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Randomized Composable Coresets for Matching and Vertex Cover

Sepehr Assadi∗ Sanjeev Khanna∗

Abstract

A common approach for designing scalable algorithms for massive data sets is to distribute
the computation across, say k, machines and process the data using limited communication be-
tween them. A particularly appealing framework here is the simultaneous communication model
whereby each machine constructs a small representative summary of its own data and one obtains
an approximate/exact solution from the union of the representative summaries. If the represen-
tative summaries needed for a problem are small, then this results in a communication-efficient

and round-optimal (requiring essentially no interaction between the machines) protocol. Some
well-known examples of techniques for creating summaries include sampling, linear sketching,
and composable coresets. These techniques have been successfully used to design communication
efficient solutions for many fundamental graph problems. However, two prominent problems are
notably absent from the list of successes, namely, the maximum matching problem and the min-

imum vertex cover problem. Indeed, it was shown recently that for both these problems, even
achieving a modest approximation factor of polylog(n) requires using representative summaries

of size Ω̃(n2) i.e. essentially no better summary exists than each machine simply sending its
entire input graph.

The main insight of our work is that the intractability of matching and vertex cover in the
simultaneous communication model is inherently connected to an adversarial partitioning of
the underlying graph across machines. We show that when the underlying graph is randomly
partitioned across machines, both these problems admit randomized composable coresets of size
Õ(n) that yield an Õ(1)-approximate solution1. In other words, a small subgraph of the input
graph at each machine can be identified as its representative summary and the final answer then
is obtained by simply running any maximum matching or minimum vertex cover algorithm on
these combined subgraphs. This results in an Õ(1)-approximation simultaneous protocol for

these problems with Õ(nk) total communication when the input is randomly partitioned across
k machines. We also prove our results are optimal in a very strong sense: we not only rule
out existence of smaller randomized composable coresets for these problems but in fact show
that our Õ(nk) bound for total communication is optimal for any simultaneous communication
protocol (i.e. not only for randomized coresets) for these two problems. Finally, by a standard
application of composable coresets, our results also imply MapReduce algorithms with the same
approximation guarantee in one or two rounds of communication, improving the previous best
known round complexity for these problems.

∗Department of Computer and Information Science, University of Pennsylvania. Supported in part by National
Science Foundation grants CCF-1552909, CCF-1617851, and IIS-1447470.
Email: {sassadi,sanjeev}@cis.upenn.edu.

1Here and throughout the paper, we use Õ(·) notation to suppress polylog(n) factors, where n is the number of
vertices in the graph.
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1 Introduction

Recent years have witnessed tremendous algorithmic advances for efficient processing of massive
data sets. A common approach for designing scalable algorithms for massive data sets is to dis-
tribute the computation across machines that are interconnected via a communication network.
These machines can then jointly compute a function on the union of their inputs by exchanging
messages. Two main measures of efficiency in this setting are the communication cost and the round
complexity ; we shall formally define these terms in details later in the paper but for the purpose of
this section, communication cost measures the total number of bits exchanged by all machines and
round complexity measures the number of rounds of interaction between them.

An important and widely studied framework here is the simultaneous communication model
whereby each machine constructs a small representative summary of its own data and one obtains a
solution for the desired problem from the union of the representative summary of combined pieces.
The appeal of this framework lies in the simple fact that the simultaneous protocols are inherently
round-optimal ; they perform in only one round of interaction. The only measure that remains to be
optimized is the communication cost – this is now determined by the size of the summary created
by each machine. An understanding of the communication cost for a problem in the simultaneous
model turns out to have value in other models of computation as well. For instance, a lower bound
on the maximum communication needed by any machine implies a matching lower bound on the
space complexity of the same problem in dynamic streams [7, 47].

Two particularly successful techniques for designing small summaries for simultaneous protocols
are linear sketches and composable coresets. Linear sketching technique corresponds to taking a
linear projection of the input data as its representative summary. The “linearity” of the sketches is
then used to obtain a sketch of the combined pieces from which the final solution can be extracted.
There has been a considerable amount of work in designing linear sketches for graph problems
in recent years [5, 6, 10, 17, 18, 20, 40, 41, 50]. Coresets are subgraphs (in general, subsets of the
input) that suitably preserve properties of a given graph, and they are said to be composable
if the union of coresets for a collection of graphs yields a coreset for the union of the graphs.
Composable coresets have also been studied extensively recently [11, 12, 15, 36, 52, 53], and indeed
several graph problems admit natural composable coresets; for instance, connectivity, cut sparsifiers,
and spanners (see [49], Section 2.2; the “merge and reduce” approach). Successful applications of
these two techniques has yielded Õ(n) size summaries for many graph problems (see further related
work in Section 1.3). However, two prominent problems are notably absent from the list of successes,
namely, the maximum matching problem and the minimum vertex cover problem. Indeed, it was
shown recently [10] that both matching and vertex cover require summaries of size n2−o(1) for even
computing a polylog(n)-approximate solution2.

This state-of-affairs is the starting point for our work, namely, intractability of matching and
vertex cover in the simultaneous communication model. Our main insight is that a natural data obliv-
ious partitioning scheme completely alters this landscape: both problems admit Õ(1)-approximate
composable coresets of size Õ(n) provided the edges of the graph are randomly partitioned across
the machines. The idea that random partitioning of data can help in distributed computation was
nicely illustrated in the recent work of [52] on maximizing submodular functions. Our work can be
seen as the first illustration of this idea in the domain of graph algorithms. The applicability of this
idea to graph theoretic problems has been cast as an open problem in [52].

2The authors in [10] only showed the inapproximability result for the matching problem. However, a simple
modification of their result proves an identical lower bound for the vertex cover problem as well.
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Randomized Composable Coresets We follow the notation of [52] with a slight modification to
adapt to our application in graphs. Let E be an edge-set of a graph G(V,E); we say that a partition{
E(1), . . . , E(k)

}
of the edges E is a random k-partitioning iff the sets are constructed by assigning

each edge in E independently to a set E(i) chosen uniformly at random. A random partitioning
of the edges naturally defines partitioning the graph G(V,E) into k graphs G(1), . . . , G(k) whereby
G(i) := G(V,E(i)) for any i ∈ [k], and hence we use random partitioning for both the edge-set and
the input graph interchangeably.

Definition (Randomized Composable Coresets [52]). For a graph-theoretic problem P , consider
an algorithm ALG that given any graph G(V,E), outputs a subgraph ALG(G) ⊆ G with at most s
edges. Let G(1), . . . , G(k) be a random k-partitioning of a graph G. We say that ALG outputs an α-
approximation randomized composable core-set of size s for P if P

(
ALG(G(1)) ∪ . . . ∪ ALG(G(k))

)

is an α-approximation for P (G) w.h.p., where the probability is taken over the random choice of the
k-partitioning. For brevity, we use randomized coresets to refer to randomized composable coresets.

We further augment this definition by allowing the coresets to also contain a fixed solution to
be directly added to the final solution of the composed coresets. In this case, size of the coreset is
measured both in the number of edges in the output subgraph plus the number of vertices and edges
picked by the fixed solution (this is mostly relevant for our coreset for the vertex cover problem).

1.1 Our Results

We show existence of randomized composable coresets for matching and vertex cover.

Result 1. There exist randomized coresets of size Õ(n) that w.h.p. (over the random par-
titioning of the input) give an O(1)-approximation for maximum matching, and an O(log n)-
approximation for minimum vertex cover.

In contrast to the above result, when the graph is adversarially partitioned, the results of [10]
show that the best approximation ratio conceivable for these problems in Õ(n) space is only Θ(n1/3).
We further remark that Result 1 can also be extended to the weighted version of the problems.
Using the Crouch-Stubbs technique [22] one can extend our result to achieve a coreset for weighted
matching (with a factor 2 loss in approximation and extra O(log n) term in the space). Similar
ideas of “grouping by weight” of edges can also be used to extend our coreset for weighted vertex
cover with an O(log n) factor loss in approximation and space; we omit the details.

The Õ(n) space bound achieved by our coresets above is considered a “sweet spot” for graph
streaming algorithms [30,54] as many fundamental problems are provably intractable in o(n) space
(sometimes not enough to even store the answer) while admit efficient solutions in Õ(n) space.
However, in the simultaneous model, these considerations imply only that the total size of all k
coresets must be Ω(n), leaving open the possibility that coreset output by each machine may be as
small as Õ(n/k) in size (similar in spirit to coresets of [52]). Our next result rules out this possibility
and proves the optimality of our coresets size.

Result 2. Any α-approximation randomized coreset for the matching problem must have size
Ω(n/α2), and any α-approximation randomized coreset for the vertex cover problem must have
size Ω(n/α).

We now elaborate on some applications of our results.
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Distributed Computation We use the following distributed computation model in this paper,
referred to as the coordinator model (see, e.g., [62]). The input is distributed across k machines.
There is also an additional party called the coordinator who receives no input. The machines are
allowed to only communicate with the coordinator, not with each other. A protocol in this model
is called a simultaneous protocol iff the machines simultaneously send a message to the coordinator
and the coordinator then outputs the answer with no further interaction. Communication cost of a
protocol in this model is the total number of bits communicated by all parties.

Result 1 can also be used to design simultaneous protocols for matching and vertex cover with
Õ(nk) total communication and the same approximation guarantee stated in Result 1 in the case
the input is partitioned randomly across k machines. Indeed, each machine only needs to compute
a coreset of its input, sends it to the coordinator, and coordinator computes an exact maximum
matching or a 2-approximate minimum vertex cover on the union of the coresets. We further prove
that the communication cost of theses protocols are essentially optimal.

Result 3. Any α-approximation simultaneous protocol for the maximum matching problem,
resp. the vertex cover problem, requires total communication of Ω(nk/α2) bits, resp. Ω(nk/α)
bits, even when the input is partitioned randomly across the machines.

Result 3 is a strengthening of Result 2; it rules out any representative summary (not necessarily
a randomized coreset) of size o(n/α2) (resp. o(n/α)) that can be used for α-approximation of
matching (resp. vertex cover) when the input is partitioned randomly.

For the matching problem, it was shown previously in [35] that when the input is adversarially
partitioned in the coordinator model, any protocol (not necessarily simultaneous) requires Ω(nk/α2)
bits of communication to achieve an α-approximation of the maximum matching. Result 3 extends
this to the case of randomly partitioned inputs albeit only for simultaneous protocols.

MapReduce Framework We show how to use our randomized coresets to obtain improved
MapReduce algorithms for matching and vertex cover in the MapReduce computation model for-
mally introduced in [42,46]. Let k =

√
n be the number of machines, each with a memory of Õ(n

√
n);

we show that two rounds of MapReduce suffice to obtain an O(1)-approximation for matching and
O(log n)-approximation for vertex cover. In the first round, each machine randomly partitions the
edges assigned to it across the k machines; this results in a random k-partitioning of the graph
across the machines. In the second round, each machine sends a randomized composable coreset
of its input to a designated central machine M ; as there are k =

√
n machines and each machine

is sending Õ(n) size coreset, the input received by M is of size Õ(n
√
n) and hence can be stored

entirely on that machine. Finally, M computes the answer by combining the coresets (similar to the
case in the coordinator model). Note that if the input was distributed randomly in the first place,
we could have implemented this algorithm in only one round of MapReduce (see [52] for details on
when this assumption applies).

Our MapReduce algorithm outperforms the previous algorithms of [46] for matching and vertex
cover in terms of the number of rounds it uses, albeit with a larger approximation guarantee.
In particular, [46] achieved a 2-approximation to both matching and vertex cover in 6 rounds
of MapReduce when using similar space as ours on each machine (the number of rounds of this
algorithm is always at least 3 even if we allow Õ(n5/3) space per each machine). The improvement
on the number of rounds is significant in this context; the transition between different rounds in a
MapReduce computation is usually the dominant cost of the computation [46] and hence, minimizing
the number of rounds is an important goal in the MapReduce framework.
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1.2 Our Techniques

Randomized Coreset for Matching Greedy and Local search algorithms are the typical choices
for composable coresets (see, e.g., [36,52]). It is then natural to consider the greedy algorithm for the
maximum matching problem as a randomized coreset: the one that computes a maximal matching.
However, one can easily show that this choice of coreset performs poorly in general; there are
simple instances in which choosing arbitrary maximal matching in the graph G(i) results only in an
Ω(k)-approximation.

Somewhat surprisingly, we show that a simple change in strategy results in an efficient ran-
domized coreset: any maximum matching of the graph G(i) can be used as an O(1)-approximate
randomized coreset for the maximum matching problem. Unlike the previous work in [36, 52] that
relied on analyzing a specific algorithm (or a specific family of algorithms) for constructing a coreset,
we prove this result by exploiting structural properties of the maximum matching (i.e., the optimal
solution) directly, independent of the algorithm that computes it. As a consequence, our core-
set construction requires no prior coordination (such as consistent tie-breaking rules used in [52])
between the machines and in fact each machine can use a different algorithm for computing the
maximum matching required by the coreset.

Randomized Coreset for Vertex Cover In the light of our coreset for the matching problem,
one might wonder whether a minimum vertex cover of a graph can also be used as its randomized
coreset. However, it is easy to show that the answer is negative here – there are simple instances
(e.g., a star on k vertices) on which this leads to an Ω(k) approximation ratio. Indeed, the feasibility
constraint in the vertex cover problem depends heavily on the input graph as a whole and not only
the coreset computed by each machine, unlike the case for matching and in fact most problems that
admit a composable coreset [12, 36, 52]. This suggests the necessity of using edges in the coreset to
certify the feasibility of the answer. On the other hand, only sending edges seems too restrictive: a
vertex of degree n − 1 can safely be assumed to be in an optimal vertex cover, but to certify this,
one needs to essentially communicate Ω(n) edges. This naturally motivates a slightly more general
notion of coresets – the coreset contains both subsets of vertices (to be always included in the final
vertex cover) and edges (to guide the choice of additional vertices in the vertex cover).

To obtain a randomized coreset for vertex cover, we employ an iterative “peeling” process where
we remove the vertices with the highest residual degree in each iteration (and add them to the final
vertex cover) and continue until the residual graph is sufficiently sparse, in which case we can return
this subgraph as the coreset. The process itself is a modification of the algorithm by Parnas and
Ron [59]; we point out that other modifications of this algorithm has also been used previously for
matching and vertex cover [16, 38, 58].

However, to employ this algorithm as a coreset we need to argue that the set of vertices peeled
across different machines is not too large as these vertices are added directly to the final vertex
cover. The intuition behind this is that random partitioning of edges in the graph should result
in vertices to have essentially the same degree across the machines and hence each machine should
peel the same set of vertices in each iteration. But this intuition runs into a technical difficulty: the
peeling process is quite sensitive to the exact degree of vertices and even slight changes in degree
results in moving vertices between different iterations that potentially leads to a cascading effect.
To address this, we design a hypothetical peeling process (which is aware of the actual minimum
vertex cover in G) and show that the our actual peeling process is in fact “sandwiched” between
two application of this peeling process with different degree threshold for peeling vertices. We then
use this to argue that the set of all vertices peeled across the machines are always contained in the
solution of the hypothetical peeling process which in turn can be shown to be a relatively small set.
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Lower Bounds for Randomized Coresets. Our lower bound results for randomized coresets
for matching are based on the following simple distribution: the input graph consists of union of
two bipartite graphs, one of which is a random k-regular graph G1 with n/2α vertices on each side
while the other graph G2 is a perfect matching of size n − n/2α. Thus the input graph almost
certainly contains a matching of size n− o(n) and any α-approximate solution must collect Ω(n/α)
edges from G2 overall i.e. Ω(n/αk) edges from G2 from each machine on average. After random
partitioning, the input given to each machine is essentially a matching of size n/2α from G1 and a
matching of size roughly n/k from G2. The local information at each machine is not sufficient to
differentiate between edges of G1 and G2, and thus any coreset that aims to include Ω(n/αk) edges
from G2, can not reduce the input size by more than a factor of α. Somewhat similar ideas can also
be shown to work for the vertex cover problem.

Communication Complexity Lower Bounds We briefly highlight the ideas used in obtaining
the lower bounds described in Result 3. We will focus on the vertex cover problem to describe our
techniques. Our lower bound result is based on analyzing (a variant of) the following distribution:
the input graph G(L,R,E) consists of a bipartite graph G1 plus a single edge e⋆. G1 is a graph
on n/2α vertices L1 ⊆ L, each connected to k random neighbors in R, and e⋆ is an edge chosen
uniformly at random between L \ L1 and R. This way G admits a minimum vertex cover of size at
most n/2α + 1. However, when this graph is randomly partitioned, the input to each machine is
essentially a matching of size n/2α chosen from the graph G1 with possibly one more edge e⋆ (in
exactly one machine chosen uniformly at random). The local information at the machine receiving
the edge e⋆ is not sufficient to differentiate between the edges of G1 and e⋆ and thus if the message
sent by this machine is much smaller than its input size (i.e., o(n/α) bits), it most likely does not
“convey enough information” to the coordinator about the identity of e⋆. This in turn forces the
coordinator to use more than n/2 vertices in order to cover e⋆, resulting in an approximation factor
larger than α.

Making this intuition precise is complicated by the fact that the input across the players are
highly correlated, and hence the message sent by one player, can also reveal extra information
about the input of another (e.g. a relatively small communication from the players is enough for
the coordinator to know the identity of entire L1). To overcome this, we show that by conditioning
on proper parts of the input, we can limit the correlation in the input of players and then use the
symmetrization technique of [62] to reduce the simultaneous k-player vertex cover problem to a
one-way two-player problem named the hidden vertex problem (HVP). Loosely speaking, in HVP,
Alice and Bob are given two sets S, T ⊆ [n], each of size n/α, with the promise that |S \ T | = 1 and
their goal is to find a set C of size o(n) which contains the single element in S \T . We prove a lower
bound of Ω(n/α) bits for this problem using a subtle reduction from the well-known set disjointness
problem. In this reduction, Alice and Bob use the protocol for HVP on “non-legal” instances (i.e.,
the ones for which HVP is not well-defined) to reduce the original disjointness instance between
sets A,B on a universe [N ] to a lopsided disjointness instance (A,B′) whereby |B′| = o(N), and
then solve this new instance in o(N) communication (using the Håstad-Wigderson protocol [34]),
contradicting the Ω(N) lower bound on the communication complexity of disjointness.

The lower bound for the matching problem is also proven along similar lines (over the hard
distribution mentioned earlier for this problem) using a careful combinatorial argument instead of
the reduction from the disjointness problem.
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1.3 Further Related Work

Maximum matching and minimum vertex cover are among the most studied problems in the context
of massive graphs including, in dynamic graphs [14,55,58,64], sub-linear algorithms [33,56,57,59,66],
streaming algorithms [3–6, 9, 10, 20–22, 26–32, 37, 38, 43, 44, 48, 49, 51, 61], MapReduce computa-
tion [5, 46], and different distributed computation models [8, 24, 32, 35]. Most relevant to our work
are the linear sketches of [20] for computing an exact minimum vertex cover or maximum matching
in O(opt2) space (opt is the size of the solution), and linear sketches of [10,20] for α-approximating
maximum matching in Õ(n2/α3) space. These results are proven to be tight by [21], and [10], respec-
tively. Finally, [10] also studied the simultaneous communication complexity of bipartite matching
in the vertex-partition model and proved that obtaining better than an O(

√
k)-approximation in

this model requires strictly more than Õ(n) communication from each player (see [10] for more
details on this model).

Coresets, composable coresets, and randomized composable coresets are respectively introduced
in [2], [36], and [52]. Composable coresets have been used previously in the context of nearest
neighbor search [1], diversity maximization [36], clustering [12, 15], and submodular maximiza-
tion [11, 36, 52]. Moreover, while not particularly termed a composable coreset, the “merge and
reduce” technique in the graph streaming literature (see [49], Section 2.2) is identical to compos-
able coresets. Similar ideas as randomized coreset for optimization problems has also been used in
random arrival streams [38,44]. Moreover, communication complexity lower bounds have also been
studied previously under the random partitioning of the input [19, 39].

2 Preliminaries

Notation. For any integer m, [m] := {1, . . . ,m}. Let G(V,E) be a graph; MM(G) denotes the
maximum matching size in G and VC(G) denotes the minimum vertex cover size. We assume that
these quantities are ω(k log n)3. For a set S ⊆ V and v ∈ V , NS(v) ⊆ S denotes the neighbors of v
in the set S. For an edge set E′ ⊆ E, we use V (E′) to refer to vertices incident on E′.

Useful Concentration of Measure Inequalities. We use the following standard version of
Chernoff bound (see, e.g., [25]) throughout.

Proposition 2.1 (Chernoff bound). Let X1, . . . ,Xn be independent random variables taking values
in [0, 1] and let X :=

∑n
i=1Xi. Then,

Pr (|X − E [X]| > t) ≤ 2 · exp
(
−2t2

n

)

We also need the method of bounded differences in our proofs. A function f(x1, . . . , xn) satisfies
the Lipschitz property with constant d, iff for all i ∈ [n], |f(a)− f(a′)| ≤ d, whenever a and a′ differ
only in the i-th coordinate.

Proposition 2.2 (Method of bounded differences). If f satisfies the Lipschitz property with constant
d and X1, . . . ,Xn are independent random variables, then,

Pr (|f(X)− E [f(X)]| > t) ≤ 2 · exp
(
− 2t2

n · d2
)

A proof of this proposition can be found in [25] (see Section 5).

3Otherwise, we can use the algorithm of [20] to obtain exact coresets of size Õ(k2) as mentioned in Section 1.3.
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Communication Complexity We prove our lower bounds for distributed protocols using the
framework of communication complexity, and in particular in the multi-party simultaneous commu-
nication model and the two-player one-way communication model.

Formally, in the multi-party simultaneous communication model, the input is partitioned across
k players P (1), . . . , P (k). All players have access to an infinite shared string of random bits, referred
to as public randomness (or public coins). The goal is for the players to compute a specific function
of the input by simultaneously sending a message to a central party called the coordinator (or
the referee). The coordinator then needs to output the answer using the messages received by the
players. We refer to the case when the input is partitioned randomly as the random partition model.

In the two-player one-way communication model, the input is partitioned across two players,
namely Alice and Bob. The players again have access to public randomness, and the goal is for
Alice to send a single message to Bob, so that Bob can compute a function of the joint input. The
communication cost of a protocol in both models is the total length of the messages sent by the
players. In Section 5.3.1, we also consider general two-player communication model which allows a
two-way communication, i.e., both Alice and Bob can send messages to each other. We refer the
reader to an excellent text by Kushilevitz and Nisan [45] for more details.

3 Randomized Coresets for Matching and Vertex Cover

We present our randomized composable coresets for matching and vertex cover in this section.

3.1 An O(1)-Approximation Randomized Coreset for Matching

The following theorem formalizes Result 1 for matching.

Theorem 1. Any maximum matching of a graph G(V,E) is an O(1)-approximation randomized
composable coreset of size O(n) for the maximum matching problem.

We remark that our main interest in Theorem 1 is to achieve some constant approximation factor
for randomized composable coresets of the matching problem and as such we did not optimize the
constant in the approximation ratio. Nevertheless, our result already shows that the approximation
ratio of this coreset is at most 9 (in fact, with a bit more care, we can reduce this factor down to 8;
however, as this is not the main contribution of this paper, we omit the details).

Let G(V,E) be any graph and G(1), . . . , G(k) be a random k-partitioning of G. To prove The-
orem 1, we describe a simple process for combining the maximum matchings (i.e., the coresets)
of G(i)’s, and prove that this process results in a constant factor approximation of the maximum
matching of G. We remark that this process is only required for the analysis, i.e., to show that
there exists a large matching in the union of coresets; in principle, any (approximation) algorithm
for computing a maximum matching can be applied to obtain a large matching from the coresets.

Consider the following greedy process for computing an approximate matching in G(V,E):

GreedyMatch(G):

1. Let M (0) := ∅. For i = 1 to k:

2. Let M (i) be a maximal matching obtained by adding to M (i−1) the edges in an arbitrary
maximum matching of G(i) that do not violate the matching property.

3. return M := M (k).

7



Lemma 3.1. GreedyMatch is an O(1)-approximation algorithm for the maximum matching problem
w.h.p (over the randomness of the edge partitioning).

Before proving Lemma 3.1, we show that Theorem 1 easily follows from this lemma.

Proof of Theorem 1. Let ALG be any algorithm that given a graph G(V,E), ALG(G) outputs an
arbitrary maximum matching of G. It is immediate to see that to implement GreedyMatch, we
only need to compute a maximal matching on the output of ALG on each graph G(i) where G(i)’s
form a random k-partitioning of G. Consequently, since GreedyMatch outputs an O(1)-approximate
matching (by Lemma 3.1), the graph H := G(1) ∪ . . . ∪ G(k) should contain an O(1)-approximate
matching as well. We emphasize here that the use of GreedyMatch for finding a large matching in
H is only for the purpose of analysis.

In the rest of this section, we prove Lemma 3.1. Recall that MM(G) denotes the maximum
matching size in the input graph G. Let c > 0 be a small constant to be determined later. To prove
Lemma 3.1, we will show that

∣∣M (k)
∣∣ ≥ c ·MM(G) w.h.p, where M (k) is the output of GreedyMatch.

Notice that the matchings M (i) (for i ∈ [k]) constructed by GreedyMatch are random variables
depending on the random k-partitioning.

Our general approach for the proof of Lemma 3.1 is as follows. Suppose at the beginning of the
i-th step of GreedyMatch, the matching M (i−1) is of size o(MM(G)). It is easy to see that in this
case, there is a matching of size Ω(MM(G)) in G that is entirely incident on vertices of G that are
not matched by M (i−1). We can further show that in fact Ω(MM(G)/k) edges of this matching are
appearing in G(i), even when we condition on the assignment of the edges in the first (i−1) graphs.
The next step is then to argue that the existence of these edges forces any maximum matching of
G(i) to match Ω(MM(G)/k) edges in G(i) between the vertices that are not matched by M (i−1);
these edges can always be added to the matching M (i−1) to form M (i). This ensures that while the
maximal matching in GreedyMatch is of size o(MM(G)), we can increase its size by Ω(MM(G)/k)
edges in each of the first k/3 steps, hence obtaining a matching of size Ω(MM(G)) at the end. The
following key lemma formalizes this argument.

Lemma 3.2. For any i ∈ [k/3], if
∣∣M (i−1)

∣∣ ≤ c · MM(G), then, w.p. 1−O(1/n),

∣∣∣M (i)
∣∣∣ ≥

∣∣∣M (i−1)
∣∣∣+

(
1− 6c− o(1)

k

)
· MM(G)

To continue we define some notation. Let M⋆ be an arbitrary maximum matching of G. For
any i ∈ [k], we define M⋆<i as the part of M⋆ assigned to the first i − 1 graphs in the random
k-partitioning, i.e., the graphs G(1), . . . , G(i−1). We have the following simple concentration result.

Claim 3.3. W.p. 1−O(1/n), for any i ∈ [k],

∣∣M⋆<i
∣∣ ≤

(
i− 1 + o(i)

k

)
· MM(G).

Proof. Fix an i ∈ [k]; each edge in M⋆ is assigned to G(1), . . . , G(i−1), w.p. (i − 1)/k, hence in
expectation, size of M⋆<i is i−1

k · MM(G). The claim now follows from a standard application of
Chernoff bound (recall that, throughout the paper, we assume MM(G) = ω(k log n)).

We now prove Lemma 3.2.
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Proof of Lemma 3.2. Fix an i ∈ [k/3] and the set of edges for E(1), . . . , E(i−1); this also fixes the
matching M (i−1) while the set of edges in E(i), . . . , E(k) together with the matching M (i) are still
random variables. We further assume that after fixing the edges in E(1), . . . , E(i−1),

∣∣M⋆<i
∣∣ ≤

i−1+o(i)
k · MM(G) which happens w.p. 1−O(1/n) by Claim 3.3.

We first define some notation. Let Vold be the set of vertices incident on M (i−1) and Vnew be
the remaining vertices. Let E≥i be the set of edges in E \

(
E(1) ∪ . . . ∪E(i−1)

)
. We partition E≥i

into two parts: (i) Eold: the set of edges with at least one endpoint in Vold, and (ii) Enew: the set
of edges incident entirely on Vnew. Our goal is to show that w.h.p. any maximum matching of G(i)

matches Ω(MM(G)/k) vertices in Vnew to each other by using the edges in Enew; the lemma then
follows easily from this.

Notice that the edges in the graph G(i) are chosen by independently assigning each edge in
E≥i to G(i) w.p. 1/(k − i + 1)4. This independence allows us to treat the edges in Eold and Enew

separately; we can fix the set of sampled edges of G(i) in Eold denoted by Ei
old without changing

the distribution of edges in G(i) chosen from Enew. Let µold := MM(G(V,Ei
old)), i.e., the maximum

number of edges that can be matched in G(i) using only the edges in Ei
old. In the following, we show

that w.h.p., there exists a matching of size µold + Ω(MM(G)/k) in G(i); by the definition of µold,
this implies that any maximum matching of G(i) has to use at least Ω(MM(G)/k) edges in Enew,
proving the lemma.

Let Mold be any arbitrary maximum matching of size µold in G(V,Ei
old). Let Vnew(Mold) be

the set of vertices in Vnew that are incident on Mold. We show that there is a large matching in
G(V,Enew) that avoids Vnew(Mold).

Claim 3.4. There exists a matching in G(V,Enew) of size
(
k−i+1−o(i)

k − 4c
)
· MM(G) that avoids

the vertices of Vnew(Mold).

Proof. We first bound the size of Vnew(Mold). Since any edge in Mold has at least one endpoint in
Vold, we have |Vnew(Mold)| ≤ |Mold| ≤ |Vold|. By the assertion of the lemma,

∣∣M (i−1)
∣∣ < c · MM(G),

and hence |Vnew(Mold)| ≤ |Vold| < 2c · MM(G).

Moreover, by the assumption that
∣∣M⋆<i

∣∣ ≤ i−1+o(i)
k · MM(G), there is a matching M of size

k−i+1−o(i)
k ·MM(G) in the graph G(V,E≥i). By removing the edges in M that are either incident on

Vold or Vnew(Mold), at most 4c · MM(G) edges are removed from M . Now the remaining matching
is entirely contained in Enew and also avoids Vnew(Mold), hence proving the claim.

We are now ready to finalize the proof. Let Mnew be the matching guaranteed by Claim 3.4.
Each edge in this matching is chosen in G(i) w.p. 1/(k − i + 1) independent of the other edges;
hence, by Chernoff bound (and the assumption that MM(G) = ω(k log n)), there is a matching of
size

(1− o(1)) ·
(
1

k
− o(i)

k(k − i+ 1)
− 4c

k − i+ 1

)
· MM(G)

≥
(
1− 6c− o(1)

k

)
· MM(G) (i ≤ k/3)

in the edges of Mnew that appear in G(i). This matching can be directly added to the matching

Mold, implying the existence of a matching of size µold +
(
1−6c−o(1)

k

)
· MM(G) in G(i). As argued

4This is true even when we condition on the size of
∣∣M⋆<i

∣∣ since this event does not depend on the choice of edges

in E≥i.
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before, this ensures that any maximum matching of G(i) contains at least
(
1−6c−o(1)

k

)
·MM(G) edges

in Enew. These edges can always be added to M (i−1) to form M (i), hence proving the lemma.

Having proved Lemma 3.2, we can easily conclude Lemma 3.1.

Proof of Lemma 3.1. Recall that M := M (k) is the output matching of GreedyMatch. For the first
k/3 steps of GreedyMatch, if at any step we obtained a matching of size c · MM(G), then we are
already done. Otherwise, at each step, by Lemma 3.2, w.p. 1 − O(1/n), we increase the size of

the maximal matching by
(
1−6c−o(1)

k

)
· MM(G) edges; consequently, by taking a union bound on

the k/3 steps, w.p. 1− o(1), the size of the maximal matching would be
(
1−6c−o(1)

3

)
· MM(G). By

picking c = 1/9, we ensure that in either case, the matching computed by GreedyMatch is of size at
least MM(G)/9 − o(MM(G)), proving the lemma.

3.2 An O(logn)-Approximation Randomized Coreset For Vertex Cover

The following theorem formalizes Result 1 for vertex cover.

Theorem 2. There exists an O(log n)-approximation randomized composable coreset of size O(n log n)
for the vertex cover problem.

Let G(V,E) be a graph and G(1), . . . , G(k) be a random k-partitioning of G; we propose the
following coreset for computing an approximate vertex cover of G. This coreset construction is a
modification of the algorithm for vertex cover first proposed by [59].

VC-Coreset(G(i)). An algorithm for computing a composable coreset of each G(i).

1. Let ∆ be the smallest integer such that n/(k · 2∆) ≤ 4 log n and define G
(i)
1 := G(i).

2. For j = 1 to ∆− 1, let:

V
(i)
j :=

{
vertices of degree ≥ n/(k · 2j+1) in G

(i)
j

}

G
(i)
j+1 := G

(i)
j \ V (i)

j .

3. Return V
(i)
cs :=

⋃∆−1
j=1 V

(i)
j as a fixed solution plus the graph G

(i)
∆ as the coreset.

In VC-Coreset we allow the coreset to, in addition to returning a subgraph, identify a set of

vertices (i.e., V
(i)
cs ) to be added directly to the final vertex cover. In other words, to compute

a vertex cover of the graph G, we compute a vertex cover of the graph
⋃k

i=1 G
(i)
∆ and return it

together with the vertices
⋃k

i=1 V
(i)
cs . It is easy to see that this set of vertices indeed forms a vertex

cover of G: any edge in G that belongs to G(i) is either incident on some V
(i)
j , and hence is covered

by V
(i)
j , or is present in G

(i)
∆ , and hence is covered by the vertex cover of G

(i)
∆ .

In the remainder of this section, we bound the approximation ratio of this coreset. To do this,

we need to prove that
∣∣∣
⋃k

i=1 V
(i)
cs

∣∣∣ = O(log n) · VC(G). The bound on the approximation ratio then

follows as the vertex cover of
⋃k

i=1G
(i)
∆ can be computed to within a factor of 2.
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It is easy to prove (and follows from [59]) that the set of vertices V
(i)
cs is of size O(log n) ·VC(G);

however, using this fact directly to bound the size of
⋃k

i=1 V
(i)
cs only implies an approximation ratio

of O(k log n) which is far worse than our goal of achieving an O(log n)-approximation. In order

to obtain the O(log n) bound, we need to argue that not only each set V
(i)
cs is relatively small,

but also that these sets are all intersecting in many vertices. In order to do so, we introduce a

hypothetical algorithm (similar to VC-Coreset) on the graph G and argue that the set V
(i)
cs output

by VC-Coreset(G(i)) is, with high probability, a subset of the output of this hypothetical algorithm.

This allows us to then bound the size of the union of the sets V
(i)
cs for i ∈ [k].

Let O⋆ denote the set of vertices in an arbitrary optimum vertex cover of G and O⋆ := V \O⋆.
Consider the following process on the original graph G (defined only for analysis):

1. Let G1 be the bipartite graph obtained from G by removing edges between vertices in O⋆.

2. For j = 1 to t := ⌈log n⌉, let:

Oj :=
{
vertices in O⋆ of degree ≥ n/2j in Gj

}

Oj :=
{
vertices in O⋆ of degree ≥ n/2j+2 in Gj

}

Gj+1 := Gj \ (Oj ∪Oj).

We first prove that the sets Oj ’s and Oj’s in this process form an O(log n) approximation of
the minimum vertex cover of G and then show that VC-Coreset(G(i)) (for any i ∈ [k]) is mimicking

this hypothetical process in a sense that the set V
(i)
cs is essentially contained in the union of the sets

Oj ’s and Oj ’s.

Lemma 3.5.

∣∣∣
⋃t

j=1Oj ∪Oj

∣∣∣ = O(log n) · VC(G).

Proof. Fix any j ∈ [t]; we prove that Oj ≤ 8 · VC(G). The lemma follows from this since there are
at most O(log n) different sets Oj and the union of the sets Oj ’s is a subset of O⋆ (with size VC(G)).

Consider the graph Gj . The maximum degree in this graph is at most n/2j−1 by the definition
of the process. Since all the edges in the graph are incident on at least one vertex of O⋆, there
can be at most |O⋆| · n/2j−1 edges between the remaining vertices in O⋆ and O⋆ in Gj . More-
over, any vertex in Oj has degree at least n/2j+2 by definition and hence there can be at most(
|O⋆| · n/2j−1

)
/
(
n/2j+2

)
≤ 8 |O⋆| = 8 · VC(G) vertices in Oj, proving the claim.

We now prove the main relation between the sets Oj ’s and Oj’s defined above and the interme-

diate sets V
(i)
j ’s computed by VC-Coreset(G(i)). The following lemma is the heart of the proof.

Lemma 3.6. Fix an i ∈ [k], and let Aj = V
(i)
j ∩O⋆ and Bj = V

(i)
j ∩O⋆. With probability 1−O(1/n),

for any t ∈ [∆]:

1.
⋃t

j=1Aj ⊇
⋃t

j=1Oj .

2.
⋃t

j=1Bj ⊆
⋃t

j=1Oj .

Proof. To simplify the notation, for any t ∈ [∆], we let A<t =
⋃t−1

j=1Aj and A≥t =
⋃∆

j=tAj (and

similarly for Bj’s, Oj ’s, and Oj ’s). We also use NS(v) to denote the neighbor-set of the vertex v in
the set S ⊆ V .
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Note that the vertex-sets of the graphs G and G(i) are the same and we can “project” the sets
Oj ’s and Oj’s on graph G(i) as well. In other words, we can say a vertex v in G(i) belongs to Oj

iff v ∈ Oj in the original graph G. In the following claim, we crucially use the fact that the graph
G(i) is obtained from G by sampling each edge w.p. 1/k to prove that the degree of vertices across
different sets Oj ’s (and Oj’s) in G(i) are essentially the same as in G (up to the scaling factor of
1/k).

Claim 3.7. For any j ∈ [∆]:

• For any vertex v ∈ Oj ,
∣∣∣NO≥j

(v)
∣∣∣ ≥ n/(k · 2j+1) in the graph G(i) w.p. 1−O(1/n2).

• For any vertex v ∈ O≥j+1,
∣∣NO≥j

(v)
∣∣ < n/(k · 2j+1) in the graph G(i) w.p. 1−O(1/n2).

Proof. Fix any j ∈ [∆] and v ∈ Oj . By definition of Oj , degree of v is at least n/2j in Gj ; in

other words,
∣∣∣N

O
≥j (v)

∣∣∣ ≥ n/2j in the graph G. Since each edge in G is sampled w.p. 1/k in G(i),
∣∣∣N

O
≥j(v)

∣∣∣ ≥ n/(k · 2j) in G(i) in expectation. Moreover, by the choice of ∆, n/(k · 2j) ≥ 4 log n,

and hence by Chernoff bound, w.p. 1−O(1/n2),
∣∣∣N

O
≥j (v)

∣∣∣ ≥ n/(k · 2j+1) in G(i).

Similarly for a vertex v ∈ O
≥j+1

, degree of v is less than n/2j+2 in Gj by definition of Oj; hence,
|NO≥j(v)| < n/2j+2 in the graph G. Using a similar argument as before, by Chernoff bound, w.p.
1−O(1/n2), |NO≥j(v)| < n/(k · 2j+1) in G(i).

By using a union bound on the n vertices in G, the statements in Claim 3.7 hold simultaneously
for all vertices of G w.p. 1 − O(1/n); in the following we condition on this event. We now prove
Lemma 3.6 by induction.

Let v be a vertex that belongs to O1; we prove that v belongs to the set V
(i)
1 of VC-Coreset, i.e.,

v ∈ A1. By Claim 3.7 (for j = 1), the degree of v in G
(i)
1 is at least n/4k. Note that in G

(i)
1 , v may

also have edges to other vertices in O⋆ but this can only increase the degree of v. This implies that
v also belongs to A1 by the threshold chosen in VC-Coreset. Similarly, let u be a vertex in O≥2 (i.e.,

not in O1); we show that u is not chosen in V
(i)
1 , implying that B1 can only contain vertices in O1.

By Claim 3.7, degree of u in G
(i)
1 is less than n/4k. This implies that u does not belong to B1. In

summary, we have O1 ⊆ A1 and B1 ⊆ O1.
Now consider some t > 1 and let v be a vertex in Ot. By induction, B<t ⊆ O<t. This implies

that the degree of v to B≥t is at least as large as its degree to O≥t. Consequently, by Claim 3.7 (for

j = t), degree of v in the graph G
(i)
t is at least n/(k ·2t+1) and hence v also belongs to At. Similarly,

fix a vertex u in O≥t+1. By induction, A<t ⊇ O<t and hence the degree of u to A≥t is at most as
large as its degree to O≥t; note that since O⋆ is a vertex cover, u does not have any other edge in

G
(i)
t except for the ones to A≥t. We can now argue as before that u does not belong to Bt.

We are now ready to prove Theorem 2.

Proof of Theorem 2. The bound on the coreset size follows immediately from the fact that the graph

G
(i)
∆ contains at most O(n log n) edges and size of V

(i)
cs is at most n. As argued before, to prove the

bound on the approximation ratio, we only need to show that
⋃k

i=1 V
(i)
cs is of size O(log n) · VC(G).

Let A(i) = V
(i)
cs ∩ O⋆ and B(i) = V

(i)
cs ∩ O⋆; clearly, each A(i) ⊆ O⋆ and moreover, by Lemma 3.6

(for t = ∆), each B(i) ⊆ ∪∆
j=1Oj . Consequently,

∣∣∣
⋃k

i=1 V
(i)
cs

∣∣∣ ≤ |O⋆|+
∣∣∣
⋃∆

j=1Oj

∣∣∣ ≤ O(log n) ·VC(G),

where the last inequality is by Lemma 3.5.
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4 Lower Bounds for Randomized Coresets

We formalize Result 2 in this section. As argued earlier, Result 2 is a special case of Result 3 and
hence follows from that result; however, as the proof of Result 3 is rather technical and complicated,
we also provide a self-contained proof of Result 2 as a warm-up to Result 3.

4.1 A Lower Bound for Randomized Composable Coresets of Matching

We prove a lower bound on the size of any randomized composable coreset for the matching problem,
formalizing Result 2 for matching.

Theorem 3. For any k = o(n/ log n) and α = o(min {n/k, k}), any α-approximation randomized
composable coreset of the maximum matching problem is of size Ω(n/α2).

By Yao’s minimax principle [65], to prove the lower bound in Theorem 3, it suffices to analyze the
performance of deterministic algorithms over a fixed (hard) distribution. We propose the following
distribution for this task. For simplicity of exposition, in the following, we prove a lower bound
for (α/4)-approximation algorithms; a straightforward scaling of the parameters proves the lower
bound for α-approximation.

Distribution DMatching. A hard input distribution for the matching problem.

• Let G(L,R,E) (with |L| = |R| = n) be constructed as follows:

1. Pick A ⊆ L and B ⊆ R, each of size n/α, uniformly at random.

2. Define EAB as a set of edges between A and B, chosen by picking each edge in A×B
w.p. k · α/n.

3. Define EAB as a random perfect matching between A and B.

4. Let E := EAB ∪ EAB.

• Let E(1), . . . , E(k) be a random k-partitioning of E and let the input to player P (i) be the
graph G(i)(L,R,E(i)).

Let G be a graph sampled from the distribution DMatching. Notice first that the graph G always
has a matching of size at least n−n/α ≥ n/2, i.e., the matching EAB. Additionally, it is easy to see
that any matching of size more than 2n/α in G uses at least n/α edges from EAB: the edges in EAB

can only form a matching of size n/α by construction. This implies that any (α/4)-approximate
solution requires recovering at least n/α edges from EAB . In the following, we prove that this is
only possible if the coresets of the players are sufficiently large.

For any i ∈ [k], define the induced matching M (i) as the unique matching in G(i) that is incident
on vertices of degree exactly one, i.e., both end-points of each edge in M (i) have degree one in G(i).
We emphasize that the notion of induced matching is with respect to the entire graph and not only
with respect to the vertices included in the induced matching. We have the following crucial lemma
on the size of M (i). The proof is technical and is deferred to Appendix A.

Lemma 4.1. W.p. 1−O(1/n), for all i ∈ [k],
∣∣M (i)

∣∣ = Θ(n/α).

We are now ready to prove Theorem 3.
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Proof of Theorem 3. Fix any randomized composable coreset (algorithm) for the matching prob-
lem that has size o(n/α2). We show that such a coreset cannot achieve a better than (α/4)-
approximation over the distribution DMatching. As argued earlier, to prove this, we need to show
that this coreset only contains o(n/α) edges from EAB in expectation.

Fix any player i ∈ [k], and let M⋆(i) be the subset of the matching EAB assigned to P (i). It
is clear that M⋆(i) ⊆ M (i) by the definition of M (i). Moreover, define Xi as the random variable
denoting the number of edges from M⋆(i) that belong to the coreset sent by player P (i). Notice
that Xi is clearly an upper bound on the number of edges of EAB that are in the final matching of
coordinator and also belong to the input graph of player P (i). In the following, we show that

E [Xi] = o
( n

k · α
)

(1)

Having proved this, we have that the expected size of the output matching by the coordinator is at
most n/α+

∑k
i=1 E [Xi] = n/α+ o(n/α) < (α/4) · MM(G), a contradiction.

We now prove Eq (1). In the following, we condition on the event that
∣∣M⋆(i)

∣∣ = Θ(n/k) and∣∣M (i)
∣∣ = Θ(n/α); by Chernoff bound (for the first part, since n/k = ω(log n)) and Lemma 4.1 (for

the second part), this event happens with probability 1 − O(1/n). As such, this conditioning can
only change E [Xi] by an additive factor of O(1) which we ignore in the following.

A crucial property of the distribution DMatching is that the edges in M⋆(i) and the remaining
edges in M (i) are indistinguishable in G(i). More formally, for any edge e ∈ G(i),

Pr
(
e ∈ M⋆(i) | e ∈ M (i)

)
=

∣∣M⋆(i)
∣∣

∣∣M (i)
∣∣ = Θ(α/k)

On the other hand, for a fixed input M (i) to player P (i), the computed coreset Ci is always the
same (as the coreset is a deterministic function of the player input). Hence,

E [Xi] =
∑

e∈Ci

Pr
(
e ∈ M⋆

i | e ∈ M (i)
)
= |Ci| ·Θ(α/k) = o(n/α2) ·Θ(α/k) = o (n/(α · k))

where the second last equality is by the assumption that the size of the coreset, i.e., |Ci|, is o(n/α2).
This finalizes the proof.

4.2 A Lower Bound for Randomized Composable Coresets of Vertex Cover

In this section, we prove that the size of the corset for the vertex cover problem in Theorem 2 is
indeed optimal. The following is a formal statement of Result 2 for the vertex cover problem.

Theorem 4. For any k = o(n/ log n) and α = o(min {n/k, k}), any α-approximation randomized
composable coreset of the minimum vertex cover problem is of size Ω(n/α).

By Yao’s minimax principle [65], to prove the lower bound in Theorem 4, it suffices to analyze the
performance of deterministic algorithms over a fixed (hard) distribution. We propose the following
distribution for this task5. For simplicity of exposition, in the following, we prove a lower bound
for (c · α)-approximation algorithms (for some constant c > 0); a straightforward scaling of the
parameters proves the lower bound for α-approximation as well.

5We point out that simpler versions of this distribution suffice for proving the lower bound in this section. However,
as we would like this proof to also act as a warm-up to the proof of Theorem 6, we use the same distribution that is
used to prove that theorem.
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Distribution DVC. A hard input distribution for the vertex cover problem.

• Construct G(L,R,E) (with |L| = |R| = n) as follows:

1. Pick A ⊆ L of size n/α uniformly at random.

2. Let EA be a set of edges chosen by picking each edge in A×R w.p. k/2n.

3. Pick a single vertex v⋆ uniformly at random from A and let e⋆ be an edge incident on
v⋆ chosen uniformly at random.

4. Let E := EA ∪ {e⋆}.

• Let E(1), . . . , E(k) be a random k-partitioning of E and let the input to player P (i) be the
graph G(i)(L,R,E(i)).

For any i ∈ [k], we define L1
i as the set of vertices in L with degree exactly one in G(i). We

further define R1
i as the set of neighbors of vertices in L1

i (note that vertices in R1
i do not not

necessarily have degree exactly one). We start by proving a simple property of this distribution.

Lemma 4.2. For any i ∈ [k],
∣∣L1

i

∣∣ = Θ(n/α) and
∣∣R1

i

∣∣ = Θ(n/α) w.p. 1− o(1).

Proof. Fix any player i ∈ [k] and any vertex v ∈ A. The distribution of neighborhood of v in the
graph G(i) is as follows: pick each vertex in R w.p. 1/2n independently; this is because each vertex
in R is chosen w.p. k/2n to be a neighbor of v in G and then each of these vertices are assigned to
the graph G(i) w.p. 1/k by the random k-partitioning. As such,

Pr
(
d(v) = 1 in G(i)

)
=

(
n

1

)
· 1

2n
·
(
1− 1

2n

)n−1

≈ 1

2
√
e
= Θ(1)

Consequently, we have E
[∣∣L1

i

∣∣] = |A| ·Θ(1) = Θ(n/α) and by Chernoff bound,
∣∣L1

i

∣∣ = Θ(n/α) (note
that for one player v⋆ would also belong to Oi but that only changes the size of |Oi| by one vertex).

We now bound the size of R1
i . Each vertex in L1

i is choosing one vertex uniformly at random from
R and hence we can model this distribution by a simple balls and bins experiment (throwing

∣∣L1
i

∣∣
balls into n bins, each independently and uniformly at random), and hence by a standard fact about
balls and bins experiments argue that

∣∣R1
i

∣∣ = Θ(n/α) w.p. 1− o(1) as well (see Proposition A.1 in
Appendix A for a proof of this fact about balls and bins experiments).

We can now prove Theorem 4.

Proof of Theorem 4. Let i be the index of the player P (i) that the edge e⋆ is given to. We argue
that if the coreset sent by player P (i) is of size o(n/α), then the coordinator cannot obtain a vertex
cover of size o(n). As the graph G admits a vertex cover of size (n/α + 1) (pick A and v⋆), this
proves the theorem.

By Lemma 4.2, the set of vertices in L with degree exactly one in G(i) and the set of their
neighbors in R, i.e., the sets L1

i and R1
i , are of size Θ(n/α) w.p. 1 − o(1). In the following, we

condition on this event. As the algorithm used by P (i) to create the coreset is deterministic, given a
fixed input, it always creates the same coreset. However, a crucial property of the distribution DVC

is that, conditioned on a fixed assignment to L1
i , the vertex v⋆ is chosen uniformly at random from

L1
i . This implies that if the coreset of player P (i) contains o(n/α) edges, then w.p. 1 − o(1), e⋆ is

not part of the coreset (e⋆ is chosen uniformly at random from the set of all edges incident on L1
i ).

Similarly, if the coreset fixes o(n/α) vertices to be added to the final solution, w.p. 1− o(1), no end
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point of e⋆ is added to this fixed set (v⋆ is chosen uniformly at random from L1
i of size Θ(n/α),

and the other end point of e⋆ is chosen uniformly at random from R1
i of size Θ(n/α)). Finally, the

coresets of other players are all independent of the edge e⋆ and hence as long as the total number
of fixed vertices sent by the players is o(n), w.p. 1 − o(1), no end points of e⋆ are present in the
fixed solution. Conditioned on these three events, w.p. 1 − o(1), the output of the algorithm does
not cover the edge e⋆ and hence is not a feasible vertex cover.

We remark that this argument holds even if we are allowed to add extra vertices to the final
vertex cover (other than the ones fixed by the players or computed as a vertex cover of the edges in
the coresets), since conditioned on e⋆ not being present in any coreset, the end point of this edge
are chosen uniformly at random from all vertices in L \ A and R and hence a solution of size o(n)
would not contain either of them w.p. 1− o(1).

5 Communication Complexity Lower Bounds

We prove Result 3 in this section, showing that our randomized composable coresets in fact obtain
the optimal communication complexity (among all possible protocols, not necessarily a coreset) in
the simultaneous communication model. This result is a vast generalization of Result 2 proved in
Section 4.

5.1 An Ω(nk/α2) Lower Bound on Communication Complexity of Matching

We prove a lower bound on the simultaneous communication complexity of the matching problem
in the random partition model, formalizing Result 3 for matching.

Theorem 5. For any α between Ω(log n) and o(min
{√

n/k, k
}
), the simultaneous communication

complexity of α-approximating the matching problem in the random partition model is Ω(nk/α2).

By Yao’s minimax principle [65], it suffices to analyze the communication complexity of de-
terministic protocols over a fixed (hard) distribution. We again use the distribution DMatching in
Section 4.1. For the convenience of the reader, we repeat the description of this distribution here.

Distribution DMatching. A hard input distribution for the matching problem.

• Let G(L,R,E) (with |L| = |R| = n) be constructed as follows:

1. Pick A ⊆ L and B ⊆ R, each of size n/α, uniformly at random.

2. Define EAB as a set of edges between A and B, chosen by picking each edge in A×B
w.p. k · α/n.

3. Define EAB as a random perfect matching between A and B.

4. Let E := EAB ∪ EAB.

• Let E(1), . . . , E(k) be a random k-partitioning of E and let the input to player P (i) be the
graph G(i)(L,R,E(i)).

Let G be a graph sampled from the distribution DMatching. Notice first that the graph G always
has a matching of size at least n−n/α ≥ n/2, i.e., the matching EAB. Additionally, it is easy to see
that any matching of size more than 2n/α in G uses at least n/α edges from EAB: the edges in EAB

can only form a matching of size n/α by construction. This implies that any (α/4)-approximate
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solution requires recovering at least n/α edges from EAB
6. It is this task that we show requires

Ω(nk/α2) communication.
The following definitions are identical to those in Section 4.1. For any i ∈ [k], define the induced

matching M (i) as the unique matching in G(i) that is incident on vertices of degree exactly one,
i.e., both end-points of each edge in M (i) have degree one in G(i). Recall that by Lemma 4.1,∣∣M (i)

∣∣ = Θ(n/α) w.h.p.

Let M⋆(i) be the subset of the matching EAB assigned to P (i). It is clear that M⋆(i) ⊆ M (i) by
the definition of M (i). By our previous discussion, it is these edges of M⋆(i) that the player P (i)

needs to communicate to the coordinator. Moreover, notice that the players can simply ignore all
edges in G(i) that do not belong to M (i) as they clearly cannot be in M⋆(i). However, a crucial
property of the distribution DMatching is that the edges in M⋆(i) and the remaining edges in M (i) are
indistinguishable in G(i). In other words, conditioned on a specific assignment for M (i), any edge
e ∈ M (i) belongs to the matching M⋆(i) w.p. α/k independent of the other edges. Moreover, it is
intuitive to think that only player P (i) is able to communicate the edges in M⋆(i) as the input of other
players, while dependent on the set of vertices in the matching M (i), are essentially independent
of the edges in M (i). This discussion suggests the following intermediate problem in the one-way
two-player communication model.

Problem 1 (MatchingRecovery problem). Let H be a bipartite graph with t vertices on each side.
Alice is given a perfect matching MAlice in H and Bob is given the following input:

• Two sets P , Q (each in one side of the bipartition of H) with |P | = |Q| = p and the promise
that in matching MAlice vertices in P are matched to vertices Q.

• A set EBob of edges in H with the promise that the matching MAlice does not contain any edge
from EBob.

The goal is for Alice to send a message to Bob and Bob needs to output the edges in the matching
MAlice that are between P and Q.

Consider the following distribution DMR for MatchingRecovery based on the distribution DMatching:
Fix any arbitrary i ∈ [k]; we sample an input instance G(1), . . . , G(k) from DMatching. Then, we let
H be the bipartite graph on the set of vertices in M (i) and let MAlice = M (i). We let the input sets
P and Q to Bob be the set of vertices incident on M⋆(i). Finally, we let EBob be the set of edges
assigned to all graphs G(j) for j 6= i that are between the vertices matched by M (i), i.e., are inside
the graph H. This completes the description of the distribution DMR.

In the following, we condition on the inputs chosen from DMR to have the following additional
property:

∣∣M (i)
∣∣ = Θ(n/α) and

∣∣M⋆(i)
∣∣ = Θ(n/k). Notice that by Lemma 4.1, w.p. 1 − O(1/n),

for any player P (i),
∣∣M (i)

∣∣ = Θ(n/α). A simple application of Chernoff bound also ensures that

the number of edges from EAB assigned to each player, i.e., the edges in the matching M⋆(i) is
Θ(n/k) w.p. 1 − O(1/n). Consequently, conditioning on this event is essentially not changing the
distribution and hence for simplicity from now on, we always assume the inputs chosen from DMR

satisfy the mentioned properties. We establish the following lower bound for MatchingRecovery.

Lemma 5.1 (Communication Complexity of MatchingRecovery). Suppose s = Ω(k) denotes the
communication cost of a protocol for MatchingRecovery and X denotes the number of edges output
by Bob in this protocol; for the inputs chosen from the distribution DMR, we have E [X] ≤ (α/k)·O(s).

6Similar to Section 4.1, we prove the lower bound for (α/4)-approximation protocols for simplicity of representation.
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Notice that the distribution DMR for MatchingRecovery imposes a non-trivial correlation between
the inputs of the two players which complicates the proof of this lower bound. We address this issue
by expressing this distribution as a convex combination of a relatively small number of simpler
(yet non-trivial) distributions and prove the lower bound for each distribution separately. These
distributions are still not product distributions but we can show that the mild correlation in the
input of the players in this case can be managed directly using a careful combinatorial argument.
The proof is deferred to Section 5.2. Before that, we prove a formal reduction from the matching
problem to MatchingRecovery and use Lemma 5.1 to finalize the proof of Theorem 5.

Proof of Theorem 5. Fix a protocol ΠMatching for the matching problem on DMatching with commu-
nication cost o(nk/α2) and suppose each player P (i) communicates at most si bits in this protocol.
We assume that si = Ω(k) as otherwise we can simply augment it with Ω(k) bits to satisfy this
bound while increasing the total communication cost of the protocol by O(k2) = o(nk/α2) bits
(since α = o(

√
n/k)). Our goal is to show that in this protocol, at most o(n/α) edges from EAB

can be matched in expectation. The result then follows from the fact that obtaining better than
(α/4)-approximation requires outputting Ω(n/α) edges from EAB .

We use ΠMatching to create k protocols for MatchingRecovery, whereby in the i-th protocol Πi,
Alice plays the role of player P (i) and Bob plays the role of all other players plus the coordinator.
Fix an i ∈ [k]; the protocol Πi works as follows.

Given their input in MatchingRecovery, Alice and Bob sample two random sets XM ⊆ L and
YM ⊆ R, each of size t using public randomness. They also sample two random sets XM ⊆ L \XM

and YM ⊆ R \ YM , each of size (n/α− t+ p).
Alice creates the graph G(i) by letting M (i) be the matching MAlice and choose the remainder

of the graph G(i) by sampling the edges between XM and YM using the same distribution as the
distribution of G(i) conditioned on M (i) = MAlice and the set of non-zero degree vertices in G(i)

being subset of XM and YM .
Bob creates the input of the other players as follows. Bob picks a random mapping σ : EBob →

[k] \ {i} and in the graph G(j) for j 6= i, he assigns σ−1(j) ⊆ EBob to be the edges between XM

and YM . Finally, Bob samples the remainder of the graphs from the joint distribution of DMatching

conditioned on the set A = XM ∪XM \P , B = XM ∪XM \Q, and the edges between XM and YM

be the ones already sampled (via σ). Note that since Bob has the knowledge of the sets P and Q,
he can sample the reminder of the matching EAB for the k − 1 remaining players as well.

One can verify that the distribution of the instances created by this reduction matches the
distribution DMatching. To finish the reduction, Alice and Bob simulate the protocol ΠMatching by
Alice sending the message of P (i) to Bob (or equivalently the coordinator) and Bob creating the
message of all other players locally and completing the protocol. Bob then outputs the part of the
matching computed by ΠMatching which lies between P and Q. This results in a protocol Πi for
MatchingRecovery with communication cost of si bits.

We can now invoke Lemma 5.1 to argue that the expected number of edges matched by Πi

and hence by ΠMatching for the player P (i) in the distribution DMatching is at most (α/k) · O(si).

Summing over all players, we have that the total number of matched edges in EAB =
⋃k

i=1 M
⋆(i)

is
∑k

i=1(α/k) · O(si) = (α/k) · o(nk/α2) = o(n/α), where the first equality is by the bound on the
communication cost of the protocol. This completes the proof.

We remark that the bound in Theorem 5 is tight (up to an O(log n) factor) for all ranges of α.

Remark 5.2. The protocol in which each player computes a maximum matching of the input graph,
subsamples the edges of this matching w.p. 1/α, and sends it to the coordinator who outputs a
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maximum matching of the received matchings is an α-approximation protocol for the maximum
matching problem with Õ(nk/α2) total communication.

We briefly sketch the proof of correctness for protocol in Remark 5.2. Assume first that the
maximum matching size in each player input is of size Õ(n/α). The bound on the total commu-
nication cost follows immediately from this assumption. To see the correctness, recall that in the
proof of Theorem 1, we showed each coreset (here, each player) can increase the size of the output
matching by Ω(MM(G)/k); since we are subsampling the maximum matching by a factor of α,
this increment would be Ω(MM(G)/αk) and hence over all k players, we obtain a matching of size
Ω(MM(G)/α). The assumption on the size of the maximum matching in each player input is es-
sentially without loss of generality since otherwise one player can send an α-approximate matching
to the coordinator alone, resulting in a protocol with Õ(n/α) communication. We point out that a
simple concentration result proves that the maximum matching size between players is concentrated
within an O(log n) factor. This easily implies that in this case we can ensure that only one player
is sending his maximum matching and not all players.

5.2 Communication Complexity of MatchingRecovery

We start by reformulating the distribution DMR to make it more suitable for proving the lower
bound in Lemma 5.1. Indeed, the distribution DMR is not a product distribution: the promise that
Alice’s matching MAlice needs to always match the set P to Q correlates Alice’s and Bob’s input in a
non-trivial way, complicating the analysis. To address this, we show that the distribution DMR can
be expressed as a convex combination of a relatively small set of (essentially) product distributions;
this significantly simplifies the proof of the lower bound.

Let us first define the distribution DMR directly, i.e., without depending on the distribution
DMatching. In DMR conditioned on |MAlice| = t and |P | = |Q| = p, the matching MAlice is chosen
uniformly at random from the set of all matchings of size t in H and then P and Q are chosen
uniformly at random from all pairs of sets of size p that are matched together in MAlice. Finally,
the edge-set EBob is chosen by picking each edge in H that is not incident on P and Q and not in
MAlice w.p. (k − 1) · α/n. One can check that this results in an equivalent definition of DMR.

We now reformulate the distribution DMR as follows: we first randomly partition the vertices
in LH and RH (i.e., the bipartition of the graph H) into c := ⌊t/p⌋ blocks denoted by B :=
(P1, Q1), . . . , (Pc, Qc) such that Pi ⊆ LH , Qi ⊆ RH and |Pi| = |Qi| = p for all i ∈ [c]. We then
create MAlice by picking a random matching that matches each Pi to Qi

7. Finally, the input to
Bob is a pair P and Q chosen uniformly at random from these c blocks. We pick the edge-set EBob

of Bob as before. It is again easy to verify that this is indeed an equivalent formulation of the
distribution DMR.

Suppose we provide the identity of the blocks B to both Alice and Bob; this essentially breaks
the dependence between Alice’s and Bob’s inputs (except for the mild correlation enforced by EB

that we deal with directly). Note that revealing this extra information can only make our lower
bound result stronger. In the following, we argue that even with B being public information, to
solve the problem, Alice needs to communicate a large message.

For any fixed B, let σB(MAlice) be the (deterministic) mapping used by Alice to create the
message sent to Bob. The mapping σB then partitions all matchings MAlice that are valid with
respect to B into 2s classes Σ1, . . . ,Σ2s (one per each message). Moreover, for B and a fixed set
of edges EBob, we define F(EBob,B) as the set of matchings MAlice that conform to the restrictions

7Note that this way, it is possible that up to p vertices in LH and RH become “left overs” i.e., do not belong to
any block. We pick a random matching between these vertices also to complete the description of MAlice.
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imposed by both EBob and B (we use F if EBob and B are clear from the context). Note that σB
similarly partitions F into 2s different classes as well.

An important observation is that given a message corresponding to some class Σi and the edges
EBob, the matching MAlice is chosen uniformly at random from all matchings in Σi∩F ; consequently,
Bob can only output an edge in the final answer if it belongs to all matchings in F that are mapped
to Σi. For any set F ⊆ F , we define MF as the intersection of all matchings MAlice in F . Intuitively,
whenever MF is large, the set F itself should be small as many edges of the matchings MAlice ∈ F
are forced to be the same. We formalize this intuition in the following lemma.

Lemma 5.3. For any set F ⊆ F(EBob,B), if MF contains ℓ edges, then |F | ≤ 2−(ℓ−Θ(k)) · |F|
w.h.p. (the probability is taken over the choice of EB after fixing B).

Proof. Note that we can switch the order in which we pick MAlice and EBob in the distribution
DMR. Fix any block (Pi, Qi) ∈ B and any vertex u ∈ Pi; each edge (u, v) for v ∈ Qi is chosen w.p.
(k− 1) ·α/n in EBob. Hence, w.h.p, at most β := 2 · |Qi| · (k− 1) ·α/n = Θ(α) neighbors are chosen
for u in Qi in EBob (here, we used a standard application of Chernoff bound and the assumption
that α = Ω(log n)). This means that for each vertex in Pi there are p − β possible choices for its
neighbor in MAlice; hence, there are at least (p − β)! choices for MAlice to match Pi to Qi. Since
there are c different blocks, we have |F| ≥ ((p− β)!)c.

Now suppose we fix ℓ edges for the matching MAlice (as happens in the set F ), and let ℓi be the
number of fixed edges between (Pi, Qi) ∈ B. There can be at most (p− ℓi)! choices for the matching
between Pi and Qi (we ignore the restriction implied by EBob for the purpose of obtaining an upper
bound). Hence,

|F|
|F | ≥

c∏

i=1

(p− β)!

(p− ℓi)!
≥

c∏

i=1

(p− β) . . . (p− β − ℓi + 1)

≥
c∏

i=1

2ℓi−β = 2ℓ−c·β = 2ℓ−Θ(k)

where the last equality is by the fact that β = Θ(α) and c = Θ(k/α).

We are now ready to finalize the proof of Lemma 5.1.

Proof of Lemma 5.1. Fix a set of blocks B and edges EBob and assume that the event in Lemma 5.3
happens. Notice that the mapping σB maps the set F(EBob,B) to 2s different choices Σ1, . . . ,Σ2s .
We define E as the event that σB(MAlice) maps to a class Σ with |Σ ∩ F| ≥ |F| /22s. The following
claim on the probability of E can be proven using a simple counting argument; the proof is deferred
to after the current proof.

Claim 5.4. Pr (E) = 1−O(1/n).

Now fix a set Σ that corresponds to the message Alice sent to Bob and suppose E happens.
As argued earlier, given a message Bob can only output an edge in MAlice if it belongs to all
matchings that are mapped to Σ, i.e., to MΣ. By Lemma 5.3, the matching MΣ contains at most
ℓ = 2s+Θ(k) = Θ(s) edges (since s = Ω(k)).

Now recall that the block (P,Q) of Bob is chosen uniformly at random from the blocks in B,
even conditioned on a specific input matching MAlice to Alice; this implies that in expectation
ℓ/c = O(α/k) · ℓ = (α/k) · O(s) edges of MΣ are between (P,Q). Consequently, Bob can only
output (α/k) · O(s) edges between P and Q in expectation. To finalize the proof, note that E and
the event in Lemma 5.3 happens w.h.p., and hence conditioning on these events can only change
the expectation by an O(1) additive factor.
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For completeness, we provide a proof of Claim 5.4 here.

Proof of Claim 5.4. We say that Σi in the partition Σ1, . . . ,Σ2s is light iff |Σi ∩ F| < |F| /22s. Since
the matching MA is chosen uniformly at random, the probability that σB(MA) maps to some Σi is
exactly |Σi ∩ F| / |F|. Hence, the probability that MA maps to some light set is at most

2s · |Σi ∩ F|
|F| ≤ 2s · |F|

(22s · |F|) =
1

2s
= O(1/n)

where we used the fact that s = Ω(k) = Ω(α) = Ω(log n).

5.3 An Ω(nk/α) Lower Bound on Communication Complexity of Vertex Cover

We prove the following theorem on the simultaneous communication complexity of vertex cover,
formalizing Result 3 for vertex cover.

Theorem 6. For any α between Ω(log n) and o(min {n/k, k}), the simultaneous communication
complexity of α-approximating the vertex cover problem in the random partition model with success
probability at least 0.9 is Ω(nk/α).

For simplicity of exposition, we prove the lower bound for protocols that can obtain a c · α
approximation for some small constant c > 0 to be determined later. By re-parametrizing α by a
constant factor in the following, one can obtain the result for α-approximation protocols as well.
We again use the distribution DVC in Section 4.2. For the convenience of the reader, we repeat the
description of this distribution here.

Distribution DVC. A hard input distribution for the vertex cover problem.

• Construct G(L,R,E) (with |L| = |R| = n) as follows:

1. Pick A ⊆ L of size n/α uniformly at random.

2. Let EA be a set of edges chosen by picking each edge in A×R w.p. k/2n.

3. Pick a single vertex v⋆ uniformly at random from A and let e⋆ be an edge incident on
v⋆ chosen uniformly at random.

4. Let E := EA ∪ {e⋆}.

• Let E(1), . . . , E(k) be a random k-partitioning of E and let the input to player P (i) be the
graph G(i)(L,R,E(i)).

The intuition behind the proof is as follows. The distribution ensures that w.h.p., the input to
each player P (i) contains Θ(n/α) vertices in L with degree exactly one. Let us denote this set with
Di. Now consider the input of the player P (i⋆) which is given the edge e⋆ also. It is easy to see
that in this case, player P (i⋆) is oblivious to which vertex in Di is u⋆; more formally, conditioned
on the input Di⋆ , the vertex u⋆ is chosen uniformly at random from Di⋆ . This means the if P (i⋆)

communicates o(|Di|) = o(n/α) bits, he is essentially not “revealing any information” about v⋆

(or the other end point of e⋆). On the other hand, as only P (i⋆) has a knowledge about v⋆, this
intuitively means that coordinator is not provided with enough information about v⋆ as well. This
forces the coordinator to cover Ω(n) vertices to ensure that e⋆ is also being covered.

Making this intuition formal is complicated by the fact that the message by other players is still
revealing “some information” about the input of player P (i⋆), for instance, the identity of the set A
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or the set of edges that may possibly be in the input of P (i⋆). To overcome this, we show that by
proper conditioning on some part of the input, one can embed an instance of the well-known set
disjointness problem in this distribution. On a high level, solving the disjointness on this embedded
instance amounts to finding the vertex u⋆. This further allows us to design a reduction from our
problem to the disjointness problem and prove the lower bound. Interestingly, while we consider
the vertex cover only in the simultaneous model, our reduction requires a two-way communication
between the players (however note that disjointness is still hard even in the two-way communication
model). We now continue with the formal proof.

We can interpret the last line of distribution DVC as follows: Pick a random k-partitioning
Ê(1), . . . , Ê(k) of all possible edges between L and R, and let E(i) = Ê(i) ∩ E for all i ∈ [k]. In the
following, we assume that this initial partitioning Ê(1), . . . , Ê(k) is public knowledge, as this allows
us to reduce the dependence between the inputs of players which is crucial in our lower bound proof.
Clearly, this assumption can only strengthen our results. Throughout the proof, we fix an arbitrary
small constant ε > 0. We say that the initial partitioning Ê(1), . . . , Ê(k) is ε-balanced if the degree
of each vertex v ∈ L in each graph G(L,R, Ê(i)) for all i ∈ [k] is in (1 ± ε) · n/k (note that this
graph is not the input graph to player P (i)). As n/k ≥ α = Ω(log n), by Chernoff bound, any initial
partitioning is ε-balanced w.p. 1−O(1/n). Consequently, conditioning on this event is essentially
not changing the distribution and hence for simplicity from now on, we always assume the inputs
chosen from DVC satisfy the ε-balanced property.

We say that the player P (i) (for i ∈ [k]) is the critical player iff the edge e⋆ is assigned to E(i),
i.e., it appears in the input to P (i). We use i⋆ to denote the index of the critical player. In the
following, we show that the critical player and the coordinator need to (implicitly) solve a “hard”
communication task (named the Hidden Vertex Problem, HVP for short) which requires a large
communication from P (i).

Fix ΠVC as a δ-error (c · α)-approximation protocol for vertex cover over distribution DVC (for
some sufficiently small constant c > 0 to be determined later). For any i ∈ [k], let δi be the
probability that ΠVC errs conditioned on i⋆ = i. A simple averaging argument ensures that for any

i ∈ [k] there exists a set Ê(i) such that Pr
(
ΠVC errs | Ê(i), i⋆ = i

)
≤ δi. We refer to such Ê(i) as a

good initial partition for P (i).

Fix a player i ∈ [k] and a good initial partition Ê(i) for i. Let D
(i)
0 ,D

(i)
1 and D

(i)
≥2 be the set

of vertices in A that have degree, respectively, zero, one, and at least two in the graph G(i). We

further define D
(i)
≤1 := D

(i)
0 ∪D

(i)
1 = A \D(i)

≥2.

Claim 5.5. For any i ∈ [k] and any good initial partition Ê(i) for i, there exists a set D
(i)
≥2 with∣∣∣A \D(i)

≥2

∣∣∣ = Ω(n/α) such that, Pr
(
ΠVC errs | Ê(i),D

(i)
≥2, i

⋆ = i
)
≤ δi + o(1).

Proof. Each vertex in v ∈ A has degree more than 1 in G(i) independently and with some constant
probability p bounded away from 1 (see the exact calculation in Claim 5.6). Hence, in expectation
p · n/α vertices in A have degree more than 1. As n/α = Ω(log n), by Chernoff bound plus a union
bound, w.p. 1− o(1) at most p · n/α+ o(n/α) vertices in A have degree more than 1 in G(i). The
claim now follows immediately from this.

In the following, we further condition on a set D
(i)
≥2 as in Claim 5.5. This implies that A \D(i)

≥2,

i.e., the set D
(i)
≤1 is a set of size Ω(n/α) chosen uniformly at random from L \ D

(i)
≥2. We are now

ready to define the hidden vertex problem in the one-way two-player communication model.

Problem 2 (The Hidden Vertex Problem (HVP)). There are two disjoint sets U and V and a
mapping σ : U → V known to both Alice and Bob. Bob is given a set T ⊆ U . Alice is given a
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set S ⊆ T and a single vertex u⋆ chosen from U \ T (identity of u⋆ is unknown to players). Alice
sends a single message to Bob and Bob needs to output two sets X ⊆ U and Y ⊆ V such that either
u⋆ ∈ X or σ(u⋆) ∈ Y . The goal of the players is to minimize the size of X ∪ Y .

Consider the following distribution DHVP for HVP: we sample an instance of vertex cover from

DVC | Ê(i),D
(i)
≥2, i

⋆ = i, where Ê(i) is a good initial partition and D
(i)
≥2 is a fixed set defined in

Claim 5.5. We set U = L \D(i)
≥2, V = R, and choose σ : U → V by mapping each u ∈ U to one of

the neighbors of u (in L) in Ê(i) uniformly at random. Next, we set T = D
(i)
≤1 and S = D

(i)
1 ∪ {v⋆};

this way the vertex u⋆ in HVP is the special vertex v⋆ in distribution DVC. We make the following
simple observation about distribution DHVP.

Claim 5.6. Each vertex in T independently belongs to S w.p. (1±O(ε)) · 1/3.
Proof. Note that T = D

(i)
≤1, i.e., the vertices that have degree 0 or 1 in G(i), and vertices in S ∩ T

are vertices that have degree exactly 1 in G(i). Fix a vertex v ∈ A and consider only conditioning
on Ê(i). We know that since Ê(i) is a good initial partition, v is incident on (1 ± ε) · n/k edges in
Ê(i), and each of these edges appear independently in G(i) w.p. k/2n (by definition of DVC). Let
d(v) denote the degree of v in G(i).

Pr
(
d(v) = 0 | Ê(i)

)
= (1− k

2n
)(1±ε)·n

k = e−
1

2 · (1±O(ε))

Pr
(
d(v) = 1 | Ê(i)

)
= (1± ε)

n

k
·
(

k

2n

)
· (1− k

2n
)(1±ε)·n

k
−1

=
1

2
· e− 1

2 · (1±O(ε))

We can now conclude that Pr
(
d(v) = 0 | Ê(i),D

(i)
≥2

)
= (1 ± O(ε)) · 2 ·

(
d(v) = 1 | Ê(i),D

(i)
≥2

)
, as

conditioning on D
(i)
≥2 imply that for each vertex v ∈ T , d(v) ∈ {0, 1}. The assertion of the claim

now immediately follows.

We establish the following lower bound on the communication complexity of HVP on DHVP.

Lemma 5.7 (Communication Complexity of HVP). There exists a universal constant CHVP > 0
such that any protocol for HVP on the distribution DHVP that computes an answer with |X ∪ Y | ≤
(CHVP · n) w.p. at least 2/3 needs Ω(n/α) communication.

We prove Lemma 5.7 in Section 5.3.1. Before that, we establish Theorem 6 using this lemma.

Proof of Theorem 6. Recall that protocol ΠVC is a δ-error (c · α)-approximation protocol for vertex
cover on DVC. Note that w.p. 1 − o(1), Ê(1), . . . , Ê(k) is an ε-balanced initial partitioning. Let E
denote this event. Conditioned on E , each edge in G and in particular the edge e⋆ belong to each
player i ∈ [k] w.p. (1 ± ε)1/k. Hence, each player is the critical player w.p. (1 ± ε)1/k. Let C be
the set of players such that δi ≤ 2δ. We have |C| ≥ k/3 as otherwise,

Pr (ΠVC errs | E) ≥ Pr (ΠVC errs | E , i⋆ /∈ C) · Pr (i⋆ /∈ C)
> 2δ ·

∣∣C
∣∣ · (1− ε) · 1/k > 4/3δ(1 − ε) > δ

for small enough ε > 0, which contradicts the fact that Pr (ΠVC errs | E) ≤ δ + o(1).
Fix an i ∈ C and let Πi be the message sent by P (i) in protocol ΠVC. We use Πi to design

a protocol Π′ for HVP on DHVP (recall that DHVP is a function of ΠVC and also index i). Given
an instance of HVP from DHVP, Alice and Bob create an instance of vertex cover sampled from

DVC | Ê(i),D
(i)
≥2, i

⋆ = i as follows:

23



1. Alice plays the role of P (i) and Bob plays the role of all other players plus the coordinator.

2. Alice constructs the input of P (i) (i.e., the graph G(i)) as follows: (i) for each u ∈ D
(i)
≥2,

Alice samples the neighbors of u from Ê(i) according to distribution DVC, and (ii) for each

u ∈ D
(i)
1 ∪ {u⋆}, she adds the edge (u, σ(u)) to G(i).

3. Bob constructs the inputs of all other players by letting the set A = D
(i)
≥2 ∪ T and sampling

their inputs according to distribution DVC. This is indeed possible since the input to players
in DVC are independent conditioned on A, Ê(1), . . . , Ê(k), i⋆.

Next, Alice sends the message of P (i) to Bob and Bob simulates the messages of all other players
(without any communication) and outputs the vertex cover computed by ΠVC as the answer to the
HVP instance. Using the definition of the distribution DHVP one can verify that the distribution of

the instances sampled in this reduction matches distribution DVC | Ê(i),D
(i)
≥2, i

⋆ = i. Hence, since
the minimum vertex cover size in G is at most n/α+1 (by picking A∪ {u⋆}), the output of Π (i.e.,
the sets X ∪ Y ) is of size at most c · n w.p. 1 − 2δ (as i ∈ C). Moreover. since the edge e⋆ in the
vertex cover instance corresponds to the pair (u⋆, σ(u⋆)) in the HVP instance, the returned solution
is feasible. As δ ≤ 0.1, by picking the constant c (in the (c · α)-approximation factor) to be smaller
than CHVP (in Lemma 5.7), we obtain that the size of Πi must be Ω(n/α). Finally, since |C| ≥ k/3
(i.e., there are at least k/3 choices for player P (i)), we obtain that the communication cost of ΠVC

is Ω(nk/α), proving the theorem.

We finish this section by noting that the bound stated in Theorem 6 is in fact tight (up to an
O(log n) factor) for any approximation ratio α.

Remark 5.8. The protocol in which the players group the vertices in the original graph into groups
of size Θ(α/ log n) (deterministically but consistently across players) and then run the algorithm in
Theorem 2 on the resulting graph is an α-approximation protocol with Õ(nk/α) communication for
the minimum vertex cover problem.

Note that in Remark 5.8, we used the fact that Theorem 2 works even when the input graph
has parallel edges, i.e., is a multi-graph.

5.3.1 Communication Complexity of HVP

In this section, we prove Lemma 5.7 by a reduction from the well-known set disjointness in the two-
player communication model. In this problem, Alice is given a set A ⊆ [N ] and Bob is given a set
B ⊆ [N ] with the promise that |A ∩B| ∈ {0, 1} and their goal is to distinguish between these two
cases via two-way communication. Let DDisj be the following distribution: start with A = B = [N ]
and for each element e ∈ A, w.p. 1/2, drop e from both A and B, w.p. 1/4 drop e from A, and with
the remaining 1/4 probability, drop e from B. Next, pick an element e⋆ ∈ [N ] uniformly at random
and w.p. 1/2 add e⋆ to both A and B. It is known that solving disjointness under DDisj requires
Ω(N) communication (see, e.g., [13, 63]). It also immediately follows from [13] that if instead of
dropping each element w.p. exactly 1/4, we drop them w.p. (1 ± ε) · 1/4 (for sufficiently small
constant ε > 0), the distribution still remains hard.

Now let ΠHVP be a δ-error protocol for HVP on distribution DHVP. We use ΠHVP to create a
protocol Π′ for disjointness on distribution DDisj. Note that while ΠHVP is a one-way protocol, the
protocol Π′ is allowed to use two-way communication. Given a pair of sets (A,B) in DDisj, we create
an instance of HVP as follows:
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1. Bob first communicates the size of B to Alice.

2. The players choose a set Z of size N = |T | + |B| vertices from U uniformly at random and
consider a fixed mapping between [N ] and Z; note that |T | is fixed in distribution DHVP and
|B| is known at this point by both players.

3. Alice lets S = A and Bob lets T = Z \B and they pick σ uniformly at random from DHVP.

4. The players run ΠHVP; Bob computes the sets X and Y and let B′ =
(
X ∪ σ−1(Y )

)
∩B.

5. If |B′| > 3CHVP · N , Bob terminates the protocol. Otherwise the players run a lopsided set
disjointness protocol (see, e.g., [23,60]) for solving the disjointness instance (A,B′) (with error
guarantee, say, 1/10) and output the same answer as this protocol.

Whenever (A,B) is a no instance of DDisj, i.e., |A ∩B| = 1, the distribution of the instances
constructed by Π′ is DHVP (with u⋆ = A ∩ B). To see this, notice that for a fixed set T in DHVP,
each element in T is in S w.p. 1/3 · (1 ± O(ε)) and is outside S with remaining probability (by
Claim 5.6). This is exactly the distribution of the set [N ] \ B in DDisj conditioned on B. The rest
follows since we are choosing the set T (by the random choice of Z) and σ according to distribution
DHVP.

On the other hand, when |A ∩B| = 0, the distribution of instances do not correspond to DHVP.
In fact, this is not even a valid instance of HVP as there is no element u⋆ in this instance. This
means that in this case, ΠHVP may terminate, output a non-valid answer, or still output two sets
X ⊆ U and Y ⊆ V with |X ∪ Y | ≤ CHVP · n. Unless the later happens, Bob is always able to
distinguish this case as a Yes case of disjointness and solve the problem correctly (w.p. 1 − δ).
Hence, in the following, we assume the worst case that ΠHVP outputs two sets X and Y even if the
instance created is not a legal input of VertexCollection. We can now argue the following key lemma.

Lemma 5.9. In any instance (S, T ) of VertexCollection created by Π′, |B′| ≤ 3CHVP · |B| w.h.p.

Proof. Consider the set B− := B\{u⋆}: this set is chosen from U\S∪T uniformly at random. On the
other hand, conditioned on S, T (and σ), i.e., all the inputs in distribution DHVP, the output of ΠHVP

are two fixed sets X and Y chosen independent of B−. This means that each vertex in B− belongs
to X w.p. |X| / |U \ S ∪ T |. Similarly, each vertex in σ(B−) also belongs to Y w.p. |Y | / |U \ S ∪ T |
(as σ is a random mapping). This ensures that

∣∣B− ∩
(
X ∪ σ−1(Y )

)∣∣ ≤ (|X|+ |Y |) /(n/2) ≤ 2CHVP

in expectation. A simple application of Chernoff bound finalizes the proof.

Proof of Lemma 5.7. We first argue the correctness of the protocol Π′ and then bound its communi-
cation cost. Clearly we have B′ ⊆ B and moreover in the no instances of disjointness, the reduction
ensures that A ∩ B ⊆ B′; the reason is that u⋆ = A ∩ B and since ΠHVP is computing two sets X
and Y which contain either u⋆ or σ(u⋆), we obtain that u⋆ ∈ B′. Consequently, the probability that
Π′ errs is at most 1/3 (if ΠHVP errs), plus o(1) (if Bob terminates the protocol (by Lemma 5.9)),
plus 1/10 (by error guarantee of the lopsided disjointness instance). This means that Π′ is a δ′-error
protocol for disjointness with δ′ < 1/2 (bounded away from half).

We now bound the communication cost of Π′. In the following, let c be a constant such that
communication complexity of disjointness on DDisj is at least c · N . Since if the protocol is not
terminated, |B′| ≤ 3CHVP · |B|, the lopsided disjointness problem (A,B′) can be solved with 3CHVP ·
O(|B|) = CHVP ·O(N) communication (using, e.g., the protocol of Håstad and Wigderson [34]). Now
assume by contradiction that cost ΠHVP is o(n/α) = o(N). This means that the total communication
cost of Π′ is O(logN) + o(N) +CHVP ·O(N). By taking CHVP ≪ c but still a constant to suppress
the constant in the O(N) term above, the total cost of Π′ can be made smaller than c · N . This
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contradicts the fact that communication complexity of disjointness on DDisj is at least c·N , finalizing
the proof.
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A Proof of Lemma 4.1

Consider the edges of EAB assigned to the graph G(i). It is easy to see that by the choice of EAB and

further partitioning the edges between the k players, the graph G(i) on the set of edges E
(i)
AB forms

a random bipartite graph. Hence, proving Lemma 4.1 reduces to proving the following property of
random bipartite graphs.

Let G(n, n, 1/n) denote the family of random bipartite graphs where each side of the bipartition
contains n vertices, and each edge is present w.p. 1/n. We will show that if we sample a random
graph G ∈ G(n, n, 1/n), then w.p. at least 1 − 1/n2, it contains an induced matching of size Ω(n).
We emphasize here that the notion of induced matching is with respect to the entire graph and not
only with respect to the vertices included in the induced matching.

Our proof will use the following pair of elementary propositions.

Proposition A.1. Suppose we assign N balls uniformly at random to M > N bins. Let B be an

arbitrary fixed subset of bins. Then with probability at least 1− 1
N3 , there are at least

(
|B|
M

)
·Ne −o(N)

bins in B that contain exactly one ball, assuming N is sufficiently large.

Proof. We arbitrarily number the balls 1 through N and the bins 1 through M . W.l.o.g. assume
that the bins in B are numbered 1 through |B|. For 1 ≤ i ≤ |B|, let Zi be the 0/1 random variable

that indicates whether or not bin i ∈ B receives exactly one ball, and furthermore, let Z =
∑|B|

i=1 Zi.
Then

Pr[Zi = 1] =

(
N

1

)
·
(

1

M

)
·
(
1− 1

M

)N−1

≥ N

M
·
(
1

e
− o(1)

)
.

Hence E[Z] ≥
(
|B|
M

)
· N

e − o(N). We now wish to argue that the value of Z is concentrated

around its expectation. However, we can not directly invoke the standard Chernoff bound since
the variables Zi’s are not independent. We will instead utilize the more general version stated in
Proposition 2.2.

Let Xj ∈ [1..M ] denote the index of the bin in which the jth ball lands. Given the variables
X1,X2, ...,XN , we can define the function f(X1,X2, ....,XN ) to be the number of bins in B that
receive exactly one ball. Note that f is completely determined by the variables X1,X2, ...,XN and

that E[f ] = E[Z] ≥
(
|B|
M

)
· N

e − o(N). It is easy to see that the function f satisfies the Lipschitz

property with d = 2 since changing the assignment of any single ball, can reduce or increase the
number of bins in B with exactly one ball by at most 2. We can thus invoke Proposition 2.2 with
t = 4

√
N lnN , completing the proof.

Proposition A.2. For sufficiently large n, with probability at least 1− 1/n3, a graph G(L ∪R,E)
drawn from G(n, n, 1/n) satisfies the following properties:

(a) The set S ⊆ L of all vertices in L with degree exactly one in G has size n/e± o(n).

(b) The set T ⊆ R of vertices defined as all vertices in R with no edges to L \ S has size at least
n/e− o(n).

Proof. To see property (a), let us define 0/1 random variables X1,X2, ...,Xn where Xi = 1 iff vertex
i ∈ L has degree exactly one in G. Then Pr[Xi = 1] = (1− 1

n)
n−1 = 1/e− o(1) for sufficiently large

n. Thus E[
∑n

i=1Xi] = n/e − o(n), and using Chernoff bound (Proposition 2.1 with t = 4
√
n lnn)

implies that with probability at least 1−2/n4, there is a set S ⊆ L of size n/e±o(n) whose vertices
have degree exactly one in G.
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To see property (b), fix a set S of degree 1 vertices in L. Let us define 0/1 random variables
Y1, Y2, ..., Yn where Yi = 1 iff vertex i ∈ R receives no edges from vertices in L \ S. Then Pr[Yi =
1] = (1 − 1

n)
|L\S| ≥ 1/e − o(1) for sufficiently large n. Thus E[

∑n
i=1 Yi] ≥ n/e − o(n), and using

Chernoff bound (Proposition 2.1 with t = 4
√
n lnn) implies that with probability at least 1− 2/n4,

there is a set T ⊆ R of size at least n/e− o(n) whose vertices do not have any edges to L \ S.
Thus both properties (a) and (b) hold with probability at least 1− 1/n3, as desired.

Lemma A.3. Let G(L ∪ R,E) be drawn from G(n, n, 1/n). Then for sufficiently large n, with
probability at least 1− 1/n2, G contains an induced matching of size n/e3 − o(n).

Proof. By Proposition A.2, we know with probability at least 1 − 1/n3, the graph G(L ∪ R,E)
satisfies properties (a) and (b). We will assume from here on that this event, denoted by E , has
occurred. We first observe that conditioned on the event E , and for any choice of sets S and T as
defined in Proposition A.2 as well as edges from the set L \ S to R \ T , sampling a graph G from
G(n, n, 1/n) is equivalent to assigning each vertex in S a uniformly at random neighbor in R.

Now invoking Proposition A.1, with N = |S|, B = T , we know that with probability at least
1−O(1/n3), there is a set T ′ ⊆ T of size at least

|T |
n

· |S|
e

− o(|S|) =
(
1

e
− o(1)

)
·
(
n/e− o(n)

e

)
− o(n) ≥ n

e3
− o(n)

such that each vertex in T ′ receives exactly one ball from S (i.e. receives exactly one edge from
the vertices in S). Let S′ ⊆ S be the set of vertices that “supply a ball” (i.e. an edge) to vertices in
T ′. Since by definition the vertices in T receive edges only from S, and since all vertices in S have
degree exactly one, the set S′ ∪ T ′ of vertices induces a matching of size at least n/e3 − o(n) in G,
as asserted in the lemma.

The lower bound in Lemma 4.1 now follows from Lemma A.3 for the family of bipartite graphs
with n/α vertices on each side. The upper bound is a simple application of Chernoff bound on the
number of edges from EAB that are assigned to G(i).
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