contains
less than 4L

√
n paths.

Let y be a good label for layer z. We say that the bad
event B(y, z) happens i� no special edge at any blob belong-
ing to (y, z) has congestion c. The lemma below bounds the
probability of this bad event.

Lemma 4.5. The probability of B(y, z) happening is at

most exp

(
− 1

cc+1n
c
2− 1

2 + 1
c2

)
.

Proof. Let S be the subset of vertices in G, correspond-
ing to paths in M whose label at layer z is y, |S| > 2

√
n.

We consider the random choices made by the construction
as follows: the n/c c-tuples of vertices are chosen one after
another. We focus on the choice of the �rst

√
n/c tuples.

These choices are not independent. However, when the ith
choice is made, if Si denotes all the vertices chosen at steps
1, . . . , i−1, then S\Si still contains at least

√
n vertices, and

thus the graph induced by S \Si contains at least n
c
2− 1

c2 /cc

cliques of size c. The probability of choosing such a clique at



step i is at least n
c
2− 1

c2

ccnc = 1

ccn
c
2 + 1

c2
. Thus the probability

of B(y, z) happening is at most:

(
1 − 1

ccn
c
2+ 1

c2

)√
n/c

6 exp

(
− 1

cc+1n
c
2− 1

2+ 1
c2

)

Assume now that event B(y, z) happened to all pairs (y, z)
where y is good for z. The probability of this is at most

exp

(
− 2LZ

cc+1n
c
2 + 1

c2

)

If we set Z = cc+1n
c
2+1+ 1

c2 , then this probability is bounded
by eLn. The total number of possible solutions is at most
2Ln = o

(
eLn

)
. Therefore, using the union bound, with high

probability there is a label y and a layer z for which B(y, z)
does not happen. This means that at least one edge has
congestion c, with high probability. Notice that the gap

that we obtain is n
1
2−ε, while the construction size is N =

O(Z3n4) = O(c3c+3n
3c
2 +8). The gap is thus Ω

(
N

1
3c+19 /c

)
,

since ε < 1/c6. Note that for c 6 log1/4 N ,
(
N

1
3c+19 /c

)
is

Ω
(
N

1
3c+20

)
. We thus get the following theorem.

Theorem 4.6. For any �xed positive constant integer c′ >
1, directed EDP with congestion c′ is hard to approximate

within a factor of Ω
(
N

1
3c′+23

)
unless NP ⊆ ZPP.

If we slightly relax the complexity assumptions of Theo-
rem 4.1, we can use the theorem below due to Khot [18]:

Theorem 4.7. [18] There exists a constant 0 < γ < 1
such that no polynomial-time algorithm can distinguish be-
tween n-vertex graphs that have an independent set of size
at least n

2(log n)1−γ (the Yes-Instance) and graphs that have

no independent sets of size greater than 2(log n)1−γ

(the No-

Instance), unless NP ⊆ ZPTIME(npolylog(n)).

Theorem 4.8. There exists a constant 0 < λ < 1/4 such
that for any integer 1 6 c 6 (log N)λ, directed EDP with
congestion c on an N -vertex graph is hard to approximate

within a factor of Ω
(
N

1
3c+23

)
unless NP ⊆ ZPTIME(npolylog(n)).

Moreover, the hardness holds on Unique Paths instances of
DirEDPwC, and thus also for directed ANFwC.

Since undirected ANF admits an O(log2 N) approximation
ratio [6, 7], the theorem above gives a strong separation
between the tractability of undirected and directed versions
of the all-or-nothing �ow problem.

5. HARDNESS RESULT FORDirEDPwC WITH
PERFECT COMPLETENESS

In this section, we describe a reduction from general con-
straint satisfaction problems to DirEDPwC, and instantiate
it with particular CSPs. This will give us inapproximabil-
ity results for DirEDPwC with perfect completeness, and as
a corollary a tight (up to constant factors) hardness of ap-
proximation result for congestion minimization.

5.1 Constraint Satisfaction Problems
Our hardness result for DirEDPwC is obtained via a reduc-

tion from a general constraint satisfaction problem (CSP).
Informally, a CSP over a domain D consists of a collection of
constraints on a universe of variables, where each constraint
speci�es which subset of values (from the domain D) to its
variables �satisfy� it. The goal is to assign values from D to
all the variables in a manner that maximizes the number of
satis�ed constraints.
We now give a formal de�nition that captures the impor-

tant parameters of a CSP.

Definition 5.1 (General CSP). An instance of a
(promise) constraint satisfaction problem (CSP) with pa-
rameters (M, V, J, p, k, saty, satn) where M, V, J, p, k : N →
N are integer valued functions, and saty, satn : N → [0, 1],
consists of the following:

• A set S of at most V variables that take on values from
the domain {1, 2, . . . , p}, and a partition of S into k
disjoint parts as S = S1 ∪ S2 ∪ · · ·Sk.

• A set C of at most M constraints, where each con-
straint is de�ned on a subset of k variables containing
one variable from each of S1, S2, . . . , Sk, and further,
at most J of the pk possible assignments to those vari-
ables satisfy that constraint.

The goal is, given such an instance, to distinguish between
the following two cases:

• [Yes instances:] There exists an assignment to the
variables that satis�es at least a fraction saty of the
constraints. (Note that when saty = 1, such an assign-
ment satis�es all the constraints, and this is referred
to as perfect completeness.)

• [No instances:] Every assignment to the variables sat-
is�es less than a fraction satn of the constraints.

The parameters saty and satn are called the completeness
and soundness of the CSP. We will sometimes refer to the
parameter p as the alphabet size of the CSP, and also call the
CSP with above parameters a p-ary k-partite CSP instance
when the rest of the parameters are implicit.

5.2 The Reduction
We will show how to transform an instance of a CSP with

parameters (M, V, J, k, p, saty, satn) to an instance of DirED-
PwC. Thus our starting point is an instance φ of a p-ary
k-partite CSP with a set {C1, C2, . . . , Cm} of M constraints
over a set {x1, x2, . . . , xV } of V variables. J is an upper
bound on number of satisfying assignments to any of the
constraints and let Bi denote the number of constraints in
which variable xi participates. Let T = maxi Bi.
The reduction will transform Yes instances of the CSP

to instances of DirEDPwC where one can �nd edge-disjoint
paths connection at least a fraction saty of the source-destination
pairs. If the original instance of the CSP is a No instance,
then the in the resulting DirEDPwC instance only a small
fraction of source-destination pairs can be routed, even if
one allows a large congestion on the edges.
We shall present the reduction starting from a generic

CSP, and plug in suitable CSPs that imply strong bounds
later in Section 5.4. In addition to the CSP parameters
M, V, J, k, p, the reduction will use three other integer pa-
rameters Y, Z, L which will be de�ned in Section 5.2.2.



Throughout this section, the notation [Q] for an integer
Q > 1 denotes the set {1, . . . , Q}. We will typically use
i ∈ [V ] for a variable index, j ∈ [M ] for a constraint index,
and q ∈ [p] to refer to a possible value assigned to a variable.
For each q ∈ [p] and for constraint Cj containing xi, let Γijq

be the set of satisfying assignments to Cj that set xi to q and
let Γiq be the set of all pairs (Cj , ζ) such that Cj contains xi

and ζ ∈ Γijq. Note that ζ is a partial assignment specifying
the values for variables that occur in constraint Cj .
The construction will be composed of ZL blobs, indexed

by (z, l) where z ∈ [Z] and l ∈ L, where L is a set of L labels
that is closed under a certain addition operator. Each blob
will consist of V variable gadgets, one for each variable in the
CSP. For each variable xi, we give a randomized construc-
tion of a gadget called Gz,l

i that we describe in detail below.
Recall that Bi 6 T denotes the number of occurrences of xi

in the constraints. The variable gadget Gz,l
i has a matching

M
(i)
z,l consisting of Y JBi special edges ei

z,l,s = (ai
z,l,s, b

i
z,l,s)

for s ∈ [Y JBi] � the vertex ai
z,l,s (resp. bi

z,l,s) will be re-

ferred to as the left (resp. right) endpoint of the edge ei
z,l,s.

In each blob, these disjoint matchings will be strung to-
gether by k intermediate levels of connector vertices in a
random way as described below. Let τ = (Cj , ζ, y) be a (con-
straint,assignment,y) triple where ζ satis�es Cj and y ∈ [Y ]
is arbitrary; we call such a triple an accepting interaction.
For each t ∈ [k + 1] and each accepting interaction τ , we
have a connector vertex wz,l,t

τ . For a variable xi in Vt and

q ∈ [p], we de�ne a set W
(i)
z,l,q of these connector vertices as

follows: the set W
(i)
z,l,q consists of all the connector vertices

wz,l,t
(Cj ,ζ,y) such that Cj uses the variable xi and the assign-

ment ζ assigns value q to xi, i.e. the pair (Cj , ζ) belongs to

the set Γiq. Thus the cardinality of W
(i)
z,l,q is Y |Γiq| and thus∑

q∈[p] |W (i)
q,z| 6 Y JBi. Now comes the crucial interconnec-

tion of the di�erent matchings via the connector vertices.
For each q ∈ [p], pick independently and uniformly at

random a subset S
(i)
z,l,q of the matching M

(i)
z,l of size |W (i)

z,l,q|.
Connect the left endpoints of the edges in S

(i)
z,l,q to the ver-

tices W
(i)
z,l,q via a random matching. If the left endpoint

of an edge in S
(i)
z,l,q is connected to the vertex labeled wz,l,t

τ ,
then the right endpoint of that edge is connected to the cor-
responding node wz,l,t+1

τ . Moreover, we will call this special
edge as fz,l,i

τ . Note that the collection of the edges fz,l,i
(Cj ,ζ,y)

as (Cj , ζ) ranges over Γiq and y ranges over Y is precisely

the sub-matching S
(i)
z,l,q of M

(i)
z,l .

This de�nes a blob for every z, l. We now de�ne how to
connect the various blobs. Let A 6 MJY be the number
of accepting interactions, and let u1, . . . , uA be the set of
convexly independent vectors from Lemma 2.7. Note that
each ui ∈ [A]× [A2]. We let uτ denote the vector associated
with the accepting interaction τ , under some �xed one-one
mapping of the accepting interactions into [A].
Recall our de�nition of the label set L = [2AZ] × [2A2Z].

For each z ∈ [Z], each label l ∈ L, and each accepting
interaction τ , we connect the connector vertex wz,l,k+1

τ to
the connector vertex wz+1,l+uτ ,1

τ .
Finally, we add sources Sj,y,l and destination Tj,y,l. For

each j, y, l and each accepting interaction τ involving Cj and
y, we connect Sj,y,l to w1,l+uτ ,1

τ and connect wZ,l+Zuτ ,k+1
τ

to Tj,y,l. This completes the construction.
Note that the graph on blobs is a layered graph, where

each edge goes from a blob in layer z to a blob in layer
(z + 1).

5.2.1 Canonical paths
Let σ = (τ, l) = (Cj , ζ, y, l) be a tuple where τ = (Cj , ζ, y)

is an accepting interaction and l ∈ L is a label. We call
such a tuple a labeled interaction. Thus for each labeled
interaction σ = (Cj , ζ, y, l), we have a canonical path from
Sj,y,l to Tj,y,l that passes through the blobs (z, l+zuτ ). We
refer to it as P [σ] or P [j, ζ, y, l].

5.2.2 The parameters
The reduction above used several parameters such as Y, Z

and L. The analysis will use some other parameters such
as r, ρ, X, etc. We now specify how these are picked, in the
order of dependence.
Let ε > 0 be a �xed constant, and n denote the asymp-

totic size parameter. Let c = c(n) be the congestion that we
are seeking hardness for, and set b = c+1. For some integer
p > b, suppose that we start with a p-ary k-partite CSP with
completeness saty and soundness satn. Let M and V denote
the number of variables and constraints respectively, and
let J be an upper bound on the number of satisfying assign-
ments to any constraint. Further, Bi denotes the number of
constraints that variable i participates in.
Here is how the rest of the parameters are de�ned.

r = (5cksatn)−1 (stands for the inapproximability ratio
guaranteed by the reduction when saty = 1)

Y = max
(
1,

⌈
2(c+1)pk−1

J

⌉)
ρ = max(4pkJr, (Y J)

1
c+1 )

Xi = Y JBi (for i ∈ [V ])
X = maxi Xi

Ai = Xi/ρ
Z = 8Mrρc+1

L = [2MY JZ] × [2M2Y 2J2Z]
L = |L| = 4(MY J)3Z2 .

Note that
∑V

i=1 Bi = kM . For now, the reader may �nd
it easier to think of the congestion c as a large constant.
We �nish this section by arguing about the completeness

of this reduction. The soundness analysis appears in Sec-
tion 5.3. Finally, in section 5.4, we use this reduction start-
ing with an appropriate CSP, and show that for this choice,
we get the desired hardness.

5.2.3 Completeness
Suppose the CSP instance φ has an assignment, say η,

that satis�es satyM of the constraints. Then we claim that
at least satyMY L of source-destination pairs can be routed
on edge-disjoint paths. We claim that for each Cj that is
satis�ed by η, all the pairs (Sj,y,l, Tj,y,l) where Cj is satis�ed
by η, y ∈ [Y ] and l ∈ L can be routed on edge-disjoint paths.
Indeed, let Cj be satis�ed by η and let ζ be the projection of
η to the variables that participate in constraint Cj . Then,
for each y ∈ [Y ] and each l ∈ L, use the canonical path
P [j, ζ, y, l] to connect Sj,y,l to Tj,y,l. Since the various ζ's
used are projections of a single satisfying assignment η, the
paths are edge disjoint by construction.

Lemma 5.2 (Completeness). Suppose that φ is a Yes
instance. Then one can route at least a fraction saty of all



the MY L source-destination pairs on edge-disjoint paths,
i.e., with congestion 1. In particular, if the original CSP
had perfect completeness (saty = 1) then all the source-
destination pairs can be connected via edge-disjoint paths.

Thus our reduction from CSP to DirEDPwC preserves per-
fect completeness. We will only apply this reduction with
CSPs that are hard even with perfect completeness (this is
done in Section 5.4). Therefore, our hardness results for
DirEDPwC show that it is impossible to route more than a
small fraction of the input pairs with congestion c, even if
one is promised that all pairs can be routed via edge-disjoint
paths.

5.2.4 Size of theDirEDPwC instance

Lemma 5.3 (Reduction Complexity). The above re-
duction produces a graph with at most O(T ) vertices and
edges and runs in time that is polynomial in T where T =
M7p4kr3k(4pkJr)3b, assuming that the parameters choices
satisfy J 6 2bpk−1 6 (4pkJr)b.

Proof. The number of source-destination pairs in the
produced instance is MY L, each of which has at most J
canonical paths of length O(kZ) connecting them. There-
fore, the total number of edges in the graph is O(kZJMY L).
Let us now recall the value of the parameters from Sec-
tion 5.2.2. Under the assumption J 6 2bpk−1 6 (4pkJr)b,
we have ρ = 4pkJr and Y J 6 4bpk−1 = O(bpk−1). We have
Z = 8Mrρb and L = 4M3(Y J)3Z2. Therefore, the size
is kZJMY L = O(kM4(Y J)4Z3) = O(kM7(Y J)4r3ρ3b) =
O(kM7p4kr3(4pkJr)3b). The time complexity of the reduc-
tion is clearly polynomial in the size of the graph it pro-
duces.

5.3 Soundness of the reduction
We now show that if no assignment satis�es more than

a small fraction of the constraints, then it is impossible to
route many of the (Sj,y,l, Tj,y,l) paths, even if congestion c is
allowed. This part is complicated with several steps and uses
several of the ideas developed by Andrews and Zhang [4].

5.3.1 All paths are (nearly) canonical
For a blob (z, l), let z be its layer and l be its label. Con-

sider the graph GL formed by shrinking each blob (z, l) to a
single node. We say a path P passes through blob (z, l) in
G if its image in GL passes through the vertex (z, l). Recall
that Gl is a layered graph, with each edge from a node (z, l)
going to a node in layer (z+1). The sources connect to layer
1 and all edges entering a destination originate in layer Z.
Consider an arbitrary path from Sj,y,l to Tj,y,l. Our choice

of labels, and Lemma 2.7, guarantee the following.

Lemma 5.4. The set of blobs that a path from Sj,y,l to
Tj,y,l passes through is identical to that of some canonical
path P [j, ζ, y, l], i.e., equals {(z, l + zuτ ) | 1 6 z 6 Z} where
τ = (Cj , ζ, y).

Let P be a path from Sj,y,l to Tj,y,l. The above claim

implies that P corresponds to some canonical path P̂ and
hence to a labeled interaction σ = (Cj , ζ, y, l). For a vari-
able xi that this constraint participates in, we say that this
labeled interaction highlights the value q given by ζ to xi. If
the path P is routed, we shall say that the labeled interac-
tion σ is routed.

Note that the path P can deviate from the canonical path
P̂ = P [σ] within a blob. Call a path deviant in blob (z, l)
if it is not canonical within this blob. Also note that the
only edges going from blob (z, l′) to (z +1, l′ +uτ ) leave the

connector vertex wz,l′,k+1
τ . Thus P cannot deviate from P̂

in its last special edge in any blob. We record this fact as

Lemma 5.5. A path P that is deviant in blob (z, l) can-
not deviate from the last special edge on the corresponding
canonical path in this blob.

Recall that we wish to show that any routing of MY L/r
demands leads to congestion c+1 somewhere. We do this by
looking at the labeled interactions corresponding to a rout-
ing. Consider a set S of labeled interactions with |S| at least
MY L/r. We shall show that with high probability, routing
all interactions in S causes congestion c+1 somewhere. We
can then use a union bound over all subsets S to establish
the claim. The next few de�nitions are with respect to a
particular set of routed labeled interactions S.

Definition 5.6 (Heaviness and Lightness). A (vari-
able, value)-pair is said to be heavy in blob (z, l) if more than
A = X/ρ of the routed labeled interactions highlight it.
We say a labeled interaction σ is heavy in blob (z, l) if

for all its variables xi, the value q highlighted by this path is
heavy in the blob. We say σ is light in blob (z, l) if it is not
heavy.

5.3.2 Bounding flow on light paths
We �rst bound the total light �ow through any blob.

Lemma 5.7. The total number of routed labeled interac-
tions σ that are light in a blob (z, l) is at most MY/4r.

Proof. Consider a particular blob (z, l). For any vari-
able xi, the total number of labeled interactions that can
be light because of it is at most pAi, since for each light
value α of variable xi, at most Ai unlabeled interactions
that highlight value α for xi can be routed. Thus the to-
tal light �ow through the blob is at most

∑
i pAi. Recall-

ing that Ai = Y JBi/ρ, and that
∑

i Bi = kM , the to-
tal amount of light �ow through is blob is no more than
MY (pkJ/ρ) 6 MY/4r.

5.3.3 Bounding flow on heavy paths

Definition 5.8. We call a variable overambiguous in blob
(z, l) if it is heavy for at least b = c+1 di�erent values in this
blob. A blob (z, l) is called overambiguous if some variable
in it is overambiguous. A blob that is not overambiguous is
called unambiguous.

We bound the �ow on heavy paths as follows. We �rst
use the soundness of the CSP to show that the heavy �ow
through any unambiguous blob is at mostMY/4r (Lemma 5.10).
Next we show that each overambiguous blob gives some
probability of leading to a congested edge (Lemma 5.14).
Finally, a simple counting argument shows that if the total
�ow routed is at least MY/r, then there are many over-
ambiguous blobs (Lemma 5.13). This will imply an upper
bound on the probability of there being no congested edge.



5.3.4 Unambiguous blobs

Lemma 5.9. Suppose that φ is a no instance. Then for
every unambiguous blob, the number of routed labeled inter-
actions that are heavy in it is at most MY

4r
.

Proof. Assume the contrary and suppose that at least
MY/4r heavy labeled interactions are routed through an
unambiguous blob (z, l). Thus there are at least M/4r con-
straints Cj such that some labeled interaction corresponding
to Cj is heavy in this blob; we will call such a Cj heavy. Now
consider the assignment ζ resulting from picking a random
heavy value for each variable in this blob. The assignment
ζ satis�es a particular heavy constraint Cj with probability
at least 1/ck. Thus the expected number of constraints sat-
is�ed by this assignment is at least M/(4rck). On the other
hand, the soundness of the CSP implies that this can be
no more than Msatn. Thus r > (4cksatn)−1. This however
contradicts the de�nition of r.

From Lemmas 5.7 and 5.9, we conclude

Lemma 5.10. Suppose that φ is a no instance. Then for
any unambiguous blob (z, l) the number of routed labeled in-
teractions that pass through (z, l) is at most MY

2r
.

5.3.5 Overambiguous blobs
Let S be a set of unlabeled interaction such that routing

S makes a blob (z, l) overambiguous. We �rst lower bound
the probability that the canonical paths corresponding to S
will cause congestion b = c + 1 in blob (z, l).
Let α1, . . . , αb be b values for xi such that (xi, αq) is heavy

in (z, l). Recall that Xi = Y JBi is the number of special

edges in M
(i)
z,l where Bi 6 T is the number of occurrences of

variable xi in the constraints Cj , j ∈ [M ]. For convenience,
we shall omit the subscript i in the rest of this section and
use A and X to refer to Ai and Xi respectively. For q ∈ [b],
the heaviness of (xi, αq) implies that there is a set Sq ⊂ S
of A labeled interactions that highlight value αq for xi in
(z, l). Thus for each q, by construction, the set of special

edges in M
(i)
z,l used by (the canonical paths corresponding to)

the labeled interactions in Sq is a uniformly random subset
of size A. Thus for a given special edge ei

z,l,s, the probability
that it gets used by a labeled interaction in Sq, for some q,
is (A/X). Thus with probability (A/X)b, ei

z,l,s is used by
a labeled interaction from each of the sets Sq, and hence
su�ers congestion b.
Intuitively, since the events �edge ei

z,l,s has congestion b�
are negatively correlated, the probability that none of these
events occurs is no larger than what it would be if they were
independent. The following lemma formalizes this:

Lemma 5.11. Let S be a set of labeled interactions that
make blob (z, l) overambiguous. Then with probability at
least Y J

2ρb , some edge in (z, l) has congestion (c + 1).

Proof. Let Bs
q denote the event that edge ei

z,l,s gets
used by a labeled interaction in Sq. For each q, the events
{Bs

q : s ∈ [Y JB]} are negatively associated (see e.g. [10]).

Further, for q 6= q′ and any s, s′, the events Bs
q and Bs′

q′
are independent. Therefore the events {∩qB

s
q : s ∈ [Y JB]}

are also negatively associated ([10, Prop. 7]). Finally note
that the event ∩qB

s
q is precisely the event that edge ei

z,l,s

has congestion b. Thus the probability of a congested edge

is bounded below by that in the independent case. The lat-
ter probability is at most (1 − (A/X)b)X = (1 − 1/ρb)X 6
e−X/ρb 6 e−Y J/ρb

. We conclude that with probability at

least (1 − e−Y J/ρb

), at least one edge get congestion b in a
canonical routing of S. In other words, for any give set of la-
beled interactions S, the canonical paths corresponding to it
have a probability (1− exp(−Y J/ρb)) of causing congestion
b at each overambiguous blob. For our choice of parameters,
Y J/ρb 6 1, so that this probability is at least Y J

2ρb .

We note that the above argument only involves the coin
tosses for variable xi.
Next we entertain the possibility of deviant paths. For

a particular one of these paths P [σ] = P [j, ζ, y, l′], we will
�rst bound the probability of there being a deviant path P
avoiding ei

z,l,s. Recall that our CSP instance was k-partite;
let xi belong to part Vt. If t = k, Lemma 5.5 implies that
P cannot avoid ei

z,l,s. We thus assume that t 6= k. Let
us �x the coin tosses for all parts other than Vk. Recall
that the deviant path P must enter the blob (z, l) at node

wz,l,1
Cj ,ζ,y and leave the blob using node wz,l,k+1

Cj ,ζ,y . Consider the

set Wbad of connector nodes wz,l,k
τ ′ reachable from wz,l,1

Cj ,ζ,y

with τ ′ 6= (Cj , ζ, y); since the connector nodes and the left
endpoints of the special edges have outdegree one, and the
right endpoints have outdegree at most p, there are no more
than pk−1 nodes in Wbad. For a node wz,l,k

τ ′ in Wbad, it has a

path to node wz,l,k+1
Cj ,ζ,y only if it uses the same matching edge

as σ for its variable in Vk. This happens with probability
no more than 1/Xi 6 1/(Y J). Taking a union bound over
nodes in Wbad, the probability that there is a deviant path

P within this blob is at most pk−1

Y J
.

Thus amongst the c+1 canonical paths that congest edge
ei

z,l,s, the expected number that can deviate is at most
(c+1)pk−1

Y J
. For our choice of parameters, this expectation

is at most a half, and hence with probability at least 1/2,
none of these paths can �nd a deviation.
Thus with probability at least 1

2
( Y J
2ρb ), some edge in this

blob has congestion c + 1, for any set of (possibly deviant)
paths P that correspond to S. Moreover, since x > 1− e−x,
we have shown that:

Lemma 5.12. Let (z, l) be a blob that is overambiguous
with respect to a set S of labeled interactions. Then with
probability at least (1 − exp(− Y J

4ρb )) over the coin tosses in

the blob, any routing of S has an edge with congestion (c+1).

5.3.6 Putting it together
We �rst use an averaging argument to show that if the to-

tal �ow is large, there must be several overambiguous blobs.
The proof is deferred to the appendix.

Lemma 5.13. Let S be a set of MY L/r labeled interac-
tions and suppose that φ is a no instance. Then there are at
least ZL/2r overambiguous blobs.

Proof. Consider a particular layer z∗ ∈ [Z]. Because of
the layered structure of the graph, each labeled interaction
σ ∈ S must pass through some blob (z∗, l), l ∈ L. From
Lemma 5.10, at most MY L/2r of the σ's could be routed
through unambiguous blobs. Thus the �ow through overam-
biguous blobs in this layer is at least MY L/2r. Since each
blob can allow at most MY �ow through it, there must be



at least L/2r overambiguous blobs in this layer. Moreover,
this is true for each z∗ ∈ [Z], and we get a total of ZL/2r
overambiguous blobs.

We next combine Lemmas 5.12 and 5.13 to show the fol-
lowing.

Lemma 5.14. Let S be a set of MY L/r labeled interac-
tions and suppose that φ is a no instance. Except with prob-
ability at most exp(−Y JZL

8rρb ) over the coin tosses of the re-

duction, every routing of S causes congestion (c + 1).

Proof. By Lemma 5.13, there must be at least ZL/2r
overambiguous blobs. By Lemma 5.12, the probability that
any one of these blobs avoids congestion (c + 1) is at most
exp(− Y J

4ρb ). Since the coin tosses in the blobs are indepen-

dent, the probability of avoiding congestion everywhere is at
most exp(−Y JZL

8rρb ).

Taking a union bound over the at most 2MY LJ possible
sets S, the probability that there is any routing with small
congestion is exponentially small for Z = 8rρbM . Thus we
have shown that:

Theorem 5.15 (Soundness). If φ is a no instance,
then with high probability over the coin tosses of the reduc-
tion, it is not possible to route more than MY L/r of the
source-destination pairs, even allowing for congestion c.

We conclude this section by noting that Lemmas 5.2, 5.3
and Theorem 5.15, together with the value of the gap r =

1
5cksatn

, abstract all that we will need about the reduction

in the next section.

5.4 Using the reduction
In this section, we state and obtain the hardness results

for constraint satisfaction problems with certain parame-
ters. These will then be plugged into the above reduction
to deduce inapproximability results for routing on directed
graphs.

5.4.1 Derandomized Serial Repetition
The most obvious way to boost the soundness of an in-

stance I of a hard CSP with parameters (M ′, V ′, J, p, `, 1, s)
instance I is to consider the t-fold repetition of I which has
V = V ′t variables (t copies for each of the original variables)
and has a constraint for each t-tuple of constraints in I, with
the i'th copy of the variables participating in the i'th con-
straint of each tuple. This yields a CSP with much smaller
soundness s = s′t, but unfortunately its large number M ′t

of constraints precludes getting meaningful hardness results
when t is large.
A more size e�cient transformation is to not consider all t-

tuples but rather consider all tuples corresponding to length
t − 1 walks in a sparse D-regular graph G with M ′ vertices
(that correspond to the constraints of I). This will yield
a collection of M ′Dt−1 constraints, which is much smaller
than M ′t for D � M . Of course, one cannot argue that the
soundness is now as small as s′t. However, if G is a good
(spectral) expander, the second largest eigenvalue (in abso-
lute value) of whose adjacency matrix is much smaller than
D, then one can show that the soundness is not much larger.
Since our overall reduction is randomized anyway, we do not
even need explicit constructions of expanders. We can pick
a random D-regular graph (possibly with multiple edges),

say by picking D random matchings, with M ′ vertices, and
then appeal to a result that with probability at least 3/4,

the second largest eigenvalue will be at most, say, 2D7/8 [11].
One can thus show the following.

Lemma 5.16. For any integer �repetition parameter� t >
1, there is a randomized reduction that, with probability at
least 3/4, maps instances of a p-ary `-partite CSP with pa-
rameters (M ′, V ′, J, p, `, 1, s) into instances of a p-ary
t`-partite CSP with parameters

(M 6 M ′(4/s)4t, V = V ′t, J t, p, `t, 1, (2s)t) .

The reduction runs in time that is bounded by a polynomial
in M ′(4/s′)t.

5.4.2 Hard CSPs from Raz two prover systems
We start with the following hardness result for Label Cover.

Theorem 5.17. There exists an absolute constant γ, 0 <
γ < 1, such that for all large enough integer valued functions
p : N → N, it is not possible to decide the CSP with parame-
ters (nlog p, nlog p, p, p, 2, 1, 1/pγ) in time polynomial in

the size of the instance, unless NP ⊆ DTIME(nO(log p(n))).
(Here we used the shorthand p = p(n).)

In particular, using the above, one can get quasi NP-hardness

for a soundness of 1/2O(log1−ε M) as a function of the num-
ber of constraints for any desired constant ε > 0. One can
also get NP-hardness for a arbitrarily small constant sound-
ness. But the above does not yield a polynomially small
soundness of 1/Mε for some ε > 0. For this we boost the
soundness using the expander walk technique discussed in
Section 5.4.1.
For an integer valued function c : N → N satisfying 1 6

c(n) 6 log n, we start with a hard instance of the above

CSP for the choice p(n) = 5 · (2c(n)2)2/γ . We then perform
the derandomized serial repetition of Lemma 5.16 on such

a CSP with repetition parameter t =
⌈

log n
c(n)

⌉
. This proves

the hardness of a CSP with parameters(
M 6 nlog p(4p)4t, V = tnlog p, J = pt, p, k = 2t, 1, (2/pγ)t) .

(1)
In what follows, we use the shorthand c = c(n). For the
above choice, we have 4(pkJr)b > 2bpk−1: indeed b = c+1 >
2, so Jb > pk > bpk−1. Moreover, J = pk/2 6 2bpk−1.
Therefore, by Lemma 5.3, the size (number of vertices) S of
the graph produced by the reduction on the resulting CSP
satis�es

S = O(M7p4kkr3(4pkJr)3b)

6 nO(log p)pO(kc) = pO(log n+kc) 6 pO(kc)

where we used the parameter values from (1), in the last
step we used the fact that kc = 2tc > 2 log n, and in the
�rst inequality we used the fact that gap r is given by

r =
1

5cksatn
=

pγk/2

5ck2k/2
6 pγk/2 .

By our choice of p above, we also have r > pγk/4. It follows
that as a function of the number of vertices S of the graph,
the gap r satis�es r > SΩ(γ/c). Therefore, we get the desired
polynomial hardness as a function of the congestion.



Let us now bound S as a function of n (this also serves as
a bound on the running time of the reduction from the CSP
to the directed routing instance). We have

S 6 pO(log n+kc) 6 pO(log n) = c(n)O(γ−1 log n) = nO(γ−1 log c(n)) .

When c(n) = log n, we have S = nO(log log n), and so we get

a superconstant SΩ(γ/c) factor inapproximability result for
congestion c (as a function of S) up to Ω( log S

log log S
).

The preceding discussion therefore implies the following
hardness result for DirEDPwC:

Theorem 5.18. There exist absolute constants α0, γ0 > 0
such that for every integer-valued function c : N → N satisfy-
ing 1 6 c(n) 6 log n (and computable in time polynomial in

n), the following holds unless NP ⊆ ⋃
d BPTIME(nd log c(n)).

Given a directed graph G on S 6 nO(log c(n)) vertices with
source-destination pairs (si, ti), 1 6 i 6 k, it is impossible
to distinguish between the following cases in time polynomial
in S:

• [Yes Instances:] There are edge-disjoint paths con-
necting all the si-ti pairs.

• [No Instances:] For c = c(n), any routing of more

than a fraction 1/Sγ0/c of the si-ti pairs uses some
edge at least c+1 times. That is, with congestion c, at
most a fraction S−γ0/c of the si-ti pairs can be routed.

Using the choice c(n) = log n, we get a gap of (log S)Ω(1)

for congestion c(S) = Θ
(

log S
log log S

)
. This implies a factor

Ω(log S/ log log S) hardness for the congestion minimization
problem, which we record formally below.

Corollary 5.19. [Hardness of congestion minimiza-
tion] Assume that NP 6⊆ ⋃

d BPTIME(nd log log n). There
is an absolute constant a0 > 0 such that given a directed
graph on S vertices with source-destination pairs (si, ti),
1 6 i 6 k, it is impossible to distinguish between the fol-
lowing cases in time polynomial in S:

• [Yes Instances:] There are edge-disjoint paths con-
necting all the si-ti pairs.

• [No Instances:] Every routing of all the the si-ti

pairs incurs congestion more than a0 log S
log log S

on some
edge.

We note that given a target congestion function c′ = c′(S),
one needs to choose an appropriate function c(n) so that

the value c(n) is equal to c′(S) = c′(c(n)O(γ−1 log n)). For
any c′ such that 1 6 c′(S) 6 O(γ log S/ log log S), this can
be done. Indeed for a given n, such a c = c(n) can be
found using binary search in the interval [1, log n], since S
is monotonically increasing in c.

Unique Paths property. We now brie�y discuss how
one can get the unique paths property. This modi�cation is
based on two observations: �rstly, if we start with a 2-partite
CSP, the instance produced has no deviant paths, and thus
all paths are canonical. Secondly, there is one canonical
path for each satisfying assignment to the constraint. Thus
if we split each source-destination pair into at most J source-
destination pairs, one for each satisfying assignment, we can
assign each canonical path to a unique source-destination
pair and get a unique-paths instance.

The completeness proof goes through unchanged, except
that we do not have perfect completeness any more. We
note that in the original construction described earlier, since
there is a single source-destination pair for each constraint,
a constraint is either routed or not routed. In the mod-
i�ed instance, we have a source-destination pair for each
(constraint, satisfying assignment) pair, and several such
pairs corresponding to a single constraint may get routed.
However, since any particular satisfying assignment chosen
in the proof of Lemma 5.9 can satisfy at most one (con-
straint, satisfying assignment) pair involving a particular
constraint, the probability of a particular constraint being
satis�ed by an assignment grow linearly with the number of
routed heavy labeled interactions involving the constraint
and thus the lemma continues to hold. It is easy to verify
that the rest of the proof of soundness goes through un-
changed.
We next analyze the bound proved by this reduction.

Since we need the CSP to be 2-partite, we cannot use se-
rial repetition any more. We start with a CSP from The-

orem 5.17, with p = 2bc(n)ε(n)c, for c(n) = log n, and a
suitably chosen function ε : N → <. It is easy to check that

S 6 214c1+ε

. Moreover r = pγ

10c2
> p

γ
2 = SΩ(γ/2c), as long as

p
γ
2 > 10c2. Substituting p = 2bc(n)ε(n)c, this bound trans-

lates to ε > log log log n+log 4
γ

log log n
. For ε set to this lower bound,

we get an instance size S = nO(log log n). This gives a SΩ( 1
c
)

hardness result for congestion c = δ log S
log log S

for a constant

δ = δ(γ), assuming that NP 6⊆ BPTIME(nO(log log(n))). As
we increase ε to a large enough constant, we get a hardness
result for congestion (log S)β for any desired constant β > 0

(now assuming NP 6⊆ BPTIME(npolylog(n))).
In fact, given a target congestion value c(S) such that

(log S)β 6 S 6 δ log S
log log S

, we can set n = 2c(S); ε is set by

1 + ε = log((log S)/14)
log c

. Combined with Theorem 4.8, we we

get the SΩ( 1
c
) hardness with the unique-paths property for

all c such that 1 6 c 6 δ log S
log log S

. We record this as:

Theorem 5.20. There exist absolute constants β0, γ0, δ0 >
0 such that for every integer-valued function c : N → N sat-
isfying 1 6 c(S) 6 δ0 log S

log log S
(and computable in time polyno-

mial in n), the following holds unless NP ⊆ BPTIME(nlogβ0 n).
Given a directed graph G on S vertices with source-destination
pairs (si, ti), 1 6 i 6 k, such that there is a unique si-ti path
in G, it is impossible to distinguish between the following
cases in time polynomial in S:

• [Yes Instances:] There are edge-disjoint paths con-
necting k1 of the si-ti pairs.

• [No Instances:] For c = c(n), any routing of more

than k1/Sγ0/c of the si-ti pairs uses some edge at least

c+1 times. That is, with congestion c, at most k1S
−γ0/c

of the si-ti pairs can be routed.

Since we have the unique-paths property, the hardness holds
for ANFwC as well.

5.4.3 CSPs with better soundness vs. alphabet size
trade-off

The previous result has the drawback that it yields a
rather poor constant in the exponent of the SΩ(1/c) inap-
proximability factor. An inspection of the above calculation



reveals that the main source of this weak bound is the large
number J of satisfying assignments compared to the inverse
of the soundness 1/satn for the CSP which is reduced to
the DirEDPwC instance. In turn, this is inherited from the
Raz two prover system (Theorem 5.17) where the number of
satisfying assignments per constraint is p whereas the sound-
ness is 1/pγ for a tiny value of γ > 0.
To improve the constants, we need to start from a CSP

with a better relation between J and the soundness. While
better trade-o�s should be possible by using more sophisti-
cated CSPs (including possibly a variant of the CSPs con-
structed by Håstad and Khot [17]), we will use the following
result.

Theorem 5.21. There exists an absolute constant λ < ∞
such that for all integer valued functions p : N → N that
takes prime values, the p-ary 3-partite CSP with parameters

(
nλ log p2pλ

, nλ log p2pλ

, 2p2, p, 3, 1,
3

p

)

is not decidable in time polynomial in the size of the in-

stance, unless NP ⊆ DTIME(2p(n)O(1)
nO(log p(n))). (Here

we used the shorthand p = p(n).)

This can be proved using the powerful (and by now stan-
dard) paradigm involving suitable tests on Long Code based
encodings of answers in the Raz 2-prover system which are
then analyzed using Fourier techniques [16]. In particular,
the result above can be obtained using p-ary Long Codes
where p is a prime, and each test checks whether a certain
linear combination of three variables equals one of two pos-
sible values modulo p. We omit the details here.
Note that since the bound on number M of constraints of

the instance is at least 2p(n)O(1)
, and p(n) is larger than the

congestion parameter c(n), the largest congestion for which
we will get a hardness result by this approach the soundness
as a function of M is at most logγ M for some small γ > 0.
We will now use the above CSP to obtain a hardness factor

of Ω(S
1

(9+ε)(c+9) ) for DirEDPwC with congestion c, for any
desired constant ε > 0, that is valid for congestion c = c(S)

in the range 1 6 c 6 (log S)α(ε) for some constant α(ε) > 0.
Let L = L(ε) > 16/ε be a large enough integer as a func-

tion of ε. For an integer valued function c : N → N satisfying
1 6 c(n) 6 (log n)1/6λL, we start with a hard instance of the
CSP from Theorem 5.21 choosing p = p(n) to be any prime
in the range [5 · (6c(n)3)L, 10 · (6c(n)3)L]. Note that for this

choice p = O(log1/2λ n), so that nλ log p2pλ 6 p2λ log n.
As we did with the Raz based CSP earlier, we then boost

the soundness using the expander-based derandomized serial
repetition on such a CSP with repetition parameter

t =

⌈
2λL log n

c(n)

⌉
. (2)

This proves the hardness of a CSP with parameters(
M 6 p2λ log np8t, V 6 tp2λ log n, J = (2p2)t,

p, k = 3t, 1, (6/p)t )
.

In what follows, we use the shorthand c = c(n). For the
above choice, we have (4pkJr)b > 2bpk−1: indeed b = c+1 >
2, so Jb = (2p2k/3)b > p4k/3 > bpk−1. Hence ρ = 4pkJr.

Moreover, J = 2
k
3 p

2k
3 6 2pk−1 6 2bpk−1. Therefore, by

Lemma 5.3, the size (number of vertices) S of the graph
produced by the reduction on the resulting CSP satis�es

S = O(M7p4kkr3(4pkJr)3b). The gap r is given by r =

(5cksatn)−1 = pk/3

5ck6k/3 , so by our choice of p, we have

p(1−1/L)k/3 6 r 6 pk/3 . (3)

Let us now try and bound S in terms of r. To this end,
we will bound each of the quantities J, M that �gure in the
bound for S = O(M7p4kkr3(4pkJr)3b). We have

J = (2p2)k/3 = p
k
3 (2+ 1

log p
) 6 r(1+2/L)(2+1/L) 6 r2+ε

using (3), p > 2L, and L > 16/ε. We have

M 6 p8k/3p2λ log n 6 r8(1+2/L)r(1+2/L)c/L 6 r8+ε(c+1) ,

using L > 16/ε.

Moreover, p4k 6 r12(1+ 2
L

) 6 r12+2ε. The remaining term
k(4pk)3b in the bound for S is surely no larger than 215kb 6
p15kb/ log p 6 p2εk(c+1) 6 r8ε(c+1). Combining these bounds,
we conclude that

S = O(M7p4kr3k(4pk)3b(Jr)3b)

= O
(
r7(8+εb)r15+2εr8εbr(3+ε)3b

)

= O
(
r9b+71+18εb+6ε

)
= O

(
r(9+18ε)(b+8)

)
.

Therefore with ε′ = 18ε, S = O(r(9+ε′)(c+9)). We conclude
that the gap as a function of the size of the graph is given

by r = Ω(S
1

(9+ε′)(c+9) ).
The running time of the reduction is polynomial in S,

and thus by the above calucation is pO(kc) = pO(log n) =
nO(log c(n)). By the preceding discussion, we can conclude
the following hardness result.

Theorem 5.22. For every constant ε > 0, there exists a
constant β = β(ε) > 0 such that for every integer-valued
function c : N → N satisfying 1 6 c(n) 6 logβ n (and com-
putable in time polynomial in n), the following holds unless

NP ⊆ ⋃
d BPTIME(nd log c(n)). Given a directed graph G on

S 6 nO(log c(n)) vertices with source-destination pairs (si, ti),
1 6 i 6 k, it is impossible to distinguish between the follow-
ing cases in time polynomial in S:

• [Yes Instances:] There are edge-disjoint paths con-
necting all the si-ti pairs.

• [No Instances:] For c = c(n), any routing of more

than a fraction S
− 1

(9+ε)(c+9) of the si-ti pairs uses some
edge at least c + 1 times. That is, with congestion c,

at most a fraction S
− 1

(9+ε)(c+9) of the si-ti pairs can
be routed.

6. CONCLUSIONS
We showed a factor NΩ(1/c(N)) inapproximability factor

for DirEDPwC with congestion paramater c(N) in the range
1 6 c(N) 6 α log N/ log log N for some absoluate constant
α > 0. For constant congestion, we showed a hardness

factor of roughly N
1

3c+O(1) . An obvious open question is

whether the hardness factor can be improved to N
1

(1+ε)(c+1) ,
which would essentially match the best known algorithms
that achieve an approximation ratio of O(cN1/c). Note that

for c = 1, such a N1/(2+ε) hardness factor is known [12]. As
mentioned in the introduction, even with perfect complete-

ness, one should be able to get a N
1

(3+ε)(c+O(1)) hardness



factor using our methods by plugging in a better CSP as
starting point for our reduction. Reducing the multiplica-
tive factor from 3+ ε all the way to 1+ ε appears to require
additional new ideas, and remains an interesting open ques-
tion.
Pinning down the approximability of congestion minimiza-

tion and EDP on undirected graphs remains a substantial
challenge. For example, for undirected congestion minimiza-
tion, there is a still a gap between the O(log N/ log log N) ra-
tio achieved by randomized rounding and the factor o(log log N)
inapproximability result of Andrews and Zhang [2]. For

undirected EDP, the best known hardness of log1/2−ε N [1] is
quite far from the polynomial factors achieved by the known
approximation algorithms.
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