
Hardness of Cut Problems in Directed Graphs

[Extended Abstract]

Julia Chuzhoy
CSAIL MIT

and Dept. of CIS
University of Pennsylvania

cjulia@theory.csail.mit.edu

Sanjeev Khanna
Dept. of Comp. & Inf. Sci.
University of Pennsylvania

Philadelphia, PA 19104

sanjeev@cis.upenn.edu

ABSTRACT
We study the approximability of the multicut and the (non-
bipartite) sparsest cut problems in directed graphs. In the
multicut problem, we are a given a graph G along with k
source-sink pairs, and the goal is to find a smallest subset
of edges whose deletion separates all source-sink pairs. The
sparsest cut problem has the same input, but the goal is to
find a subset of edges to delete so as to minimize the ratio of
deleted edges to the number of source-sink pairs that are sep-
arated by this deletion. Study of algorithms for cut problems
is intimately connected to the dual notion of flows in net-
works, and many approximation algorithms for cut problems
use a flow solution as a starting point. The best known ap-
proximation algorithm for directed multicut is based on this
approach and gives an O(

√
n)-approximation. On the other

hand, the gap between the maximum multicommodity flow
and the minimum multicut is known to be Ω(min{k, log n}).
While this flow-cut gap may be interpreted as an evidence
of inherent difficulty in designing good approximation al-
gorithms for directed multicut, the strongest hardness re-
sult known is an APX-hardness. Even assuming the Unique
Games Conjecture, only an ω(1)-hardness is known. Similar
bounds hold for the directed sparsest cut problem.
Our main result is that directed multicut is Ω(log n/ log log n)-

hard to approximate unless NP ⊆ DTIME
(
npolylog(n)

)
. We

show that this hardness result holds even when we allow a
bicriteria relaxation, where the approximate solution is re-
quired to separate only a constant fraction of the pairs. This
bicriteria hardness allows us to infer an Ω(log n/ log log n)-
hardness for the directed (non-bipartite) sparsest cut prob-
lem.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06,May21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

General Terms
Algorithms, Theory.

Keywords
Directed Multicut, Sparsest cut, Hardness of Approxima-
tion.

1. INTRODUCTION
Cut problems are fundamental to combinatorial optimiza-
tion and arise as intermediate problems in design of approx-
imation algorithms for many graph problems. In this paper,
we study the approximability of the directed multicut prob-
lem and the closely related (non-bipartite) directed sparsest
cut problem. An instance of the directed multicut problem
consists of a directed graph G(V, E) and a collection of k
source-sink pairs {(s1, t1), ..., (sk, tk)}. The goal is to delete
the smallest possible number of edges so as to separate all
source-sink pairs; a pair (s, t) is considered separated if in
the resulting graph there is no path connecting s to t. The
input to the directed sparsest cut problem is the same, but
the objective now is to find a subset E′ of edges so as to min-
imize the ratio |E′|/|SE′ | where SE′ is the set of (s, t) pairs,
which are disconnected in the graph G(V, E \ E′). The pa-
rameter k is also referred to as the number of commodities in
the instance. Vertices in the set T = {s1, t1, s2, t2, ..., sk, tk}
are referred to as terminals.

Directed Multicut: For the single-commodity case, the
celebrated max-flow min-cut theorem [12] shows that the
size of minimum (s1, t1) cut equals the maximum flow from
s1 to t1. It is no surprise then, that our study of cut prob-
lems is intimately connected with the dual notion of flows,
and that algorithms for cut problems often use a flow solu-
tion (poly-time computable) as a starting point. However,
as we go beyond the single commodity, the tight duality be-
tween cuts and flows breaks down even in undirected graphs.
The gap between maximum flow and the minimum multi-
cut is well-understood in undirected graphs and is known
to be Θ(log k) [19, 13]. In a sharp contrast, Saks et al. [21]
have shown that the flow-cut gap in directed graphs can
be as large as k − ε for any ε > 0 [21]. Since it is easy
to see that the flow-cut gap cannot exceed k, it may seem
that the flow-cut gaps are well-understood in the directed
case as well. Unfortunately (or fortunately), the size of the
Saks et. al construction grows exponentially in k, and the
gap realized by these instances is only O(log n), where n
is the number of vertices in G. As a function of n, this is

the strongest gap known. Our lack of understanding of the
directed flow-cut gaps is reflected in the large separation be-
tween the upper and lower bounds on the approximability
threshold of directed multicut. The best hardness known
is an APX-hardness [9]; this hardness holds even on undi-
rected star trees [14]. On the algorithmic front, until re-
cently, no non-trivial approximation algorithm was known.
Cheriyan, Karloff, and Rabani [8] gave the first non-trivial
approximation algorithm for this problem. They achieve an
approximation ratio of O(

√
n log n) which was subsequently

further improved by Gupta [15] to O(
√

n). Thus, until re-
cently, our understanding of the directed multicut problem
allowed its approximability threshold to be anywhere be-
tween a constant and a polynomial function. A recent re-
sult [7, 18] shows that, assuming the Unique Games Con-
jecture of Khot [17], the multicut problem is hard to ap-
proximate to within any constant factor even on undirected
graphs.
Sparsest Cut: The notion of a sparsest cut in a directed
graph can be defined in two distinct ways. In one version
of the problem, which we refer to as the bipartite sparsest
cut, sparsest cut in a graph is a bipartition of vertices into
two sets S and S̄ that minimizes the ratio of |δ(S, S̄)|1 to
|{(si, ti) | si ∈ S, ti ∈ S̄}|. In the second version, which we
refer to as the non-bipartite sparsest cut or simply as spars-
est cut, we relax the bipartition requirement and simply
minimize the ratio of edges deleted to the resulting num-
ber of pairs separated. In undirected graphs, it is easily
seen that the two notions are equivalent to within a fac-
tor of two. However, in directed graphs, as highlighted in
the very recent work of Charikar et al. [6], these version
seem to behave quite differently. In particular, using a re-
sult of Feige and Kogan [11], it is shown in [6] that bipartite

sparsest cut is hard to approximate to within 2Ω((log n)δ)

for some δ > 0 unless 3SAT has subexponential-time al-
gorithms. Furthermore, this hardness can be strengthened
to an nδ-hardness for some δ > 0 assuming a hypothe-
sis concerning hardness of random 3SAT, as described by
Feige [10]. No such strong hardness results are known for
the directed non-bipartite sparsest cut problem. The work
of [7, 18] shows that assuming the Unique Games Conjec-
ture, the non-bipartite sparsest cut problem is hard to ap-
proximate to within any constant factor even on undirected
graphs. We note that for undirected non-bipartite spars-
est cut (and hence the directed non-bipartite version) it is
easy to prove APX-hardness (without assuming the Unique
Games Conjecture). We provide a simple proof in the Ap-
pendix. On the positive side, the best known approximation
ratio for directed non-bipartite sparsest cut is an O(

√
n)-

approximation, due to Hajiaghayi and Räcke [16]. Thus
the approximability status of directed multicut and directed
non-bipartite sparsest cut is the same.
Our focus in this paper is stronger hardness of approxima-
tion results for directed multicut and directed non-bipartite
sparsest cut.
Our Results: We make some progress towards closing
the gaps in our understanding of the directed multicut and
the sparsest cut problem. We show that directed multi-
cut is Ω(log n/ log log n)-hard to approximate unless NP ⊆
DTIME

(
npolylog(n)

)
. In particular, we show that this hard-

1δ(S, S̄) refers to all edges (x, y) in G where x ∈ S and
y ∈ S̄.

ness holds even for the following bicriteria relaxation. A
solution to a multicut instance is called an (α, β) bicriteria
approximation for some 0 ≤ α ≤ 1 and β ≥ 1, if it discon-
nects at least an α fraction of the pairs and deletes at most
βOPT edges, where OPT denotes the cost of the optimal
solution for the multicut instance. We show the following:

Theorem 1. The directed multicut problem is Ω
(

log n
log log n

)
-

hard to approximate, unless NP ⊆ DTIME
(
npolylog(n)

)
. More-

over, there is no
(
0.99, O

(
log n

log log n

))
bicriteria approxima-

tion for directed multicut, under the same complexity as-
sumption.

Given Theorem 1, we can use an argument similar to the
one given in [7] for undirected cut problems, to obtain the
following result:

Theorem 2. The directed (non-bipartite) sparsest cut prob-

lem is Ω
(

log n
log log n

)
-hard to approximate unless NP is con-

tained in DTIME
(
npolylog(n)

)
.

For sake of completeness, we briefly sketch the proof of The-
orem 2. Let α0 = 0.99 and let β0 = Θ(log n/ log log n) be the
hardness factor in Theorem 1. Let OPT denote the optimal
value for a given multicut instance. Suppose we have a β′-
approximation algorithm for sparsest cut. Then as long as at
least (1−α0)k pairs remain to be separated, we can use the
β′-approximation to find a subset E′ of edges of size at most

β′
(

OPT
(1−α0)k

)
p that separates at least p pairs for some inte-

ger p ≥ 1. We delete the edges in E′ and repeat this process
until the number of remaining pairs falls below (1−α0)k. It
is easy to see that the total number of edges deleted over all

iterations is at most
(

β′
(1−α0)

)
OPT. Thus assuming Theo-

rem 1, we must have β′ ≥ (1 − α0)β0 = Ω(log n
log log n

).

Organization: The remainder of this paper is devoted to
proving Theorem 1. We start with some preliminaries in
Section 2, and present our hardness construction for Theo-
rem 1 in Section 3, which is based on a reduction from 3SAT.
Our construction is based on the Raz verifier for 3SAT. In
Sections 4 and 5, we present an analysis of the construc-
tion for the case when the 3SAT formula is satisfiable (a
Yes-Instance) and non-satisfiable (a No-Instance), re-
spectively.

2. PRELIMINARIES
For the sake of convenience, we consider the vertex version
of the directed multicut problem. In this version, the input
is the same as in directed multicut, and the goal is to remove
a subset S of non-terminal vertices of smallest cardinality,
that disconnects all the source-sink pairs. We prove The-
orem 1 for the vertex version of the multicut problem. In
order to obtain the same result for the multicut problem
itself, we use a standard procedure to convert our instance
to the instance of directed multicut, as follows. Each ver-
tex v is replaced by a directed edge (v+ → v−). Each edge
e = (u → v) in the original graph is replaced by an edge
(u− → v+). We can assume w.l.o.g., that any optimal so-
lution of the new instance only contains edges of the form
(v+ → v−), and thus solution costs for both instances are
the same.

The reduction is performed from the gap version of Max
3SAT(5). The input to the problem is a CNF formula ϕ
with n variables and 5n

3
clauses. Each clause consists of 3

literals and each variable participates in 5 clauses, appearing
in each clause at most once. Let ε : 0 < ε < 1 be a constant,
and let ϕ be an instance of Max 3SAT(5). Then ϕ is called
a Yes-Instance, if there is an assignment to its variables
that satisfies all the clauses, and it is called a No-Instance
(with respect to ε), if any assignment satisfies at most a
fraction (1−ε) of the clauses. Following is one of the several
equivalent statements of the PCP theorem [5, 3].

Theorem 3. There is a constant ε : 0 < ε < 1, such
that it is NP-hard to distinguish between Yes-Instances
and No-Instances (defined with respect to ε) of the Max
3SAT(5) problem.

We use the Raz verifier for 3SAT(5) with ` parallel repe-
titions. This is an interactive proof system, in which two
provers try to convince the verifier that the input 3SAT(5)
formula ϕ is satisfiable. The verifier chooses, independently
at random, ` clauses C1, . . . , C`, and for each i : 1 ≤ i ≤ `, a
variable xi participating in clause Ci is chosen. The verifier
then sends one query to each one of the two provers, while
the query to the first prover consists of the indices of the
clauses C1 . . . , C`, and the query to the second prover con-
tains the indices of the variables x1, . . . , x`. The first verifier
is expected to return an assignment to all the variables in
clauses C1, . . . , C`, which must satisfy the clauses. The sec-
ond prover returns an assignment to variables x1, . . . , x`. Fi-
nally, the verifier checks that the answers of the two provers
are consistent, i.e., for each i : 1 ≤ i ≤ `, the assignment
to xi, returned by the second prover, is identical to the as-
signment to xi, obtained by projecting the assignment to
the variables of Ci, returned by the first prover, onto xi.
(We assume that the answers sent by the first prover always
satisfy the clauses appearing in its query). The following
theorem is obtained by combining the PCP theorem with
the parallel repetition theorem [20].

Theorem 4. There exists a constant γ > 0, such that:

• If ϕ is a Yes-Instance, then there is a strategy of the
provers, for which the acceptance probability is 1.

• If ϕ is a No-Instance, then for any strategy of the
provers, the acceptance probability is at most 2−γ`.

We denote the set of all the random strings of the verifier
by R , |R| = (5n)`, and the sets of all the possible queries of
the first and the second prover by Q1 and Q2 respectively,
|Q1| = (5n/3)`, |Q2| = n`, and set Q = Q1 ∪ Q2. For each
query q ∈ Q, let A(q) be the collection of all the possible
answers to q (if q is a query of the first prover, then A(q) only
contains answers that satisfy all the clauses of the query).
Let A = 7`, A′ = 2`. Then for each q ∈ Q1, |A(q)| = A,
and for each q′ ∈ Q2, |A(q′)| = A′. Given a random string
r ∈ R, let q1(r), q2(r) be the queries sent to the first and the
second prover respectively, when the verifier chooses r.

3. THE CONSTRUCTION
Given an input 3SAT(5) formula ϕ, we construct an instance
of directed multicut recursively. The first step is to construct
the level-1 instance. Next we define a slight generalization

of the level-1 instance, called the basic instance, which will
help us construct higher-level instances. In general, level-
i instance is obtained by composing together level-(i − 1)
instances with the basic instance. More specifically, we con-
struct a graph G′ containing several copies of level-(i − 1)
instance and graph G′′ containing several copies of the ba-
sic instance. In order to obtain level-i instance Gi, we add
source-sink pairs and edges of G′′ to graph G′. The edges
of G′′ are added to G′ as follows. We define a bijection f
between the vertices of G′ and G′′. Let (v → v′) be any
edge of G′′, and let u, u′ be two vertices of G′, such that
f(u) = v and f(u′) = v′. Then we add the edge (u → u′) to
graph G′.
We start by defining level-1 instances, and then show how
to generalize them to obtain the basic instance. Finally, we
show how level-i instances are constructed, by composing
level-(i − 1) instances with the basic instance.

3.1 Level-1 Instances
For each possible random string r ∈ R of the verifier, we
construct a graph G(r), corresponding to string r. Level-1
instance G1 is simply the union of G(r) for all r ∈ R.
Fix some r ∈ R, and let q = q1(r), q

′ = q2(r). Graph G(r)
is a layered graph, containing L = 32A = 32 · 7` layers. In
each layer i : 1 ≤ i ≤ L, for each answer a ∈ A(q) ∪ A(q′),
there is a vertex v(i, a) representing it. Let a1, . . . , aA′ be
all the answers to query q′ of the second prover, ordered in
some arbitrary way. For each j : 1 ≤ j ≤ A′, we define Sj to
be the subset of A(q), containing all the answers to q which
are consistent with aj . Notice that each a ∈ A(q) belongs
to exactly one such set Sj , and |Sj | ≤ 4`. We assume that
all the answers in Sj are ordered in some arbitrary way,
bj
1, b

j
2, . . . , b

j
|Sj |, and we will refer to bj

1 and bj
|Sj | as the first

and the last answers of Sj , respectively.
We now describe the edges of G(r). Let i, i′ be two lay-
ers, 1 ≤ i < i′ ≤ L. We define the edges between the two
layers, all of them directed from layer i to layer i′. For
each j : 1 ≤ j ≤ A′, for each pair bj

k, bj
k+1 of consecu-

tive answers in Sj (where 1 ≤ k < |Sj |), we add the edge
(v(i, bj

k) → v(i′, bj
k+1)). Consider now some j : 1 ≤ j < A′.

Let b be the last answer in Sj , and let b′ be the first an-
swer in Sj+1 (i.e., b = bj

|Sj | and b′ = bj+1
1). We add the

edges: (v(i, b) → v(i′, b′)), (v(i, b) → v(i′, aj+1)), (v(i, aj) →
v(i′, b′)), (v(i, aj) → v(i′, aj+1)). Thus, we add all the edges
from level-i vertices representing b and aj to level-i′ vertices
representing b′ and aj+1.
Let B be the first answer in S1, and let B′ be the last an-
swer in SA′ . We add a source s(r), which connects to all
the copies of B and a1 (in all the layers), and we add a
corresponding sink t(r), to which all the copies of B′ and
aA′ (from all the layers) connect. The pair (s(r), t(r)) is the
only source-sink pair for graph G(r). This concludes the
description of G(r). We now establish its properties.

Lemma 1. Let a, a′ be a pair of consistent answers to q
and q′ respectively. Then the removal of all the vertices
v(i, a), v(i, a′) for 1 ≤ i ≤ L from G(r) separates s(r) from
t(r).

Proof. Let a, a′ be a pair of consistent answers, and as-
sume that a′ = ai for some i, so a ∈ Si. Consider any
source-sink path P . We disregard the layers in which the
vertices of P appear and only refer to the answers to which
they correspond. Then P has to look as follows: s(r) →

P1 → · · · → PA′ → t(r), where for each j : 1 ≤ j ≤ A′,
Pj either contains a single vertex representing aj , or it is a
path containing all the answers in Sj (in the order in which
the answers appear in Sj). Clearly, if a, a′ are removed from
the graph, then each such path is disconnected.

Graph G(r) contains L(A+A′) vertices, and from the above
lemma, there is a collection of vertices of size 2L which dis-
connects s(r) and t(r).

Lemma 2. Consider any set S of non-terminal vertices,
whose removal disconnects s(r) and t(r). Then there are at
least L − 7` layers i, for which there is a pair of vertices
v(i, a), v(i, a′) ∈ S, where a, a′ are consistent answers to
queries q and q′, respectively.

Proof. Assume otherwise. Let L = {l1 ≤ · · · ≤ l7`} be
the layers such that for each li, 1 ≤ i ≤ 7`, there is no pair
(a, a′) of consistent answers to q, q′, where both v(i, a) and
v(i, a′) belong to S. We build a path P from s(r) to t(r).
Path P is defined to be P = s(r) → P1 → P2 → · · · →
P2` → t(r), where for each j : 1 ≤ j ≤ 2`, Pj either contains
a copy of aj , or it is a path traversing all the answers in Sj .
We build path P iteratively. Consider the first |S1| layers
in L. If, for any layer li of these layers, a copy of a1 is not
in S, then we set P1 = v(li, a1). Otherwise, for each one
of these layers, none of the answers of S1 belongs to the
solution S. Thus, we can set P1 = v(l1, b

1
1) → v(l2, b

1
2) →

· · · → v(l|S1|, b
1
|S1|). We now consider the next |S2| layers of

L, and build P2 similarly.

Level-1 construction is the union of G(r) for all r ∈ R. It is
a layered graph with L layers, where for each i : 1 ≤ i ≤ L,
layer i is the union of layer-i vertices of all G(r) for all
r ∈ R. We note that we do not reuse the vertices, i.e.,
level-1 graph is actually not connected, and when a vertex
representing the same layer-answer pair v(i, a) appears in
several graphs G(r), we use fresh copies of this vertex. We
have |R| source-sink pairs, which are the union of the source-
sink pairs belonging to graphs G(r), for r ∈ R. From Lemma
1, in the Yes-Instance, there is a solution of cost 2L|R|.
We now give some intuition. It is clear that even in the
No-Instance, level-1 construction can be solved by using
2L|R| vertices: for each random string r ∈ R, we can select
any pair a, a′ of consistent answers to q1(r), q2(r), and re-
move all the vertices representing these answers from G(r),
thus disconnecting s(r) from t(r). However, the solutions
to the Yes-Instance and to the No-Instance look quite
different: Let q ∈ Q be some query, and consider all the
random strings r in which q participates (i.e., q = q1(r) or
q = q2(r)). In the Yes-Instance solution, for all these ran-
dom strings r, the same answer a ∈ A(q) is chosen in each
graph G(r), and the vertices v(i, a) representing this an-
swer are removed. However, in the No-Instance, for most
queries q, we will have to choose many different answers.
Moreover, we can show that for most queries q, for most
layers i, the solution will contain vertices representing many
different answers to query q at layer i. Though this does not
affect the solution cost for the level-1 instance, we will make
the No-Instance pay for it at higher levels. The second
level graph will contain a union of several level-1 construc-
tions (with some new edges and source-sink pairs added).
The source-sink pairs belonging to the level-1 instances are
called level-1 source-sink pairs, and the newly added pairs

are called level-2 source-sink pairs. In the Yes-Instance,
the solution cost will remain the sum of the solution costs
of the level-1 instances (so we will not have to pay any ad-
ditional cost for disconnecting level-2 source-sink pairs). In
the No-Instance, if we fix any minimal set S of vertices,
that disconnects level-2 source-sink pairs, then S has a spe-
cific structure with respect to the level-1 instances. More
precisely, consider one of the copies of the level-1 instance
that is used in building the level-2 instance. Let a be an
answer to some query q ∈ Q, and let i : 1 ≤ i ≤ L be some
layer. Then either all the vertices representing a at layer i
in this level-1 instance belong to S, or none of them. Since
we are in a No-Instance, a solution of this type cannot be
a good solution for the level-1 instances, and thus we will
need to pick additional vertices to disconnect level-1 source-
sink pairs. Thus, the solution cost of the No-Instance will
accumulate across the levels.

3.2 The Basic Instance Construction
The basic instance is a slight generalization of the level-1
construction, and it will be used when building higher-level
instances. For each r ∈ R, we build a graph G′(r), which
is defined similarly to G(r), with the following difference:
for each layer i : 1 ≤ i ≤ L, for each answer a ∈ A(q) ∪
A(q′) (where q = q1(r), q′ = q2(r)), instead of a single
vertex v(i, a) we have in G(r), the new graph contains a set
V (i, a) of vertices. The cardinality of V (i, a) is X, which is
a parameter of our construction, and will be set to different
values when we use the basic instance to construct different
level instances. If there is an edge v(i, a) → v(i′, a′) in graph
G(r) between some pair v(i, a), v(i′, a′) of vertices, then it is
replaced in G′(r) by the following collection of edges: we add
an edge from each vertex of V (i, a) to each vertex of V (i′, a′).
Additionally, for each vertex v(i, a), for which there is an
edge (s(r) → v(i, a)) in the original graph, we add edges
from s(r) to all the vertices in V (i, a). Similarly, if edge
(v(i, a) → t(r)) belongs to the original graph, we add all the
edges from vertices in V (i, a) to t(r) in the new graph. It is
easy to see that the following versions of Lemmas 1 and 2
still hold:

Lemma 3. Given a pair of consistent answers a, a′ to queries
q and q′ respectively, where q = q1(r), q

′ = q2(r), if we re-
move from G′(r) all the vertices in V (i, a) and V (i, a′), for
all i : 1 ≤ i ≤ L, then s(r) is disconnected from t(r).

Lemma 4. Consider any subset S of non-terminal ver-
tices, whose removal disconnects s(r) from t(r) in G′(r).
Then there are at least L−7` layers i, where for each such i
there is a pair of consistent answers a, a′ to queries q and q′

respectively, such that all the vertices of V (i, a) and V (i, a′)
belong to the solution.

The basic instance is defined to be the union of G′(r) for all
r ∈ R, exactly as the level-1 instance, with the same layered
structure as in the level-1 instance. Notice that if X = 1,
then the basic instance is exactly the level-1 instance.
Let q ∈ Q be some query, a ∈ A(q) be some answer to
this query, and i : 1 ≤ i ≤ L be some layer. We define
U(i, q, a) to be the set of all the vertices in the ith layer of
the basic instance representing the answer a to query q, i.e.,
for each random string r ∈ R, such that q ∈ {q1(r), q2(r)},
the set V (i, a) of vertices of G′(r) is contained in U(i, q, a).
Thus, if q is a query of the first prover, then U(i, q, a) is

a union of 3` such sets (as each query q ∈ Q1 participates
in 3` random strings), and |U(i, q, a)| = 3`X, and if q is a
query of the second prover, then U(i, q, a) is a union of 5`

such sets, and |U(i, q, a)| = 5`X. Notice that sets U(i, q, a)
define a partition of the vertices of the basic instance, and
each vertex belongs to exactly one such set.

3.3 Level-2 Instances
To motivate our general construction, we first describe how
we go to level-2 instances starting from level-1 instances. We
start by constructing two auxiliary graphs: G′ = (V ′, E′) is
a union of L · 15` level-1 instances, and G′′ = (V ′′, E′′) is a
union of L basic instances with parameter X2 = 15`. The
level-2 graph G2 = (V2, E2) is obtained by combining these
two graphs, in the following fashion. Let T ′, T ′′ denote the
sets of the the terminal vertices in G′, G′′ respectively, and
let P ′,P ′′ denote the collections of source-sink pairs in these
graphs. The vertex set of G2 is V2 = V ′∪T ′′, and the source-
sink pairs are P ′∪P ′′. We will refer to P ′ and P ′′ as level-1
and level-2 pairs, respectively. The edge set E2 of G2 con-
sists of two subsets. The first subset is called level-1 edges,
and these are all the edges in E′. The second subset is called
level-2 edges. In order to define this set of edges, we first
build a bijection f : (V2\T ′) → V ′′. Level-2 edges are added
as follows: let v, v′ ∈ V ′′, such that edge (v → v′) belongs
to G′′. Let u, u′ ∈ V2, such that f(u) = v, f(u′) = v′. Then
we add edge (u → u′) to E2. When defining function f , we
need to be very careful, so that adding level-2 edges to the
graph does not create any cheating paths for either level-1 or
level-2 source-sink pairs (a cheating path for any source-sink
pair contains edges of more than one type. The presence of
the cheating paths in the graph might create a problem in
the Yes-Instance analysis, as the standard solution that
contains all the vertices representing the “correct” answers
to the queries, may no longer be a feasible solution, since it
does not necessarily disconnects the cheating paths). The
fact that level-1 instance is a layered construction, and all
the edges are directed from lower-indexed to higher-indexed
layers helps avoid this problem.
Function f is defined as follows. Recall that graph G′ is a
union of L · 15` level-1 instances. We partition them into
L subsets Hi (i : 1 ≤ i ≤ L) of 15` level-1 instances each.
The vertices in level-1 instances of set Hi are mapped to
the vertices of the ith layer of the basic instances in G′′.
Moreover, each copy H ∈ Hi of level-1 instance, for each
j : 1 ≤ j ≤ L, the vertices of the jth layer of H are mapped
to vertices in the jth basic instance of G′′, (in its ith layer).
Thus, after adding level-2 edges to graph G2, we obtain L2

“layers”, which are referred to from now on as groups, of
vertices, Gj,i where 1 ≤ i ≤ L, 1 ≤ j ≤ L. Group Gj,i

contains, for each H ∈ Hi, all the layer j vertices of H.
Vertices in group Gj,i are mapped to the vertices of the
ith layer of the jth basic instance of G′′. The important
feature of this construction is that for any pair of groups
Gj,i, Gj′,i′ , there are level-1 edges from Gj,i to Gj′,i′ only
if j < j′, i = i′, and there are level-2 edges from Gj,i to
Gj′,i′ only if i < i′ and j = j′. Figure 1 shows how level-2
instances are constructed.
We now complete the description of f . Consider the jth
basic instance in G′′, 1 ≤ j ≤ L, its ith layer, for 1 ≤ i ≤ L.
The set of vertices Gj,i includes all the layer-j vertices of all
H ∈ Hi. Recall that in the basic instance, for each layer i,
for each prover-1 answer a, we have a set U(i, q, a) of ver-

tices that consists of a union of 3` sets V (i, a) of vertices
(one set for each random string in which the correspond-
ing query participates), and for each prover-2 answer a′,
we have 5` sets V (i, a′). We also know that Hi contains
15` instances of level 1 construction. Fix some answer a to
some prover 1 query q. In each H ∈ Hi, let W (H, j, q, a) be
the set of all the vertices representing a in jth layer of H
(i.e., W (H, j, q, a) is actually set U(j, q, a) of instance H).
Since we have 15` graphs H ∈ Hi, we have 15` such sets.
We partition them arbitrarily into collections containing 5`

such sets each, thus obtaining a collection of 3` equal-sized
sets of vertices representing a, as desired. The vertices in
each such set are arbitrarily mapped to the vertices of one
of the sets V (i, a) in the jth basic instance of G′′. Recall
that in the level-1 instance, for each layer j : 1 ≤ j ≤ L, for
each answer a to a prover-1 query, there are 3` layer-j ver-
tices representing a. Thus, for each H, |W (H, j, q, a)| = 3`,
and the number of vertices we map to each set V (i, a) is
X2 = 3` · 5` = 15`. We do the same for each prover-2 an-
swer a′ to each query q′, only this time we will partition the
sets W (H, j, q′, a′) into a collection of 5` equal-sized sets,
each containing 3` of such sets. For prover-2 answers a′, we
have that |W (H, j, q′, a′)| = 5`, and thus the number of ver-
tices mapped to each set V (i, a′) is again X2 = 15`. Finally,
for the set T ′′ of terminals, function f is defined to be the
identity function.

3.4 Level-h Instances
We now formally describe level-h construction. An invariant
that we will keep throughout the construction:

Invariant For each h, the vertices of the level-h instance are
partitioned into Lh groups Gz1,z2,...,zh , where 1 ≤ zj ≤ L
for each j : 1 ≤ j ≤ h. Given two groups Y = Gz1,z2,...,zh

and Z = Gz′
1,z′

2,...,z′
h
, for each j : 1 ≤ j ≤ h, there are level-j

edges from Y to Z only if zj < z′
j and for all k 6= j, zk = z′

k.
For each query q ∈ Q1∪Q2, for each answer a ∈ A(q), group
Gz1,z2,...,zh contains a set U(z1, z2, . . . , zh, q, a) of vertices
representing a, and the sizes of these sets are identical for
all q, a, for all groups Gz1,z2,...,zh .

In order to create a level-h instance, we again start by build-
ing two auxiliary graphs G′ = (V ′, E′) and G′′ = (V ′′, E′′),
where G′ is a union of L · 15` level-(h − 1) instances, and
G′′ is a union of Lh−1 basic instances with parameter Xh,
which will be specified later. Let T ′, T ′′,P ′,P ′′ denote the
terminal sets and the sets of the source-sink pairs of the two
graphs, respectively. The level-h graph Gh = (Vh, Eh) is
defined as follows. The vertex set is Vh = V ′ ∪ T ′′, and the
set of source-sink pairs is P ′ ∪ P ′′, where P ′ contains level-
1, . . . , h−1 pairs, while pairs in P ′′ are called level-h source-
sink pairs. There are two sets of edges in Eh. The first set
is exactly the set E′ of edges from graph G′, and it contains
level-1, . . . , h − 1 edges from the previous recursion levels.
The second set contains level-h edges, and it is defined by
the means of a bijection f : (Vh \ T ′) → V ′′, as follows. For
each edge (v → v′) ∈ E′′, there is an edge (u → u′) ∈ E,
where u, u′ ∈ Vh \ T ′, such that f(u) = v, f(u′) = v′. In
order to finish the description of level-h construction, it
now only remains to define the bijection f . We partition
the collection of level-(h − 1) instances in G′ into L sets
H1, . . . ,HL, each containing 15` level-(h− 1) instances. We
also denote the Lh−1 basic instances of G′′ by Bz1,...,zh−1 ,
where for j : 1 ≤ j ≤ h − 1, 1 ≤ zj ≤ L. For each h-tuple
(z1, . . . , zh−1, i), where 1 ≤ zj ≤ L for all 1 ≤ j ≤ h − 1,

layer L: : :layer 2layer 1

Edge direction:
from lower to higher
indexed layers.

instances

15`

layer 1

layer L

level-1 edges
Direction of

...

HL

...

layer 1 layer 2 : : : layer L

layer 1 layer 2 : : : layer L

H2

...

layer 1 layer 2 : : : layer L

layer 1 layer 2 : : :

layer 2

: : : layer L

layer 1 layer 2 : : : layer L

layer 2

: : : layer L

layer 1 layer 2 : : : layer L

H1

level-1
...

layer 1 layer 2 : : : layer L

layer 1

(a) (b)

� � �

L basic instances

Direction of
level-2 edges

Layer 1

Layer L

Layer 2

...

Direction of
level-1 edges

: : :

: : :

...

G2;L : : : GL;L

G2;2

G1;1

G1;2

G1;L

G2;1 GL;1

GL;2

level-2 edges
Direction of

(c) (d)

Figure 1: Level-2 instance construction. (a) Schematic view of level-1 instance; (b) Graph G′; (c) Mapping
vertices of G′ to vertices of G′′; (d) Level-2 instance.

and for each i : 1 ≤ i ≤ L, group Gz1,...,zh−1,i is defined as
follows. It is the union of all the groups Gz1,z2,...,zh−1 of in-
stances belonging to Hi. We map the vertices of this group
to the vertices of the ith layer of basic instance Bz1,...,zh−1 .
Since we add level-h edges according to bijection f , and
since, in the basic instance, the edges are directed from
lower-indexed to higher-indexed coordinates, the first part
of the invariant still holds.
Consider now the ith layer of instance Bz1,...,zh−1 , and the
group Gz1,z2,...,zh−1,i of vertices. We show how to map ver-
tices in Gz1,z2,...,zh−1,i to layer-i vertices of basic instance
Bz1,...,zh−1 . Let a be some answer to some prover-1 query
q. Then each original group Gz1,z2,...,zh−1 of each graph
H ∈ Hi contains a collection W (H, z1, z2, . . . , zh−1, a, q)
of vertices representing a (i.e., W (H, z1, z2, . . . , zh−1, a, q)
is exactly the set U(z1, z2, . . . , zh−1, a, q) for instance H).
Thus, we have 15` such sets belonging to different graphs.
We arbitrarily partition these sets into 3` collections of 5`

sets each. Each such collection is arbitrarily mapped to
V (i, a) in some G′(r) in the basic instance Bz1,...,zh−1 , where
q = q1(r). Answers to second prover queries are treated sim-
ilarly, except that we partition them into 5` collections, of
3` sets each. Finally, on the vertices of T ′′, function f is
defined to be the identity function.
The total number of levels in our graph is H = 2γ`/3. The
final construction is obtained from GH , with the following
change: recall that a basic instance contains |R| source-sink
pairs, and that level-h instance contains L·15` copies of level-
(h − 1) instances. Therefore, for each level h : 1 ≤ h ≤ H,

graph Gh contains |R| (L · 15`
)H−h

source-sink pairs from
level h. We need the number of source-sink pairs to be iden-
tical for all levels. Thus, for each source-sink pair (s, t) from

level h (for all h : 1 ≤ h ≤ H), we replace s by
(
L · 15`

)h

sources that connect to all the vertices to which s has been
connected. Similarly, t is replaced by the same number of
copies, and all the vertices that previously connected to t
now connect to each one of the copies. Finally, we de-
fine an arbitrary matching between the copies of s and the
copies of t, and add the corresponding pairs to the collection
of source-sink pairs that need to be disconnected. Thus,
for each level h, 1 ≤ h ≤ H, the final instance contains

|R| (L · 15`
)H

source-sink pairs of level h. This completes
the construction description.

Graph Size: It is easy to see that the size N1 of level-
1 construction is L|R|(A + A′) = nO(`), and the recursive
formula for the size Nh of level-h construction is: Nh =
Nh−1 · 15` · L. Thus, Nh = Lh|R|(A + A′)15`(h−1) = nO(`) ·
2O(`h).
Recall that a basic instance is a union of G′(r) for r ∈ R, and
that in each layer i of G′(r), for each answer a to q1(r) or
q2(r), we have a set V (i, a) of vertices. We denote by Xh the
size of this set for level-h instances. We now calculate the
value of Xh and show that Xh is the same for all answers
to all queries. The value of Xh is computed recursively.
Clearly, X1 = 1. In order to calculate Xh for h > 1, let a
be some answer to some query q ∈ Q1. Recall that for each
i : 1 ≤ i ≤ L, for each basic instance we construct when
building a level h graph, set V (i, a) is a union of 5` sets,
each of which contains all copies of a in a single group of
a level h − 1 instance. It is not hard to see that each such
group of a single instance contains 3` sets S(i′, a) whose size
is Xh−1. Thus, when a is an answer to a query of prover

1, we get that Xh = 15`Xh−1. When a is an answer to
a query of prover 2, we get a similar formula. Therefore,
Xh = 15`(h−1).

Hardness Factor: The total number of levels in our graph
is H = 2γ`/3. In Section 4, we will show that in case of a
Yes-Instance, there is subset of 2LH |R|XH vertices that
disconnects all the source-sink pairs. On the other hand, in
case of a No-Instance, we will show in Section 5 that the
solution cost is Ω(HLH |R|XH), even if only a 0.99 fraction
of the source-sink pairs need to be disconnected. Thus, the
gap between the Yes-Instance and the No-Instance is
Ω(H). Since the construction size is N = nO(`)2O(`H), by
choosing ` = Θ(log log n), we get that the gap factor is H =
Ω(log N/ log log N), while the construction size is bounded
by N = npoly log n.

4. YES-INSTANCE ANALYSIS
When the input formula ϕ is a Yes-Instance, there is a
strategy of the provers for which the verifier always accepts.
For each q ∈ Q, let g(q) ∈ A(q) be the answer to query q
under this strategy. Define S to be the set of all the vertices
of graph GH that represent answers g(q) for all q ∈ Q. The
cost of S is 2LH |R|XH : Graph GH consists of LH−1 basic
instances, each containing |R| graphs G′(r). For each r ∈ R,
the number of vertices representing g(q1(r)) and g(q2(r)) is
2LXH , and thus the number of vertices in S is 2LH |R|XH .
The lemma below shows that S is indeed a feasible solution
to GH .

Lemma 5. The removal of S from the graph disconnects
all the source-sink pairs.

Proof. Fix any j : 1 ≤ j ≤ H, and let s(r), t(r) be any
level-j source-sink pair in GH . Let Cj , Cj+1, . . . , CH denote
the copies of the level-j, j + 1, . . . , H instances, respectively,
that have been used to construct the final instance, which
contain s(r) and t(r). We prove by induction that for each
such instance, any path connecting s(r) to t(r) contains only
level-j edges belonging to instance Cj , and thus it is discon-
nected by Lemma 3 (if we look at the vertices of instance Cj

and the level-j edges connecting them, we obtain a collection
of graphs G′(r) which are not connected to each other).
We start from Cj . Since s(r), t(r) is a level-j source-sink
pair, it belongs to some basic instance Bz1,...,zj−1 of graph
G′′ used to construct the level-j instance. Then for each
i : 1 ≤ i ≤ L, the vertices that are mapped to the ith
layer of Bz1,...,zj−1 are the vertices of the group Gz1,...,zj−1,i.
Suppose there is a path from s(r) to t(r) in Cj that contains
edges from levels 1, . . . , j − 1. When using such an edge for
the first time, the path moves to some group Gz′

1,...,z′
j−1,i′ ,

such that for some y : 1 ≤ y ≤ j − 1, z′
y > zy. Since all the

edges go from lower to higher indexed groups, this path can
never return to a group G(z1, . . . , zj−1, i

′′) for any i′′, i.e., it
is impossible that the path eventually reaches t(r).
We now assume that the lemma is true for some Cy, y ≥ j,
and prove it for Cy+1. Recall that all the vertices of Cy

belong to some layer x of the new level-(y + 1) construc-
tion. The only edges inside this layer are the edges that are
contained in the level y instances, i.e., contained in Cy in
our case. By the induction hypothesis, any path connecting
s(r) to t(r), that uses only these edges, consists of level-j
edges belonging to Cj only. Assume now there is a path
that leaves layer x. Since all the edges in the new instance

are directed from lower indexed to higher indexed layers (or
are contained inside a layer), it is impossible for the path to
return to layer x, thus it cannot reach t(r).

5. NO-INSTANCE ANALYSIS
We start by analyzing the basic instance. Suppose we have
a basic instance construction B = (V, E) with parameter X.
Let S ′ ⊆ V be any subset of vertices. We call this subset
canonical, if for each layer i : 1 ≤ i ≤ L, for each query
q ∈ Q and for each answer a ∈ A(q), either all the vertices
representing a in layer i belong to S ′, or none of them does.
In other words, either U(i, q, a) ⊆ S ′, or U(i, q, a) ∩ S ′ = ∅.
The intuitive idea is that any minimal subset of vertices, that
disconnects source-sink pairs of higher levels, is a canonical
subset of vertices for the current level. We show that even
if this subset is quite large, we still need to remove many
vertices to disconnect the source-sink pairs of the current
level.

Theorem 5. Let S ⊆ V be a subset of vertices whose re-
moval disconnects at least a fraction 15

16
of the source-sink

pairs, where S = S ′ ∪ S ′′, and S ′ is a canonical subset con-
taining less than L|R|XH vertices. Then S ′′ contains at

least L|R|X
29 vertices.

Proof. We say that layer i is good, if at most 4|R|X ·H
of its vertices belong to S ′. Let L denote the set of all the
good layers. Then |L| ≥ 3

4
L.

Consider now some good layer i. For a query q ∈ Q, we
denote by S(q, i) the set of all the answers a ∈ A(q), such
that U(i, q, a) ⊆ S ′. We say that q is good, if |S(q, i)| ≤
16H.

Claim 1. For any good layer i : 1 ≤ i ≤ L, at least 3/4 of
the queries Q1 and at least 3/4 of the queries Q2 are good.

Proof. If we assume that less than 3/4 of queries Q1

are good, then we have |Q1|
4

queries q, for which |S(q, i)| >

16H. Since each query q ∈ Q1 participates in 3` random
strings, we have that the number of vertices corresponding
to each (not-good) query that belong to S ′ is more than
3`X · 16H. Since |Q1| = (5n/3)`, we have that more than
1
4
(5n/3)` · 3`X · 16H = 4|R|XH vertices of layer i are in S ′,

which is impossible since i is good.
The calculation for q ∈ Q2 is similar, except that now each
query participates in 5` random strings, and |Q2| = n`,
yielding the number of vertices corresponding to bad queries
belonging to S ′ is more than: 1

4
|Q2|5`X · 16H = (5n)`X ·

4H = 4|R|XH.

Given a good layer i, we define R′ ⊆ R to be a subset of
random strings r for which both queries q1(r) and q2(r) are
good. It is easy to see that |R′| ≥ 1

2
|R|, for example by

choosing r ∈ R at random and calculating the probability
that both its queries are good.
Let R′′ ⊆ R′ be the subset of random strings r, such that
there is a pair (a, a′) of consistent answers to q1(r), q2(r),
for which both U(i, q, a) ⊆ S ′ and U(i, q, a′) ⊆ S ′.

Claim 2. |R′′| ≤ 1
2
|R′|

Proof. Assume otherwise. We define a strategy of the
provers, for which the acceptance probability of the verifier
is more than 2−γ`, which is impossible for a No-Instance.

For each good query q, we choose one of its 16H answers
whose corresponding vertices are contained in S ′. For a
non-good query q, an arbitrary answer is chosen. The prob-
ability of choosing a random string in R′′ is at least 1

4
,

and if the verifier chooses r ∈ R′′, then the probability
that the provers choose a pair a, a′ of matching answers to
q1(r), q2(r) is at least 1/(16H)2 (since r ∈ R′′, we know
that there is a pair of matching answers (a, a′), such that
U(i, q1(r), a), U(i, q2(r), a

′) ∈ S ′). In total, the probability
that the verifier accepts is at least 1

4(16H)2
> 2−γ` by the

choice of H.

We say that r is good for layer i (when i is a good layer
itself), if r ∈ R′ \ R′′. By the above discussion, for each
good layer, there are at least |R|/4 good random strings.
Let P be the set of all the pairs (r, i) where i is a good
layer, (i.e., i ∈ L) and r is good for layer i. Then clearly
P ≥ |L||R|/4. We say that a random string r is interesting,

if there are at least |L|
8

good layers i, such that r is good for
i.

Claim 3. The number of interesting strings r is at least
|R|
8

.

Proof. Assume otherwise. An interesting random string
r is good for at most |L| good layers, while a non-interesting
r is good for at most |L|/8 good layers. Thus, we can bound

|P | < |R|
8
·|L|+|R|· |L|

8
< |R||L|

4
, which is a contradiction.

We now complete the proof of the theorem. Let J ⊆ R
be the set of all the random strings r, such that r is in-
teresting, and s(r), t(r) are disconnected by S. Since the
fraction of interesting strings is at least 1

8
, and the fraction

of the source-sink pairs disconnected by S is at least 15
16

,

we have that |J | ≥ 1
16

. For each r ∈ J , we have at least
|L|/8 ≥ 3L/32 ≥ L/16 ≥ 2A layers i, for which S ′ does not
contain U(i, q1(r), a), U(i, q2(r), a

′) for any pair of consis-
tent answers (a, a′) to q1(r) and q2(r). Therefore, following
Lemma 4, we need to remove at least AX = LX/32 vertices
from these layers in G′(r) to disconnect the s(r)-t(r) pair.

Thus in total, |S ′′| ≥ LX
32

· |R|
16

= L|R|X
29 .

Consider any solution S to the No-Instance, that discon-
nects at least a fraction 0.99 of the source-sink pairs. Let
F denote the collection of levels h, for which the fraction
of level-h source-sink pairs disconnected by S is at least
0.95. Also, let F = |F|. Clearly, F ≥ 4H

5
. Assume that

F = {h1, h2, . . . , hF }, where h1 ≤ h2 ≤ · · · ≤ hF . We de-
rive from S a disjoint collection Sh1 , . . . , ShF of subsets as
follows. Define ShF to be a minimal subset of S that discon-
nects a fraction 0.95 of the level-hF source-sink pairs (i.e., if
we remove any vertex from ShF , then the fraction of source-
sink pairs that remain disconnected is less than 0.95). Set
Sh(F−1) contains the minimal subset of S that needs to be
removed in addition to SF to disconnect a fraction 0.95 of
level-h(F−1) source-sink pairs and so on. For all i : 0 ≤ i ≤
F , we define Chi =

∑F
j=i+1 |Shj |. Clearly, Ch0 ≤ |S|. Our

goal now is to show that Ch0 = Ω(H|R|LHXH). The next
theorem shows that whenever Chi is small, |Shi | is large.

Theorem 6. For each i = 1, . . . , F , if Chi < 1
10

H|R|LHXH ,

then |Shi | ≥ 1
213 |R|LHXH .

Proof. Consider our final level H instance. Let G̃hi

be the graph obtained from the final instance when we re-
move edges and source-sink pairs of levels higher than hi

from it. In other words, G̃hi contains all the copies of
level-hi instance that we use in the final construction. It
is easy to see that the number of these copies in G̃hi is

(15`L)(H−hi). Let Ghi be the graph defined on the same

set of vertices as G̃hi , where only level-hi edges are present.
Then Ghi is actually a union of basic instances (with mul-
tiple copies of the sources and the sinks of the basic in-
stance). Since each level-hi construction uses Lhi−1 copies
of the basic instance, the total number of basic instances in
Ghi is Zhi = (15`L)(H−hi)Lhi−1 = 15`(H−hi) · LH−1. Let

S ′ =
⋃F

j=i+1 Shj . For each basic instance B, let SB ⊆ S ′ be

the vertices of S ′ that belong to B. By the definition of S ′,
it is easy to see that SB is a canonical set for B. Recall that
for each level hi, Xhi = 15`(hi−1). Thus we have:

|S ′| = Chi <
1

10
H|R|LHXH

=
1

10
H|R|L(LH−115`(H−hi))15`(hi−1)

=
1

10
H|R|LXhiZ

We say that a basic instance B is good if |SB | ≤ HL|R|Xhi .
Clearly, the fraction of good basic instances is at least 0.9.
We say that a basic instance B is interesting, if the fraction
of the source-sink pairs of B that are disconnected by S ′∪Shi

is at least 15
16

. From a simple counting argument, at least a
0.2-fraction of the basic instances are interesting. Thus, in
total, we have at least 0.1 fraction of basic instances which
are both good and interesting.
Recall that for each basic instance, each source-sink pair
(s, t) is replaced by several copies. If we look at some in-
teresting basic instance B with the original (s, t)-pairs (i.e.,
we have one copy of each pair), then the fraction of these
original pairs, which are disconnected by SB is at least 15

16
.

Therefore, we can invoke Theorem 5 for each good and inter-

esting basic instance, which thus contributes at least
L|R|Xhi

29

vertices to Shi . In total,

|Si| ≥ 0.1Zhi ·
L|R|Xhi

29

≥ 1

213

(
15`(H−hi) · LH−1

)
L|R|15`(hi−1)

=
1

213
|R|LH15`(H−1)

=
1

213
|R|LHXH

Corollary 1. Ch0 = Ω(H|R|LHXH).

Proof. If for some i ∈ {1, . . . , F}, Chi ≥ H
10
|R|LHXH ,

the corollary is trivially true. Otherwise, by Theorem 6, we
know that

Ch0 = |Sh1 | + |Sh2 | + ... + |ShF |
≥ |F | · 1

213
|R|LHXH

≥ 4H

5
· 1

213
|R|LHXH

= Ω(H|R|LHXH).

Thus we have a gap of Ω(H) between Yes-Instance and
No-Instance even if the No-Instance solution is required
to disconnect only a 0.99-fraction of the source-sink pairs.

6. REFERENCES
[1] P. Alimonti and V. Kann. Hardness of approximating

problems on cubic graphs. Theoretical Computer
Science, 237: 123-134, 2000.

[2] S. Arora, J. R. Lee, A. Naor. Euclidean distortion and
the sparsest cut. In Proc. of STOC, 2005, pp. 553–562.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM,
45(3):501–555, 1998.

[4] S. Arora, S. Rao, U. V. Vazirani. Expander flows,
geometric embeddings and graph partitioning. In
Proc. of STOC, 2004, pp. 222–231.

[5] S. Arora and S. Safra. Probabilistic checking of proofs:
A new characterization of NP. JACM, 45(1):70–122,
1998.

[6] M. Charikar, K. Makarychev, Y. Makarychev.
Directed Metrics and Directed Graph Partitioning
Problems. In Proc. of SODA, 2006, pp. 51–60.

[7] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, D.
Sivakumar. On the Hardness of Approximating
Multicut and Sparsest-Cut. in Proc. IEEE Conference
on Computational Complexity, 2005, pp. 144–153.

[8] J. Cheriyan, H. J. Karloff, Y. Rabani. Approximating
Directed Multicuts. In Proc. of FOCS, 2001, pp.
320–328.

[9] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P.
D. Seymour, M. Yannakakis. The Complexity of
Multiterminal Cuts. In SIAM J. Comput., 23(4):
864-894, 1994.

[10] U. Feige. Relations between average case complexity
and approximation complexity. In Proc. of STOC,
2002, pp. 534–543.

[11] U. Feige and S. Kogan. Hardness of Approximation of
the Balanced Complete Bipartite Subgraph Problem.
Technical Report MCS04-04, Department of
Computer Science and Applied Math., The Weizmann
Institute of Science, 2004.

[12] L. R. Ford, D. R. Fulkerson, 1962. Flows in Networks.
Princeton University Press, Princeton, NJ.

[13] N. Garg, V. Vazirani, M. Yannakakis. Approximate
max-flow min-(multi)cut theorems and their
applications. In Proc. of STOC, 1993, pp. 698–707.

[14] N. Garg, V. Vazirani, M. Yannakakis. Primal-Dual
Approximation Algorithms for Integral Flow and
Multicut in Trees. Algorithmica, 18(1):3–20, 1997.
Preliminary version in Proc. of ICALP, 1993.

[15] A. Gupta. Improved results for directed multicut. In
Proc. of SODA, 2003, pp. 454-455.

[16] M.T. Hajiaghayi, H. Räcke. An O(
√

n)-Approximation
Algorithm For Directed Sparsest Cut, Information
Processing Letters, 97(4): 156-160, 2006.

[17] S. Khot. On the power of unique 2-prover 1-round
games. In Proc. of STOC, 2002, pp. 767–775.

[18] S. Khot, N. K. Vishnoi. The Unique Games
Conjecture, Integrality Gap for Cut Problems and the
Embeddability of Negative Type Metrics into `1. In
Proc. of FOCS, 2005, pp. 53–62.

[19] T. Leighton and S. Rao. Multicommodity max-flow
min-cut theorems and their use in designing
approximation algorithms. JACM, 46(6):787–832,
1999. Preliminary version in Proc. of FOCS, 1988.

[20] R. Raz. A parallel repetition theorem. SIAM J. of
Computing, 27(3):763–803, 1998.

[21] M. E. Saks, A. Samorodnitsky, L. Zosin. A Lower
Bound On The Integrality Gap For Minimum
Multicut In Directed Networks. Combinatorica 24(3):
525–530 (2004).

APPENDIX

A. APX-HARDNESS OF UNDIRECTED
SPARSEST CUT

We perform a reduction from the vertex cover problem on
cubic graphs. In the vertex cover problem on cubic graphs
we are given a graph G(V, E), where all the vertices have
degree 3. The goal is to choose a minimum-cardinality sub-
set S of vertices, such that for each edge in E, at least one
endpoint of the edge is in S. Alimonti and Kann [1] show
that the problem is APX-hard. Thus, there is some constant
ε : 0 < ε < 1, such that there is no (1 + ε)-approximation
for this problem, unless P = NP. For any pair α, β of pa-
rameters, 0 < α ≤ 1, β ≥ 1, an approximation algorithm
for the vertex cover problem is an (α, β)-bicriteria approx-
imation if it always outputs a solution that covers at least
an α-fraction of the edges, and whose cost is at most βOPT,
where OPT is the cost of the optimal solution to the vertex
cover problem, which covers all the edges.

Claim 4. There is no (ε/6, (1 + ε/2))-bicriteria approxi-
mation algorithm for the vertex cover problem on cubic graphs,
unless P = NP.

Proof. Assume such an algorithm exists. We show that
this algorithm provides an (1+ε)-approximation for the ver-
tex cover problem on cubic graphs. Given an input cubic
graph G = (V, E), let OPT denote the cost of the opti-
mal solution to the vertex cover problem, that covers all
the edges. We apply the algorithm to G, obtaining a set S
of vertices, |S| ≤ (1 + ε/2)OPT that covers at least |E|ε/6
edges. For each one of the edges that are not covered in the
solution, we choose one of its endpoints to be added to the
solution. Let S′ denote the set of these endpoints. Then
|S′| ≤ |E|ε/6. However, since in a cubic graph each vertex
can cover at most three edges, OPT ≥ |E|/3. Therefore,
|S′| ≤ OPTε/2. Altogether, S ∪ S′ is a feasible solution
to the vertex cover problem, that covers all the edges, and
whose cost is at most OPT(1 + ε).

We now use the reduction of Garg, Vazirani and Yannakakis
[14] from vertex cover to undirected multicut on trees of
height one. For the sake of completeness we describe the
reduction. Given an instance G = (V, E) of the vertex
cover problem, the multicut instance is constructed as fol-
lows. The vertex set is V ∪ {r}, and for each vertex v ∈ V ,
there is an edge connecting v to r. For each edge e = (u, v)
of the original graph, we create a source-sink pair (u, v). It
is easy to see that any solution S to the vertex cover problem
can be translated into a solution of the multicut instance,
by removing the edges incident on vertices of S. The re-
verse direction is also immediate. Thus, following Claim 4,
there is no (ε/6, (1 + ε/2)) bicriteria approximation for the
undirected multicut problem, unless P = NP.
Finally, we can use the technique of [7] to prove that undi-
rected sparsest cut is APX-hard.

