
Edge-Disjoint Paths in Planar Graphs
with Constant Congestion

Chandra Chekuri
Lucent Bell Labs

600 Mountain Avenue
Murray Hill, NJ 07974

chekuri@research.bell-labs.com

Sanjeev Khanna
Dept. of Comp. & Inf. Sci.
University of Pennsylvania

Philadelphia, PA 19104

sanjeev@cis.upenn.edu

F. Bruce Shepherd
Lucent Bell Labs

600 Mountain Avenue
Murray Hill, NJ 07974

bshep@research.bell-labs.com

ABSTRACT
We study the maximum edge-disjoint paths problem in undi-
rected planar graphs: given a graph G and node pairs s1t1,
s2t2, . . ., sktk, the goal is to maximize the number of pairs
that can be connected (routed) by edge-disjoint paths. The
natural multicommodity flow relaxation has an Ω(

√
n) inte-

grality gap. Motivated by this, we consider solutions with
small constant congestion c > 1; that is, solutions in which
up to c paths are allowed to use an edge (alternatively, each
edge has a capacity of c). In previous work we obtained an
O(log n) approximation with congestion 2 via the flow re-
laxation. This was based on a method of decomposing into
well-linked subproblems.

In this paper we obtain an O(1) approximation with con-
gestion 4. To obtain this improvement we develop an alter-
native decomposition that is specific to planar graphs. The
decomposition produces instances that we call Okamura-
Seymour (OS) instances. These have the property that all
terminals lie on a single face. Another ingredient we develop
is a constant factor approximation for the all-or-nothing flow
problem on OS instances via the flow relaxation.

We also study limitations on the approximation that can
be achieved by a well-linked decomposition. For general
graphs we show a lower bound of Ω(log n). For planar graphs
we describe instances that suggest a super-constant lower
bound.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Non-numerical Algorithms and Problems

General Terms
Algorithms, Theory.

Keywords
Edge-disjoint Paths, Planar Graphs, Multicommodity Flow.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06,May21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

1. INTRODUCTION

1.1 Edge-Disjoint Paths, Cut Condition, and
Multicommodity Flow

In this paper we study the edge-disjoint path problem
(EDP) in undirected graphs. We are given a supply graph
G = (V, E) and a demand graph H = (V, F). We some-
times write the demand set F as a set of node pairs T =
{s1t1, s2t2, . . . , sktk}. The objective is to connect the pairs
via edge-disjoint paths. If such a collection exists, the de-
mands are said to be routable. In the maximum edge-disjoint
path problem (MEDP), the objective is to find a maximum
routable subset of F (or T). More generally, we sometimes
allow each demand to have a specified demand amount di,
and supply edges to have capacities; we also may relax the
notion of routability to suit our purposes. For instance, we
may allow the demand to be fractionally routed (multicom-
modity flow) or we may require that the whole demand be
routed on a single path (unsplittable flow).

The problem of determining whether a set of demands is
routable is one of the classical NP-hard problems in combi-
natorial optimization [9, 14]. There are two natural neces-
sary conditions that are employed in tackling this feasibility
problem. The first is the cut condition: for every proper
subset S ⊆ V , |δG(S)| ≥ |δH(S)|. If demand edges have
values, then the right-hand side becomes

∑
f∈δH (S) df , and

if edges have capacities, δG(S) is altered accordingly. Here
we use δG(S) to denote the set of edges in a graph G with
exactly one end point in S. The second necessary condi-
tion is the existence of a multicommodity flow (MCF) for
the demand graph H. That is, an assignment of nonnega-
tive flow f(P) to paths P that obey the following capacity
and demand constraints: (1)

∑
P :e∈P f(P) ≤ ue and (2)∑

P∈Pi
f(P) = 1. We let Pi denote the paths joining si and

ti in G and let P = ∪iPi. In (1) ue denotes the capacity of
edge e.

Obviously if F is routable, then it has a multicommodity
flow, and the existence of a flow implies that the cut con-
dition holds. However, there are instances where the cut
condition holds but for which there is no flow, and instances
where a flow exists but for which F is not routable. Not
surprisingly, research has tended to bifurcate into two cate-
gories. One is to examine special cases where the cut condi-
tion (or more general conditions such as the existence of a
flow) guarantees solvability of the disjoint path problem. A
second direction is to quantify the degree to which routabil-
ity (fractional or integral) diverges from the cut condition.

In the first category, there are two archetypal examples
that play a central role in the current study. One is the
max-flow-min-cut theorem for single-source multicommod-
ity flow. Here we have a source node s and terminals t1, t2,
. . . , tk (possibly also with associated integer demands di).
Results of [10, 23] then show that the cut condition is suffi-
cient for the simultaneous routability of the demands. The
second is the Okamura-Seymour Theorem which states that
the cut condition is sufficient for solvability of multicommod-
ity flow for any instance where G is planar and all demand
edges have both ends on a single face of G, in particular on
the outer face.

In the second category, the notion of concurrency plays a
rôle in measuring so-called flow-cut gaps. Given an instance
of EDP or MCF that satisfies the cut condition, one asks for
the largest value λ > 0 such that there exists a multicom-
modity flow that simultaneously routes λdf for each demand
edge f . The inverse of the worst case value of λ over all all
instances in G is the flow-cut gap for G. In [21], a first
positive breakthrough was given in bounding the flow-cut
gap for general undirected graphs G; a bound of O(log n)
was established for uniform instances of MCF. For the non-
uniform case a similar bound was shown in [3, 22]. In planar
graphs, for uniform multicommodity flow, the flow-cut gap
was shown to be O(1) [15], while for non-uniform multi-
commodity flow the current best upper bound on the gap is
O(

√
log n) [26].

1.2 Maximum Edge-Disjoint Paths Problem
In tackling the throughput maximization problem MEDP,

one has a natural LP relaxation. Assuming the unweighted
version, we seek to maximize

∑
P f(P) subject to the con-

straints (1) and (2) above, where we relax the latter to in-
equality. If opt is the optimal value of the LP, then we seek
to find a feasible integral solution that guarantees a large
fraction of opt.

Unfortunately, the integrality gap for this LP is Ω(
√

n),
even in the case of planar graphs [13]. This bound is tight
even in general graphs [8]. In contrast, known inapprox-
imability bounds are exponentially smaller: only recently
a first super-constant lower bound was given in [1]: unless

NP ⊆ ZPTIME(npolylog(n)) there is no O(log
1
3−ε n) ap-

proximation for MEDP (this hardness factor is improved to

O(log
1
2−ε n) in [2]).

In the face of these negative results, it is natural to ex-
amine relaxations of the problem. MEDP’s difficulty stems
from two seemingly distinct aspects: one arising from the
gap between fractional and integral flows, and the other
stems from the selection of which subset of demands to try
to route. When G itself is a tree, the first complication dis-
appears and one may focus on the issues involved in choosing
a most profitable routable subset of demands. Even on trees
this problem is APX-hard [13]. A 2 approximation for the
cardinality case was shown in [13] and a 4 approximation for
the weighted case is shown in [4]. To understand the diffi-
culty of the subset selection problem, a relaxation of MEDP
was proposed in [4]: to find a maximum fractionally routable
subset of the demands. This all-or-nothing multicommodity
flow problem (ANF) was studied in [5] where it was shown
that the natural LP has a poly-logarithmic integrality gap.
We mention that the inapproximability bound of [1] also
applies to ANF, and hence the upper and lower bounds are
separated by only a poly-logarithmic factor.

The focus of the present paper is a second relaxation of
MEDP, that of allowing congestion on the edges of G. Here,
we seek a sizable fraction of opt by allowing the routable
set to use each edge up to some constant number of times
(alternatively, each edge is endowed with some constant ca-
pacity). Even with congestion c, it is shown in [2] that un-

less NP ⊆ ZPTIME(npolylog(n)) no O(log
1−ε
c+1 n) approxi-

mation is possible. Similar lower bounds are also shown for
the integrality gap of the flow relaxation [2]. However no
super-constant integrality gap is known for planar graphs if
congestion 2 is allowed. In contrast the best upper bound
known was O(

√
n) until recent work [6, 7] which obtained

a bound of O(log n) with congestion 2. Our main result,
stated below, considerably strengthens this result.

Theorem 1.1. For the MEDP problem in a planar graph,
there is a polynomial time algorithm to route Ω(opt) pairs
with congestion 4, where opt is the value of the multicom-
modity flow relaxation.

We have given only the briefest overview to set the context
and motivation for proving the above result. Some other
related work in the area is discussed in the next subsection.

1.3 Outline
We outline the main ingredients of the proof Theorem 1.1,

and how it differs from the framework used in [5, 6, 7] for
solving the two throughput maximization problems ANF
and MEDP. In the following we assume, without loss of gen-
erality, that the edge set F of the demand graph H = (V, F)
induces a matching M . We also let X denote the endpoints
of M , the terminals of the instance.

Decompositions into Well-Linked Sets: Our previous
approach to producing a large routable set was based on
finding “well-connected” sets of terminals. A set X of ter-
minals is well-linked if for each S ⊆ V with |S ∩ X| ≤
|(V \ S) ∩ X|, we have |δ(S)| ≥ |S ∩ X|. The relevance
of well-linked sets for edge-disjoint path problems in planar
graphs is that a well-linked set implies the existence of a
grid minor of size Ω(|X|) [28]. Hence, if edge congestion 2 is
allowed, one may satisfy a constant fraction of any matching
on the terminals, by routing through the grid minor [6].

We consider one approach to find a well-linked subgraph,
starting from a fractional flow. We nominally treat terminals
as having “weight” one, but in general this weight represents
the total flow they originate in the fractional solution. We
find an induced subgraph G[S] that contains say p terminals
from the pairs while |δG(S)| is small compared to p, say εp.
We say S has a short boundary with respect to the terminals
inside. Note that if the terminal set is not well-linked in the
original graph, then there is a sparse cut S with respect to
the terminals, and this identifies a short-boundary set. If
we choose S carefully and the terminals in G[S] turn out to
be (approximately) well-linked, then the total flow lost by
removing edges of δ(S), can be charged to G[S] and we can
recurse on G[V \S]. This scheme can be applied to obtain a
well-linked decomposition with only a constant factor loss if
G happens to be a capacitated tree: choose S to be a mini-
mal set with a short boundary. (This observation combined
with Räcke’s [25] hierarchical decomposition of graphs can
be used to obtain a well-linked decomposition with a poly-
logarithmic approximation ratio. This is implicitly shown
in [5].) In general graphs or even planar graphs choosing

Figure 1: The duals D6, D8, D10 of the 6,8, and 10-dimensional recursively divisible planar graphs.

a minimal short boundary set S does not guarantee well-
linkedness of the terminals in G[S]. In [7] a simple recursive
scheme was used. For some ε that is sufficiently small (in-
verse poly-logarithmic), we find a set S that is ε-short and
recurse on G[S] and G[V \ S].

It is natural to ask whether the above recursive procedure
yields a well-linked decomposition that retains a constant
factor of the flow if ε is some fixed constant, in particular
for planar graphs. If this is the case, then we would obtain a
constant factor approximation for MEDP in planar graphs
with congestion 2. Unfortunately there are instances where
using the recursive procedure (for any constant ε) will not
retain even a logarithmic fraction of the initial flow. Such
instances have a property we call recursive divisibility with
respect to a set of terminals X. More concretely, there is
a binary tree whose leaves are the nodes of V and for each
internal node u, with subtrees Tl, Tr we have that the num-
ber of edges of G with one end in Tl and the other in Tr

is at most ε min{|Tl ∩ X|, |Tr ∩ X|}. In other words, this
tree represents a sparse cutting procedure where each cut
produced along the way is “ε-sparse” relative to the original
terminals. In Section A we show general graphs which are
recursively divisible for ε = O(1/ log n), and planar graphs
that are recursively divisible for any constant ε > 0. These
graphs suggest that a well-linked decomposition might re-
sult in super-constant approximation in planar graphs – see
Figure 1.3 for a picture of the duals of graphs in this class.
The precise definitions of a well-linked decomposition and
the distinction between cut and flow well-linkedness can be
found in Section A of the appendix. The following theo-
rem shows a lower bound in general graphs; the appendix
contains additional details.

Theorem 1.2. There are instances of EDP on a graph
with n nodes, with opt denoting the value of the multicom-
modity flow relaxation such that any cut-well-linked (and
hence any flow-well-linked) decomposition retains at most

O(opt
log n

) pairs from the matching.

Outline of the New Algorithm: The description above
shows that in order to produce a constant factor result for
MEDP in planar graphs, we might need to diverge from
the framework of finding well-linked subgraphs. As before,
we continue to seek a decomposition into “well-connected”
pieces. However, our notion of well-connected is weakened
considerably. In a way, this is not surprising since well-linked
sets admit good routings for any matching on the terminals

inside the well-linked piece G[S]. In the new framework, the
definition of well-connected is more tied to the specific set
of demands for an instance.

The new algorithm looks for a minimal subset S such
that |δ(S)| is small (at most some constant factor ε < 1)
relative to the total fractional flow in G[S]. We then show
how to pick a subset of the demands with both ends in
S that can be routed. This is achieved as follows. First,
using minimality of S one can show that terminals in S can
be fractionally routed to the outside face; call this the to-
the-face routings. Second, this routing is used to set up a
feasible auxiliary multicommodity flow instance for pairs of
nodes on the outside face of G[S]. The flow between distinct
pairs are assorted values in the range [0, 1]. These are called
OS instances (Okamura-Seymour). For the OS instance, we
then solve an all-or-nothing flow problem, that is, for each
pair its flow becomes either 0 or 1. We show that such a
conversion is possible with only a constant factor loss in the
total flow. We then apply the Okamura-Seymour theorem
for the resulting pairs, to obtain a half-integral flow, thus
corresponding to routing with congestion 2. Finally, this
routing is stitched together with the to-the-face routing to
satisfy a large fraction of our original demands. With some
care, this can be achieved with an additional congestion of
2, to give the overall congestion bound of 4.

Other Related Work: Disjoint paths and routing prob-
lems have an extensive literature. We do not attempt to do
justice in this extended abstract, and highlight only the most
relevant work. We suggest [12, 29, 16, 20] for extensive in-
troductions to the algorithmic work and some recent papers
[6, 7, 17] for other pointers. The seminal work of Robertson
and Seymour on graph minors, and their polynomial time al-
gorithm for the disjoint paths problem for a fixed number of
pairs [27], has had enormous impact on subsequent research.
For planar graphs the first non-trivial algorithms for MEDP
were given by Kleinberg and Tardos [18, 19] who consid-
ered grids and grid-like graphs. It led them to conjecture
that poly-logarithmic approximation algorithms exist for all
even-degree planar graphs. Implicitly the conjecture im-
plied the existence of a poly-logarithmic approximation for
planar graphs with congestion 2. This was achieved using
well-linked decompositions introduced in [6, 7]. Kleinberg
[17] obtained an O(log2 n) approximation for all even-degree
planar graphs also using such decompositions. In a variety
of multicommodity flow problems Eulerian instances admit
integral solutions where one might only suspect half-integral
solutions – see [12, 29] for further details.

2. PRELIMINARIES
Simplifying the Input Instance: The input consists of
an undirected planar graph G = (V, E) with integer edge
capacities and a set of node pairs s1t1, s2t2, . . . , sktk. We
assume without loss of generality that each node in G has de-
gree at most 4 and all edges have unit capacity. We refer the
reader to [12, 6] for more details on how a given instance can
be transformed to the bounded degree case while preserving
planarity. The transformation increases the size of the graph
to

∑
e c(e). Note that this need not be strongly polynomial

in the input size. However, as we indicate later, when us-
ing the LP relaxation, it is sufficient to assume

∑
e c(e) is

polynomial in n. We also assume that the node pairs are
induced by a matching M on the terminal set X.

Multicommodity Flow LP Formulation: For the given
instance with T = {s1t1, s2t2, . . . , sktk}, we let Pi denote
the paths joining si and ti in G and let P = ∪iPi. The
following multicommodity flow relaxation is used to obtain
an upper bound on the number of pairs from T that can be
routed in G.

max

k∑

i=1

xi s.t

xi −
∑

P∈Pi

f(P) = 0 1 ≤ i ≤ k

∑

P :e∈P

f(P) ≤ c(e) e ∈ E

xi, f(P) ∈ [0, 1] 1 ≤ i ≤ k, P ∈ P.

For each path P ∈ P we have a variable f(P) which is the
amount of flow sent on P . We let xi denote the total flow
sent on paths for pair i. We let f̄ denote the flow vector with
a component for each path P , and we denote by |f̄ | the value∑

i xi. We let opt denote the value of an optimum solution
to the relaxation. Call a path P fractionally routed if f(P) ∈
(0, 1), otherwise f(P) ∈ {0, 1} and P is integrally routed. If
the total flow routed on integrally routed paths is more than
opt/2, then we already obtain a 2-approximation. Thus the
interesting and difficult case is when the fractionally routed
paths contribute almost all the value of opt. From standard
polyhedral theory the number of fractionally routed paths in
a basic solution to the LP above is at most m. Therefore we
can assume that c(e) ≤ m for all edges. By making parallel
copies of edges, in the following, we assume that G has only
unit capacity edges. We can do the transformation to the
bounded degree case that we mentioned above after solving
the LP and this ensures that the resulting graph has size
polynomial in n.

We work with a given fractional solution to the LP, not
necessarily an optimum solution. We implicitly work with
a flow-decomposition for the solution provided by the LP.
Thus, when we remove edges in the graph, flow is “lost”
on flow paths that use the removed edges. From a given
solution, we define a weight function b : X → R+ as follows:
for a terminal v ∈ X, we let bv = xi where v ∈ {si, ti}.
As the algorithm progresses, the bv value might decrease as
edges are removed and flow is lost. In our algorithm we
set up some single source flow instances to route flow from
terminals to other nodes. In these instances we have an
upper bound of bv on the flow we allow from a terminal v.
In such a context we refer to bv as its (meaning v’s) “flow”.

Planar Embeddings and Contours: We assume that
we have some fixed embedding of G on the sphere. We
also fix some point ι of the sphere. A G-curve is a simple
curve in the plane, whose image only intersects the embed-
ding of G at nodes. If the image of its “beginning” and
“endpoints” are the same, then we call such a closed sim-
ple curve a G-contour, or just a contour. The length of a
G-curve C, denoted by len(C), is the number of nodes of G
whose embedding is contained in the image of the curve. (In
the following, we abuse terminology and do not differentiate
between nodes, edges, and their images in the embedding.)
For any contour C, removing its image from the sphere pro-
duces two open regions (disks). We let ins(C) (respectively
ext(C)) denote the region not containing ι (respectively con-
taining ι). Without loss of generality, there is a G-contour C
whose length is 0 and whose interior contains the embedding
of G. For a contour C we use the notation GC to denote the
subgraph of G induced by the nodes in the closed interior of
C. See Fig 2.

3. THE APPROXIMATION ALGORITHM
Given an instance of EDP on a planar graph G, we assume

that we have performed the simplifications from the previous
section. In particular, we assume we are given some optimal
multicommodity flow f̄ . We then perform the simplifications

The heart of the approach is to find a contour C and its
associated subgraph GC with two properties. The first prop-
erty is that the total flow from f̄ contained inside GC is at
least a constant fraction of flow from f̄ that is either tran-
siting through GC or crossing GC . The second property is
that the terminals in GC can simultaneously send a constant
fraction of their flow in f̄ to the boundary C. We ensure
the first property in a simple way by choosing C such that
len(C) is a sufficiently small factor γ smaller than the total
flow incident to terminals in GC . Since the degree of a node
on C is at most 4, if γ is chosen small enough, the total flow
inside GC (that is, flow on paths that use only edges in GC)
is at least a constant factor larger than the flow crossing or
transiting through GC .

C

GC

Figure 2: Contour

Suppose we find such a contour C. We restrict attention
to the graph GC and the flow from f̄ that is induced in GC .
Using the second property, we set up a fractional instance of
a disjoint path problem where all the terminals are on the
outer face of GC . We call such an instance an Okamura-
Seymour instance (OS instance for brevity). For a pair st
in GC we set up a corresponding pair uv where u, v ∈ C.
We show that for OS instances, the integrality gap of the

LP is a constant in the cardinality case. This is related to
the pairing lemma of Frank [11] and strongly generalizes the
result on trees [13]. The details are in Section 3.3. It is not
sufficient to simply prove this. We also need to ensure that
if a pair uv on C corresponding to a pair siti is routed, then
si and ti can integrally route to u and v. To ensure this we
set up the OS instance carefully, the details of which can be
found in Section 3.2.

Thus we are able to integrally route (with constant con-
gestion) a constant factor of the flow inside GC . We then
remove GC from G and recurse on the remaining graph
(and the induced flow). The first property of the contour
C ensures that the total flow “lost” in removing GC from G
can be charged to the flow that is integrally routed in GC .
This process thus results in a constant factor approxima-
tion. Let C1, C2, . . . , C` be the contours found in the pro-
cess. The sub-graphs GC1 , GC2 , . . . , GC` are node-disjoint -
in fact they are only edge-disjoint in the original graph be-
fore we do the transformation to the bounded degree case.

3.1 Finding and Routing to a Contour
In this section, we take as our starting point a fractional

multicommodity flow vector f̄ for the given instance such
that for each commodity i, there is a total flow of xi between
si, ti. For a terminal v let fv denote the flow for the pair in
which v participates. For any contour C, we denote by T (C),
the terminals that lie in GC . We call a contour C short if
its length (number of nodes) is at most b

∑
v∈T (C) fv/10c.

Since maximum degree of any node is at most 4, it follows
that for any short contour C, there is at least

∑

v∈T (C)

fv/2 − 4len(C) ≥
∑

v∈T (C)

fv/2 − 4
∑

v∈T (C)

fv/10

≥
∑

v∈T (C)

fv/10

flow entirely contained in GC .
We call a short contour good if the terminals in T (C) can

each send 1/10 of their flow to the contour. We make use of
the following lemma to find a short good contour C.

Lemma 3.1. Let G be a planar graph embedded in the
plane and let w : V → [0, 1] with w(V) > 1. Given α ∈
(1, w(V)), there is a contour C computable in polynomial
time with the following properties:

• C is α-tight, that is len(C) = bw(V (GC))/αc.

• C is α-good, that is, in the graph GC , each node u can
simultaneously send w(u)/α flow to C such that a node
in C receives at most 1 unit of flow.

Proof Sketch. We say that a contour C is α-short if
len(C) ≤ bw(V (GC))/αc. Given a contour C that is α-short
we can use simple greedy extension steps to find another
contour C′ that is contained in C and such that C′ is α-
tight.

Let C be an α-tight contour that minimizes the number
of nodes in GC . We claim that C is the desired contour.
Suppose not. We consider a single-source flow problem IC

defined as follows. We create G′ by adding to GC , a new
source node s and make it adjacent to each terminal v in
the closed interior of C with edges of capacity w(v)/α. We
also add a node t and make it adjacent to each node v on

C with a unit capacity edge. C is good iff the maximum s-t
flow in G′ equals

∑
u∈GC

w(u)/α. If C is not good then the
minimum s-t cut identifies a set of edges A whose removal
results in a collection of disconnected components in GC .
One of these components, with node set S say, satisfies the
property that the number of edges from A in δG′(S) is no
more than w(S)/α. This implies that there is a contour C′

whose interior contains precisely the nodes of S and inter-
sects S in at most w(S)/α nodes. Thus C′ is also α-short.
This contradicts the minimality of C since S must necessar-
ily contain strictly fewer nodes from GC .

The above proof can be made algorithmic in a straight
forward fashion; either the current contour C is a short good
contour in which case we stop, or when we solve IC we find
another short contour C′ strictly contained inside C and we
iterate.

We can use the above lemma with w(v) = fv if v ∈ X
and w(v) = 0 otherwise and set α = 10. Let C be contour
obtained; C is both a short and a good contour. The contour
C contains two types of terminals. A terminal whose mate
is outside is termed separated and we eliminate these. Let
Q be remaining terminals; each terminal in Q has its mate
also in Q (both are in GC). Let R be the set of terminal
pairs in GC that are not separated. For a terminal v ∈ Q
let bv ≤ fv be the flow left in GC . For a pair st ∈ R, let
bst = bs = bt denote the flow between s and t that remains
inside GC . Let p =

∑
st∈R bst =

∑
v∈Q bv/2 be the total

flow in GC . As we have seen,
∑

v∈R bv/2 ≥
∑

v∈T (C) fv/10.

Next we show that Ω(p) pairs from R can be routed in GC .

3.2 Creating and Using the OS Instance
We assume that GC is 2-node connected. If this is not the

case, we can work with the block-tree of GC and apply some
ideas from routing on trees [13, 4] to reduce to the two-node
connected case. We omit details in this version.

If GC is two-node connected, then the outer face GC is
a cycle and C consists of a subset of nodes on the outer
face; see Fig 2. We now create a fractionally feasible OS
instance on GC , that is, an instance of EDP where the ter-
minals of the pairs are on the outer face C and we have
a feasible fractional (partial) routing for demands between
the pairs. Specifically, we create a set S of pairs of nodes
chosen from C such that for each pair uv ∈ S, we have a
flow d(uv) ∈ [0, 1], and these flows obey the edge capacities
in GC . Moreover, we ensure that

∑
uv∈S d(uv) = Ω(p). The

pairs in S will serve as surrogate pairs for those in R, and
we set up a mapping π : R → S with several properties
that we describe later. In Section 3.3, we show that given a
feasible multicommodity flow for an OS instance, there is a
half-integral flow with only a constant factor loss in value.
Thus, we find a subset S′ ⊂ S such that |S′| = Ω(p) and
pairs in S′ are routed integrally with congestion 2.

The idea is then to find a routable subset R′ ⊂ R by
using S′ and the mapping π. We do this as follows. For
each uv ∈ S′ we add any pair st ∈ π−1(uv) to R′. To argue
that R′ is routable in GC , we exhibit a half-disjoint path
collection P such that the end points of each pair st ∈ R′

are joined to the end points of π(st) ∈ S′. This requires
that we set up the OS instance S and the mapping π in a
careful fashion. The above description shows that we obtain
a set R′ ⊂ R such that |R′| = Ω(p) and R′ is routable with
congestion 4. We now describe details of the OS instance
created.

For a set of nodes A ⊆ V (GC) let b(A) =
∑

v∈A∩Q bv

denote the total b value of terminals in A. We assume that
p ≥ 10 for otherwise we can route one pair and obtain a
constant factor approximation. Our first goal is to par-
tition the graph GC into node-disjoint connected induced
graphs G[V1], G[V2], . . . , G[Vh] such that for 1 ≤ i ≤ h,
10 ≤ b(Vi) ≤ 10∆. We do this by partitioning via a simple
greedy procedure. This ensures that h ≥ b2p/(10∆)c. Here
∆ is the maximum degree of the graph. In our instances
∆ ≤ 4, however it is easier to understand the description
with ∆ in place of the constant 4.

Find a spanning tree T of GC and root it at some node r.
If b(V) ≤ 10∆ stop and output V1 = V (T). Otherwise, find
the deepest node v in T such that the subtree of T rooted at
v, Tv, has total b-weight at least 10. We set V1 = V (Tv) and
remove it from T . Note that b(V (Tv)) < 10(∆−1)+1 ≤ 10∆
if v 6= r. We continue the process by finding another deepest
node in the remaining tree and remove it and so on. At the
end if we have a tree with total weight less than 10 we simply
add it to the tree found in the previous step. This clustering
step is similar to that used in [5].

C

Gc

Ga

Gb

a

b c

Pa

Pc

Pb

Figure 3: Setting up the OS instance.

Since every terminal v can simultaneously send b(v)/10
flow to the contour C, the node sets V1, V2, . . . , Vh can si-
multaneously send one unit of flow each to the contour C. It
follows from the integrality of single source flows that there
are edge-disjoint paths P1, P2, . . . , Ph where Pi has one end
point on C and the other in Vi and further a node in C is the
end point of at most one of these paths. Let C′ ⊂ C be the
collection of end points of the paths in P = {P1, P2, . . . , Ph}.
By construction, we have a bijection g : C′ → {1, 2, . . . , h}.
For a node a ∈ C′ we refer to G[Vg(a)], for simplicity of nota-
tion, as simply Ga and the path Pg(a) by Pa. See Figure 3.2
for an illustration.

Now we are ready to define S and set up the mapping π
from R to S. Let u, v be distinct nodes on C′. We add the
pair uv to S and set

d(uv) =
1

3 · 10 · ∆
∑

st∈R,s∈Gu,t∈Gv

bst.

For a pair st ∈ R with s ∈ Gu, t ∈ Gv we let π(st) = uv.
First we note that for each u ∈ C′, D(u) =

∑
v∈C′ d(uv) ≤

1/3. This follows from the fact that b(Vi) ≤ 10 · ∆ for
1 ≤ i ≤ h.

Lemma 3.2. The multicommodity flow instance on S with
demands d is feasible in GC .

Proof. Consider three identical copies of GC , H1, H2, H3.
The capacity of an edge in Hi is a third of the capacity of

its corresponding edge in G. We argue for the feasibility of
d by considering some node u ∈ C′ and how it distributes
its flow. The node u sends D(u) flow along path Pu to the
copy of Gu in H1. We note that the path collection P is
edge-disjoint in GC and hence these flows are feasible in H1

simultaneously for all nodes in C′. Let u′ be the other end
point of Pu. The node u′ distributes D(u) flow to the ter-
minals in the copy of Gu in H2. A terminal s ∈ Gu is sent

1
3·10·∆ bs flow. This can be done since Gu is connected and∑

s∈Gu
bs ≤ 10∆. Since the Gu’s are disjoint, this distribu-

tion can be done simultaneously in H2 for all such u′ nodes.
Now, the pairs in R use H3 to route their multicommodity
flow. This is feasible since the pairs had a feasible multi-
commodity flow in GC and the flow is now scaled down by
a factor of 3 at least. Composing these flows shows that d
is feasible.

We assume that for each uv ∈ S, d(uv) > 0. Otherwise
we can remove uv from S.

Lemma 3.3. Let S′ ⊆ S such that each node u ∈ C′ is
incident to at most one pair in S′. Then there is a R′ ⊂ R
and a path collection Q with the following properties: (i)
|R′| = |S′| and π(R′) = S′, (ii) for each pair st ∈ R′, there
are two paths Qs and Qt in Q that originate at s and t
respectively and end at π(s) and π(t), and (iii) an edge e in
GC is in at most two paths in Q.

Note that in the above lemma Qs might end at π(t) and
Qt might end at π(s).

Proof. We create R′ from S′ as follows. For each uv ∈ S′

we pick an arbitrary but a single pair st ∈ π−1(uv) and add
st to R′. Such a pair must exist if d(uv) > 0. Therefore
|R′| = |S′| and π(R′) = S′ as required. By construction of
S we have that s ∈ Gu and t ∈ Gv. We now create the paths
Qs and Qt. Let u′ and v′ be the end points of Pu and Pv

in Gu and Gv respectively. Then Qs is the path obtained
by composing a path from s to u′ in Gu and the path Pu.
Similarly, for Qt. We observe that the path collection P
is edge-disjoint and the graphs G1, . . . , Gh are node-disjoint
and hence an edge can participate at most twice in the path
collection Q created as above.

Although the OS instance on S is well defined, it could
be the case that

∑
uv∈S d(uv) is significantly smaller than

p, the total flow that we started with in GC . We argue that
this is the easy case.

Lemma 3.4. If
∑

uv∈S d(uv) ≤ 1
6·10·∆p then Ω(p) pairs

from R can be routed by edge-disjoint paths in GC .

Proof. We call a pair st ∈ R to be distant if s ∈ Vi and
t ∈ Vj and i 6= j. Let A be the set of distant pairs. Call
a set Vi good if there is a pair st ∈ R with s, t ∈ Vi. By
construction we have that

∑

uv∈S

d(uv) =
1

3 · 10 · ∆
∑

st∈A

bst.

Therefore, if
∑

uv∈S d(uv) ≤ 1
6·10·∆p, a large fraction of the

pairs in R are not distant. It follows that the total number
of good sets in this case is Ω(p/(10 · ∆)). We can route
one pair in each good set and the sets are node-disjoint and
hence the routed pairs use edge-disjoint paths.

3.3 Choosing the Demands in an OS instance
In this section we consider OS instances: instances in

which the terminals are on the outer face of a planar graph.
The well-known Okamura-Seymour theorem states that the
cut condition is sufficient for a half-integral flow. Here we are
interested in the maximization version where not all pairs
maybe routable. Even on trees (which is very restricted
OS instance) it is known that the maximization problem
is APX-hard [13]. We solve the LP for the problem which
gives an upper bound and then show that we can recover a
constant fraction of the LP solution value. We make some
preliminary observations that lead us to set up the problem
as an abstract ring routing problem. As we remarked ear-
lier, we assume that the given graph is two-node connected
and hence the outer face can be assumed to be a connected
ring. For an OS instance we can focus on a restricted set
of cuts given by pairs of edges on the outer face. Let e and
e′ be two edges on the outer face. Consider the cheapest
cut in the graph that contains e and e′ and let its value be
µ(e, e′): this can be obtained by a shortest path computa-
tion in the dual of the embedded graph. For an OS instance
to be feasible, it suffices to check the feasibility of the given
instance with respect to only the above types of cuts (see
[24]). Using this, we set up our problem as a ring-routing
problem below.

In the following, let G = (V = {0, 1, 2 . . . , n − 1}, E) be
an undirected ring with edges ei = i(i+1) for 0 ≤ i < n. In
addition, we assume that for each pair of edges ei, ej , there is
an associated integer capacity µ(ei, ej), or simply µ(ij). We
also consider a demand multiset F of edges with endpoints
in V . Our sets may also be weighted in that for each f ∈ F
there is a nonnegative demand value df ∈ [0, 1]. The weight
of such a set is then d(F) =

∑
f∈F df . An edge f crosses a

pair ei, ej if the endpoints of f lie in distinct components of
G − {ei, ej}. The load on a pair (cut) ei, ej is just the sum
of the demands that cross the pair, i.e.,

∑
f∈F (ij) df where

F (ij) are those demands that cross ei, ej . A weighted set
of demands is feasible (almost-feasible) if for each ei, ej we
have that its load is at most µ(ei, ej) (resp. µ(ei, ej) + 2).

Our main result in this section is that if we start with
a feasible fractional set of demands, then we may find a
large integral set of demands that obey the “abstract” 2-cut
conditions imposed by µ. A similar problem (the Pairing
Lemma) was solved by Frank [11]. In a certain setting, Frank
gave necessary and sufficient conditions for the existence of
a perfect matching on V that obeys the µ-cut condition. A
key difference is that Frank works with the complete graph,
that is, his matching may use any edge ij, while we may
select only from F .

Theorem 3.5. For any ring G, µ and feasible weighted
set of demands F, d, there is an almost-feasible subset F ′

such that each demand in F ′ is a unit demand, and |F ′| ≥
α

∑
f∈F df for some fixed constant α > 0.

The rest of the section is devoted to the proof of the above
theorem.

For a node v ∈ V we let w(v) =
∑

f :v∈f df denote the
total weight of demand edges incident to v. For a set of
nodes S we let w(S) =

∑
v∈S w(v). We ensure that in the

final solution the number of demands incident to any node
of V is no more than dw(v)e. We assume without loss of
generality that w(v) ≤ 1. Otherwise we can split a node
into multiple nodes connected by an infinite capacity edge.

In the following we use γ for a fixed integer that is at least
6. A block in our instance is a contiguous interval of nodes
S on the ring such that γ ≤ w(S) < 2γ + 1. At any given
time we are working with a partition of the nodes into blocks
B1, B2, . . . , Bh and so h = Ω(

∑
f df). Also, for a node u,

we denote by B(u) the block containing u. We start with
a feasible blocking obtained by a simple greedy procedure
that goes clockwise around the ring picking minimal blocks
to satisfy the requirement that γ ≤ w(Bi) < 2γ + 1. The
blocks we create are intervals on the ring and there is a
natural notion of adjacency between them.

We proceed to generate our feasible set of demands by re-
peating three operations: augmenting, locking and reblock-
ing. An augmentation of a demand edge f involves pushing
up its value df to 1; at the same time we sacrifice an O(1)
amount of other demands to relieve the load on cuts that
f crosses. The demand f = uv is then selected for F ′ and
B(u), B(v) are locked, and all demands with an endpoint in
B(u) or B(v) are deleted. Once a block is locked no future
blocks can contain any node from it.

Reblocking: We first describe the reblocking procedure
which is used after any operation which deletes edges from
our instance, and thus may produce blocks that are too light,
i.e. of weight less than γ. Suppose that B is such a block
and let Bl, Br be its neighbouring blocks. If either Bl, Br

is not yet locked, say Bl, then we merge B and Bl. If the
weight of this merged block is more than 2γ + 1, then we
use splitting to create two blocks. Note that this does not
affect the weight of any of the other blocks. If both Bl and
Br are locked, then we delete the edges incident to B and
charge them to Bl, Br. Note that each locked block could
get charged this way by at most one block on either side, and
since every locked block contributes a routed demand to F ′,
we lose at most a constant fraction of demand in this way.
We call the block B dead at this point; it will not participate
any more. A block that is neither dead nor locked is called
a live block. In doing this, however, other light blocks may
be created since we delete the demands incident to B. We
repeat this process until all remaining live blocks are again
of weight at least γ and at most 2γ + 1.

Augmenting: We next describe the augmenting proce-
dures. Each of these procedures consists of choosing a de-
mand edge f and increasing df to 1 and adding it to F ′. The
blocks that contain the end points of f (could be a single
block or a pair of blocks) are then locked and all demand
edges incident to those blocks are deleted. After this we do
reblocking as necessary and repeat the augmentation pro-
cess until we have no more live blocks left. We now describe
how to pick a demand f .

First, if there is some block B with a demand edge f with
both ends in B, then we pick it. If not, we check if there
are two distinct blocks B and B′ such that the total weight
of demands between them is at least 1. If so, we pick an
arbitrary demand f between them. Call the two augmen-
tations above simple. Note that if no simple augmentations
exist then each block B has demand edges to at least γ other
distinct blocks.

We next describe a more involved augmenting procedure.
The intuition behind the procedure is as follows. Consider
any pair of demand edges uv, vw where say u < v < w. If u
has a neighbour z in the interval [v, w] then we can bump up
uv by some ε and reduce uz and vw by ε. We look for several

simultaneous such augmentations for uv that can be used to
increase its demand to 1 in one shot and select the demand
edge uv for routing. Identifying such a demand edge is the
key.

v = 0
u1

uh

uh+1

u`

Figure 4: A cover for node v.

Let B0, B1, . . . , Bn′−1 be the current set of live blocks (not
locked or dead). We create an undirected ring G′ = (V ′ =
{0, 1, . . . , n′ − 1}, E′) with the nodes corresponding to the
blocks. Let H = (V ′, X) be a demand graph induced on the
blocks where uv ∈ X if there is some demand edge f incident
to nodes in Bu and Bv. We also associate weights with edges
in X. We abuse notation and use d for this. The weight of
uv, d(uv) is the total sum of weights of demand edges from
F with one end point in Bu and the other in Bv. If no simple
augmentation is feasible then d(uv) < 1 and the degree of a
node in H is at least γ + 1. We now work on the ring G′.
We say a contiguous segment A of the ring “covers” node a
if it contains a and

∑
u∈A d(ua) ≥ 4. Choose a node v with

a cover S of minimum length (in terms of nodes). Without
loss of generality, assume v = 0 and v’s neighbours on the
segment S are u1 < u2, . . . < u` numbered in anti-clockwise
direction. The segment itself is the union of a “left” segment
L = [0, uh] and a right one R = [uh+1, 0], i.e., S is the
segment [uh, uh − 1, . . . , v = 0, n′ − 1, n′ − 2, . . . , uh+1]. See
Figure 4. Without loss of generality,

∑
a∈L d(av) ≥ 2. Since

we had no simple augmentations available, we may deduce
that

∑h
k=2 d(vuk) ≥ 1 and h ≥ 3.

Claim 3.6. For γ ≥ 6 we have
∑n′−1

y=uh
d(u1y) ≥ 2 and

∑n′−1
y=uh+1 d(u1y) ≥ 1.

Proof. If
∑n′−1

y=uh
d(u1y) < 2, segment [0, uh − 1] would

be a cover for u1 and contradict the choice of S as a min
length cover. Since we had no simple augmentation, d(u1uh) <

1, and hence
∑n′−1

y=uh+1 d(u1y) ≥ 1.

Let f be an arbitrary demand edge in G between blocks
Bv and Bu1 . We choose f for augmentation. This finishes
the description of the augmenting procedures and the al-
gorithm. Let F ′ be the set of demands chosen during the
course of the algorithm. We prove two properties of F ′.

Lemma 3.7. There is a constant α (that depends on γ)
such that |F ′| ≥ α

∑
f∈F df .

Proof. We have argued that an augmentation can be
done as long as there are live blocks, therefore at the end
of the algorithm there are no live blocks left. We show the

lemma by a charging argument. Each augmentation results
in a demand f being added to F ′. Let B1 and B2 be the
blocks that contain the end points of f (in case f has end
points in the same block then B1 = B2). These blocks are
locked and all demand edges incident to those blocks are
deleted. We charge the weight of the deleted demands to
f . Recall that the weight of a block is at most 2γ + 1.
We associate f with the locked blocks B1 and B2. During
reblocking operations we might charge a dead block B to a
previously locked block such as B1. However, as we argued,
at most two such blocks can be charged to B1 one from its
“left” and one from its “right”. Also, while charging only
half their weight gets charged to B1 since a dead block has
two locked blocks on either side and can charge equally to
them. We charge the weight of demands incident to these
dead blocks to f . Thus a demand from F ′ gets a charge of at
most 4γ + 2. Thus we have that |F ′| ≥ 1

4γ+2

∑
f∈F df .

Lemma 3.8. The set F ′ is an almost-feasible set of de-
mands for G, µ.

Proof. Let ei and ej be two edges of the ring. The load
put by F on the cut defined by ei, ej is

∑
f∈F (ij) df . Let

l(ij) denote this load. By the feasibility of F we have that
l(ij) ≤ µ(ij) for all i, j. We say that an edge ei belongs to a
locked block B if both end points of ei lie in B. Let zi = 1
if ei lies in a locked block and 0 otherwise. If zi = 1 we let
fi be the unique edge in F ′ associated with the locked block
containing ei. Let A(ij) be the set of demands in F ′(ij)
after removing fi and fj . We show that |A(ij)| ≤ bl(ij)c.
Note that |F ′(ij)| ≤ |A(ij)| + 2.

Consider an edge f in A(ij). We observe that f can be
added to F ′ either in second type of augmentation or the
third type but not the first. Let B1 and B2 be the two
blocks that f is incident to. Since ei and ej do not belong
to either B1 or B2 (otherwise f would not be in A(ij)), all
demands incident to B1 and B2 cross ei and ej . Consider the
second type of augmentation. In this case the total weight
of demands between B1 and B2 is at least 1. We add f and
delete all demand edges incident to them - therefore we can
charge f to the load of the deleted demands.

S1

S2

S3

B v

B u1

B uh

Figure 5: Analysis of augmentation.

Now we consider the third type of augmentation. In this
case the weight of demands between B1 and B2 can be small
and we need to use the careful choice of the demand f .
We refer to the notation used when describing this type of
augmentation. We have that f is an edge between block Bv

and Bu1 . We consider three segments, S1, S2, S3, of the ring
G obtained by removing the edges in the blocks Bv, Bu1 and
Buh . S1 is the segment between v and u1, S2 is the segment
between u1 and uh and S3 is the segment between uh and v.
See Figure 5. We assume without loss of generality the edge
ei is in the segment S1. We consider two cases based on the
location of ej . If ej is in S2 or Buh we charge f to the load
of the demand edges from Bu1 to the segment S3. From
Claim 3.6 this load is at least 1. If ej is in S3 we charge f
to the load of edges from Bv to S2 and Buh . This load is at
least 2 as we noted earlier.

Lemmas 3.7 and 3.8 finish the proof of Theorem 3.5.
Now we come back to OS instances. Recall that we as-

sumed that the graph is two-node connected and hence the
outer face is a cycle. From this it follows that µ(ij) ≥ 2
for any two edges ei and ej on the ring formed by the
outer face. From Lemma 3.8 we see that the set of de-
mands in the final solution F ′ satisfies the condition that
|F ′(ij)| ≤ 2 + bl(ij)c. By initially scaling down the demand
values, we can assume that l(ij) < µ(ij)/2. Therefore it fol-
lows that 2 + bµ(ij)/2c ≤ µ(ij) and hence |F ′(ij)| ≤ µ(ij).
We thus obtain the following theorem.

Theorem 3.9. For OS instances on two-node connected
planar graphs, the integrality gap for the cardinality version
of the ANF problem is O(1).

4. CONCLUDING REMARKS
We believe that an O(1) approximation for MEDP in pla-

nar graphs can be obtained with congestion 2 instead of
4. It seems feasible to extend our approach to graphs with
bounded genus and to graphs that exclude a fixed minor.
We plan to explore this in future work.

Acknowledgments: Sanjeev Khanna is supported in part
by an NSF Career Award CCR-0093117. Chandra Chekuri
and F. Bruce Shepherd acknowledge support from an ONR
basic research grant N00014-05-1-0256 to Lucent Bell Labs.

5. REFERENCES
[1] M. Andrews and L. Zhang. Hardness of the undirected

edge-disjoint paths problem. Proc. of ACM STOC,
2005.

[2] M. Andrews, J. Chuzhoy, S. Khanna and L. Zhang.
Hardness of the undirected edge-disjoint paths
problem with congestion. Proc. of IEEE FOCS, 2005.

[3] Y. Aumann and Y. Rabani. An O(log k) approximate
min-cut max-flow theorem and approximation
algorithm. SIAM J. on Comp., 27(1):291–301, 1998.

[4] C. Chekuri, M. Mydlarz, and F. B. Shepherd.
Multicommodity Demand Flow in a Tree and Packing
Integer Programs. Proc. of ICALP, 2003.

[5] C. Chekuri, S. Khanna, and F. B. Shepherd. The
All-or-Nothing Multicommodity Flow Problem. Proc.
of ACM STOC, 2004.

[6] C. Chekuri, S. Khanna, and F. B. Shepherd.
Edge-Disjoint Paths in Planar Graphs. Proc. of IEEE
FOCS, 2004.

[7] C. Chekuri, S. Khanna, and F. B. Shepherd.
Multicommodity Flow, Well-linked Terminals, and
Routing Problems. Proc. of ACM STOC, 2005.

[8] C. Chekuri, S. Khanna, and F. B. Shepherd. An
O(

√
n) approximation and integrality gap for EDP

and UFP in undirected graphs and DAGs. Sept. 2005.

[9] S. Even, A. Itai and A. Shamir. On the complexity of
timetable and multicommodity flow problems. SIAM
J. on Computing, Vol 5, 691-703, 1976.

[10] L. R. Ford, D. R. Fulkerson, 1962. Flows in Networks.
Princeton University Press, Princeton, NJ.

[11] A. Frank. Edge-disjoint paths in planar graphs. J. of
Combinatorial Theory, Ser. B., No. 2, 164–178, 1985.

[12] A. Frank. Packing paths, cuts, and circuits - a survey.
In B. Korte, L. Lovász, H. J. Prömel, and
A. Schrijver, eds., Paths, Flows and VLSI-Layout,
49–100. Springer Verlag, Berlin, 1990.

[13] N. Garg, V. Vazirani, M. Yannakakis. Primal-Dual
Approximation Algorithms for Integral Flow and
Multicut in Trees. Algorithmica, 18(1):3–20, 1997.

[14] R. M. Karp. Reducibility among combinatorial
problems. Complexity of Computer Computations, R.
E. Miller, J. W. Thatcher, Eds., New York: Plenum
Press, 1972, 85–103.

[15] P. Klein, S. Plotkin and S. Rao. Planar graphs,
multicommodity flow, and network decomposition.
Proc. of ACM STOC, 1993.

[16] J. M. Kleinberg. Approximation algorithms for
disjoint paths problems. PhD thesis, MIT, May 1996.

[17] J. M. Kleinberg. An Approximation Algorithm for the
Disjoint Paths Problem in Even-Degree Planar
Graphs. Proc. of IEEE FOCS, 2005.

[18] J. M. Kleinberg and É. Tardos. Approximations for
the disjoint paths problem in high-diameter planar
networks. JCSS, 57:61–73, 1998.

[19] J. M. Kleinberg and É. Tardos. Disjoint Paths in
Densely Embedded Graphs. Proc. of FOCS, 1995.

[20] S. G. Kolliopoulos. Edge Disjoint Paths and
Unsplittable Flow. Handbook on Approximation
Algorithms, Chapman Hall/CRC Press, to appear.

[21] T. Leighton and S. Rao. Multicommodity max-flow
min-cut theorems and their use in designing
approximation algorithms. JACM, 46(6):787–832,
1999. Prelim. version in Proc. of IEEE FOCS, 1988.

[22] N. Linial, E. London, and Y. Rabinovich. The
geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995.

[23] K. Menger. Zur Allgemeinen Kurventheorie Fundam.
Math. 10, 96–115, 1927.

[24] H. Okamura and P.D. Seymour. Multicommodity
flows in planar graphs. Journal of Combinatorial
Theory, Series B, 31, 75–81, 1981.

[25] H. Räcke. Minimizing congestion in general networks.
Proc. of IEEE FOCS, 2002.

[26] S. Rao. Small distortion and volume preserving
embeddings for planar and Euclidean metrics. Proc. of
SoCG, 300–306, 1999.

[27] N. Robertson and P. D. Seymour. Outline of a disjoint
paths algorithm. In B. Korte, L. Lovász, H. J. Prömel,
and A. Schrijver, Eds., Paths, Flows and
VLSI-Layout. Springer-Verlag, Berlin, 1990.

[28] N. Robertson, P. D. Seymour and R. Thomas. Quickly
Excluding a Planar Graph. Journal of Combinatorial
Theory (B), 62: 323-348, 1994.

[29] A. Schrijver. Combinatorial Optimization: Polyhedra
and Efficiency. Springer-Verlag, 2003.

APPENDIX

A. WELL-LINKED DECOMPOSITIONS AND
RECURSIVELY DIVISIBLE GRAPHS

We now discuss some lower bounds on obtaining approx-
imations for EDP and ANF via the approach of well-linked
decompositions. For us a well-linked decomposition is a
partition of the graph into node disjoint induced subgraphs
such that each induced subgraph retains a collection of well-
linked terminals. We say a terminal is retained in the de-
composition if it is part of the specified (flow)-well-linked
set in one of the subgraphs. We are interested in the ra-
tio of the total number (or more generally, total fractional
weight) of terminals retained as a fraction of opt, the value
of an optimum solution to the flow relaxation. We dis-
tinguish between flow and cut well-linkedness. We men-
tion that flow-well-linkedness is a stronger notion than cut-
well-linkedness and are approximately related by β(G) the
product-multicommodity flow-cut gap in G. We refer the
reader to [7] for details on these. For planar graphs β(G) =
O(1) [15] and hence flow and cut-well-linkedness are roughly
equivalent. Let γf (G) and γc(G) denote the largest fraction
of terminals that can be retained, as a fraction of opt, in
the worst-case in a flow-well-linked decomposition and cut-
well-linked decomposition respectively. In [7] it is shown
that γf (G) = Ω(1/(β(G) log n)) where β(G) is the worst-
case bound on the flow-cut gap for product multicommodity
flows in G and that γc(G) = Ω(1/ log n). 1

Note that if terminals are flow-well-linked, then we obtain
a constant fraction approximation for ANF. Hence it follows
that γf (G) is upper bounded by the integrality gap of the
flow relaxation for ANF. ¿From the results in [2] we have
that γf (G) = O(1/

√
log n) for general graphs. For EDP in

planar graphs we can achieve an O(1/γc(G)) approximation
with congestion 2 [6]. Here we show that for general graphs
γc(G) = O(1/ log n) and hence γf (G) = O(1/ log n). We
also describe planar graph instances for which we believe
γc(G) = o(1).

Upper bound for γf (G) andγc(G) in general graphs
Let Hk denote the standard k-dimensional hypercube. We
create a routing instance on the hypercube as follows. For
each edge e = uv in Hk we have a demand pair uv. Clearly
these demands can be routed in Hk in edge-disjoint fash-
ion. We can extend this to be in “standard form”, where
each terminal participates in exactly one demand pair. We
modify the graph by attaching dummy terminals to vertices
in Hk. In particular, we attach to each node u in Hk, k
additional nodes u1, u2, . . . , uk connected to u, their parent,
in the form of a star. For an edge e = uv in Hk, there is
now a demand pair uivi if u and v differ in the ith bit. Let
M denote the matching to be routed, that is, the set of de-
mand pairs formed above. Also, let n = 2k denote the total
number of nodes in the hypercube Hk, and let H ′

k denote
the new instance with N = kn nodes.

Since the above instance is (integrally) feasible, there is a

1The best bound that can be achieved in polynomial time
is Ω(1/(β(G) log n)) where β(G) is the best approximation
ratio for finding sparse cuts.

total flow on H ′
k of size k2k−1 = Θ(N). It is clear that there

is a flow-well-linked decomposition that retains Ω(N/ log N)
flow: simply pick any matching in Hk, each edge being a
well-linked set. The theorem below shows that this is best
possible for even a cut-well-linked decomposition. We omit
the proof in this version.

Theorem A.1. Any cut-well-linked decomposition of the
instance above retains at most O(N/ log N) edges from the
matching M .

Recursively Divisible Planar Graph Instances
The hypercube example shows that we may not generally
expect (much) better than a logarithmic fraction of the flow
from an LP solution, to be retained in a well-linked decom-
position. One may hope for a rosier picture in the case of
planar graphs. Ostensibly it may be possible to even retain
a constant fraction of the demand.

Related to our comments in Section 1.3 we describe a class
of planar graphs that are bad for recursive partitioning algo-
rithms if the partition procedure uses a particular sequence
of ε-sparse cuts for some fixed constant ε > 0. These graphs
may well have the stronger property that γc(G) = o(1).
Although we do not have concrete evidence for this, (the
structure of the graphs is still a bit mysterious and fascinat-
ing to us), we think that these graphs are suggestive of a
lower bound.

We now define a class of recursively divisible planar graph
instances denoted by Pn. For any constant ε, these are
graphs such that if we repeatedly split along ε-sparse cuts,
then we end up with a collection of subgraphs that retain
very little of the initial flow. It is easier to view how these
graphs arise by looking at their planar dual, denoted by Dn.
We suppose at first that ε = 1. Each edge of Dn has an as-
sociated length l(e). The graph D1 can be thought of as a
circle C of length 1 with 2 nodes u, v at antipodal points on
the circle. There is also another edge of length 1/2 joining
u, v. We now recursively define Dn+1 from Dn as follows.
At any point, Dn is outerplanar and the boundary of each
face F can be written as CF ∪ IF , where CF is a segment
of the original cycle C, and IF is a curve inside C. Let iF
be the midpoint (with respect to the length function l) of
the curve IF (note that there may be no node at this mid-
point). Let cF denote the midpoint of CF . In Dn+1, we add
the nodes iF , cF , and join them by an edge of length 1

2n .
In Figure 1.3, the graphs (without lengths) D6, D8, D10 are
shown.

The recursively divisible graph Pn is obtained by drawing
the dual of Dn and removing the node corresponding to the
infinite face and its incident edges. For an edge uv ∈ Dn, it
contributes 2nl(uv) parallel edges in Pn. With each edge in
Pn we associate a demand pair in the routing instance and
hence the total flow routed is the same as the total number
of edges in Pn. The recursive definition of Dn gives rise
naturally to a sparse cutting procedure in Pn. At the ith

level, there are 2i faces in Dn, each containing 2n−i nodes
of Pn. Each such face is then split in half and the two halves
are joined by 2n−i edges. We ensure ε-sparseness by adding
1/ε terminals at each node in Pn. Thus for any fixed ε, a
recursive procedure that partitions along these ε-sparse cuts,
removes almost all the edges of Pn and hence the associated
demands.

