
ar
X

iv
:1

70
1.

04
36

4v
1 

 [
cs

.D
S]

  1
6 

Ja
n 

20
17

On Estimating Maximum Matching Size in Graph Streams

Sepehr Assadi∗ Sanjeev Khanna∗ Yang Li∗

Abstract

We study the problem of estimating the maximum matching size in graphs whose edges are
revealed in a streaming manner. We consider both insertion-only streams, which only contain
edge insertions, and dynamic streams that allow both insertions and deletions of the edges, and
present new upper and lower bound results for both cases.

On the upper bound front, we show that an α-approximate estimate of the matching size
can be computed in dynamic streams using Õ(n2/α4) space, and in insertion-only streams using

Õ(n/α2)-space. These bounds respectively shave off a factor of α from the space necessary
to compute an α-approximate matching (as opposed to only size), thus proving a non-trivial
separation between approximate estimation and approximate computation of matchings in data
streams.

On the lower bound front, we prove that any α-approximation algorithm for estimating
matching size in dynamic graph streams requires Ω(

√
n/α2.5) bits of space, even if the underlying

graph is both sparse and has arboricity bounded by O(α). We further improve our lower bound
to Ω(n/α2) in the case of dense graphs. These results establish the first non-trivial streaming
lower bounds for super-constant approximation of matching size.

Furthermore, we present the first super-linear space lower bound for computing a (1 + ε)-
approximation of matching size even in insertion-only streams. In particular, we prove that a
(1 + ε)-approximation to matching size requires RS(n) · n1−O(ε) space; here, RS(n) denotes the
maximum number of edge-disjoint induced matchings of size Θ(n) in an n-vertex graph. It is a
major open problem with far-reaching implications to determine the value of RS(n), and current
results leave open the possibility that RS(n) may be as large as n/ logn. Moreover, using the
best known lower bounds for RS(n), our result already rules out any O(n · poly(logn/ε))-space
algorithm for (1 + ε)-approximation of matchings. We also show how to avoid the dependency
on the parameter RS(n) in proving lower bound for dynamic streams and present a near-optimal
lower bound of n2−O(ε) for (1 + ε)-approximation in this model.

Using a well-known connection between matching size and matrix rank, all our lower bounds
also hold for the problem of estimating matrix rank. In particular our results imply a near-
optimal n2−O(ε) bit lower bound for (1 + ε)-approximation of matrix ranks for dense matrices
in dynamic streams, answering an open question of Li and Woodruff (STOC 2016).

∗Department of Computer and Information Science, University of Pennsylvania. Supported in part by National
Science Foundation grants CCF-1116961, CCF-1552909, CCF-1617851, and IIS-1447470.
Email: {sassadi,sanjeev,yangli2}@cis.upenn.edu.

http://arxiv.org/abs/1701.04364v1


1 Introduction

Recent years have witnessed tremendous progress on solving graph optimization problems in the
streaming model of computation, formally introduced in the seminal work of [6]. In this model,
a graph is presented as a stream of edge insertions (insertion-only streams) or edge insertions
and deletions (dynamic streams), and the goal is to solve the given problem with minimum space
requirement (see a survey by McGregor [48] for a summary).

One of the most extensively studied problems in the streaming literature is the classical problem
of finding a maximum matching [46]. Although significant advances have been made on understand-
ing the space needed to compute a maximum matching in the streaming model [1–3,9,14,16,17,20–
24,29, 31, 36–39,47–49,56], some important problems remain wide open. In particular, not much is
known about the tradeoff between space and approximation for the problem of estimating the size
of a maximum matching in the streaming model.

In this paper, we obtain new upper and lower bounds for the matching size problem. Our
results show that while the problem of matching size estimation is provably easier than the problem
of finding an approximate matching, the space complexity of the two problems starts to converge
together as the accuracy desired in the computation approaches near-optimality. In particular, we
establish the first super-linear space lower bound (in n) for the matching size estimation problem.
A well-known connection between matching size and matrix rank allows us to carry our lower bound
results to the problem of estimating rank of a matrix in the streaming model, and we show that
essentially quadratic space is necessary to obtain a near-optimal approximation of matrix rank. In
what follows, we first briefly review the previous work, and then present our results and techniques
in detail.

1.1 Models and Previous Work

Two types of streams are generally considered in the literature, namely insertion-only streams and
dynamic streams. In insertion-only streams, edges are only inserted, and in dynamic streams, edges
can be both inserted and deleted. In the following, we briefly summarize previous results for single-
pass algorithms (i.e., algorithms that only make one pass over the steam) in both insertion-only
streams and dynamic streams.

Insertion-only streams. It is easy to compute a 2-approximate matching using Õ(n) space in
insertion-only streams: simply maintain a maximal matching during the stream; here n denotes the
number of vertices in the input graph. This can be done similarly for computing an α-approximate
matching in Õ(n/α) space for any α ≥ 2. On the lower bound side, it is shown in [29, 36] that
computing better than a e/(e − 1)-approximate matching requires n1+Ω(1/ log logn) space.

For the seemingly easier problem of estimating the maximum matching size (the focus of this
paper), the result of [29, 36] can be modified to show that computing better than a e/(e − 1)-
approximation for matching size requires nΩ(1/ log logn) space (see also [37]). It was shown later
in [23] that computing better than a 3/2-approximation requires Ω(

√
n) bits of space. More recently,

this lower bound was extended by [14] to show that computing a (1+ε)-estimation requires n1−O(ε)

space. On the other hand, the only existing non-trivial algorithm is a folklore that an O(
√
n)-

approximation can be obtained in polylog(n) space even in dynamic streams (for completeness,
we provide a self-contained proof of this result in Appendix A). We note that other algorithms
that use o(n) space for this problem also exist, but they only work under certain conditions on
the input: either the edges are presented in a random order [37] or the input graph has bounded
arboricity [14, 16, 23, 49].

1



Dynamic streams. Space complexity of finding an α-approximate matching in dynamic graph
streams is essentially resolved: it is shown in [9] that Θ̃(n2/α3) space is necessary and in [9, 16],
that it is also sufficient (see also [38]). However, the space complexity of estimating the matching
size (the focus of this paper) is far from being settled in this model. For example, it is not even
known if α-approximating matching size is strictly easier than finding an α-approximate matching
(for any α = o(

√
n)). Moreover, no better lower bounds are known for estimating matching size in

dynamic streams than the ones in [14, 23], which already hold even for insertion-only streams.
This state-of-the-art in both insertion-only and dynamic streams highlights the following natural

question: How well can we approximate the maximum matching size in a space strictly smaller that
what is needed for finding an approximate matching? In general, what is the space-approximation
tradeoff for estimating the matching size in graph streams?

Indeed, this question (and its closely related variants) has already been raised in the litera-
ture [23,37,49]. In this paper, we make progress on this question from both upper bound and lower
bound ends.

1.2 Our Results

Upper bounds. We prove that computing an α-approximate estimate of matching size is strictly
easier than finding an α-approximate matching. Formally,

Theorem 1. There exist single-pass streaming algorithms that for any 2 ≤ α ≤ √
n, w.h.p.1, output

an α-approximation of the maximum matching size in dynamic streams using Õ(n2/α4) and in
insertion-only streams using Õ(n/α2) space, respectively.

The algorithms in Theorem 1 are the first algorithms that outperform (by a factor of α), respec-
tively, the optimal Õ(n2/α3)-space algorithm in dynamic streams, and the optimal Õ(n/α)-space
algorithm in insertion-only streams for finding an α-approximate matching. This provides the first
non-trivial separation between approximate estimation and approximate computation of matchings
in both dynamic and insertion-only streams.

Lower bounds. Our first lower bound result concerns computing an α-approximation of the
maximum matching size in dynamic streams for any α ≥ 1, not necessarily a constant.

Theorem 2. Any (randomized) single-pass streaming algorithm that computes an α-approximation
of maximum matching size with a constant probability in dynamic streams requires Ω(

√
n/α2.5)

bits of space. This bound holds even if the input graph is both sparse and has arboricity2 O(α).
Moreover, if the input graph is allowed to be dense, then Ω(n/α2) bits of space is necessary.

The lower bounds in Theorem 2 are the first non-trivial space lower bounds for super-constant ap-
proximation algorithms for matching size estimation. Obtaining space lower bounds for polylog(n)-
approximation of matching size has been posed as an open problem by Kapralov et al. [37], who also
mentioned that “existing techniques do not seem to lend easily to answer this question and it will
be very useful (quite possibly for other related problems) to develop tools needed to make progress
on this front”. Our results in Theorem 2 make progress on this question in dynamic streams.

An interesting aspect of our lower bound in Theorem 2 is that it holds even for bounded arboricity
graphs. There is an active line of research on estimating matching size of bounded arboricity graphs
in graph streams [14, 16, 23, 49], initiated by Esfandiari et al. [23]. The state-of-the-art is an O(1)-
approximation in Õ(n4/5) space for dynamic streams in bounded-arboricity graphs [14, 16, 49].

1We use w.p. and w.h.p. to abbreviate with probability and with high probability, respectively.
2A graph G has arboricity ν if the set of edges in G can be partitioned into at most ν forests.

2



Our second lower bound result concerns computing a (1 + ε)-approximation of the maximum
matching size in both insertion-only streams and in dynamic streams. In the following, let RS(n)
denote the maximum number of edge-disjoint induced matchings of size Θ(n) in any n-vertex graph
(see Section 2.1).

Theorem 3. Any (randomized) single-pass streaming algorithm that with a constant probability
outputs a (1 + ε)-approximation of the maximum matching size in insertion-only streams requires
RS(n) · n1−O(ε) space. The lower bound improves to n2−O(ε) for dynamic streams.

Since RS(n) is known to be at least nΩ(1/ log logn) [25], Theorem 3 immediately implies that no
Õ(n · poly(1/ε))-space algorithm can output a (1 + ε)-approximation of matching size in insertion-
only streams. Interestingly, it is known that by allowing multiple passes over the stream, a (1 + ε)-
approximate matching (as opposed to only its size) can be found in Õ(n · poly(1/ε)) space, even in
dynamic streams and even for the weighted version of the problem [1, 2] (see also [48]).

Our lower bounds in Theorem 3 are the first super linear (in n) space lower bounds for estimating
matching size in graph streams. An interesting implication of these lower bounds is that while the
problem of matching size estimation is provably easier than the problem of finding an approximate
matching (by Theorem 1), the space complexity of the two problems starts to converge together as
the accuracy desired in the computation approaches near-optimality.

Schatten p-norms. The Schatten p-norm of a matrix A is defined as the ℓp-norm of the vector
of the singular values of A (see [44] for more detail); in particular, the case of p = 0 corresponds to
the rank of the matrix A. Schatten norms and rank computation have been previously studied in
the streaming and sketching models [14,18,41,43–45]. It is shown that exact computation of matrix
rank in data streams requires Ω(n2) space [18, 43] (even allowing multiple passes), and (1 + ε)-
approximation requires n1−O(ε) space [14]; the latter result was recently extended to all Schatten
p-norms for odd values of p [44].

It is well-known that computing the maximum matching size is equivalent to computing the
rank of the Tutte matrix [46, 54]. Consequently, all our lower bounds stated for matching size
estimation also hold for matrix rank computation. This in particular implies an Ω(

√
n) space lower

bound for any constant approximation of rank in sparse matrices and a near-optimal n2−O(ε) space
lower bound for (1 + ε)-approximation in dense matrices, answering an open question of Li and
Woodruff [44].

2 Preliminaries

Notation. For any graph G, opt(G) denotes the maximum matching size in G. We use bold face
letters to represent random variables. For any random variable X, supp(X) denotes its support
set. We define |X| := log |supp(X)|. For any k-dimensional tuple X = (X1, . . . ,Xk) and any
i ∈ [k], we define X<i := (X1, . . . ,Xi−1), and X−i := (X1, . . . ,Xi−1,Xi+1, . . . ,Xk).

Total Variation Distance. For any two distributions µ and ν with the same support Ω where
|Ω| is finite, the total variation distance between µ and ν, denoted by ‖µ − ν‖tvd, is given by
maxΩ′⊆Ω (µ(Ω′)− ν(Ω′)) = 1

2

∑
x∈Ω |µ(x)− ν(x)|. We use the following well-known fact in our

proofs.

Fact 2.1. Suppose we want to distinguish between two probability distributions µ and ν given one
sample from one of the two; then the best probability of success is 1

2 + ‖µ−ν‖tvd
2 .

3



2.1 Ruzsa-Szemerédi graphs

For any graph G, a matching M of G is an induced matching iff for any two vertices u and v that
are matched in M , if u and v are not matched to each other, then there is no edge between u and
v in G.

Definition 1 (Ruzsa-Szemerédi graph). A graph G is an (r, t)-Ruzsa-Szemerédi graph (or (r, t)-
RS graph for short), iff the set of edges in G consists of t pairwise disjoint induced matchings
M1, . . . ,Mt, each of size r.

RS graphs, first introduced by Ruzsa and Szemerédi [52], have been extensively studied as
they arise naturally in property testing, PCP constructions, additive combinatorics, etc. (see,
e.g., [5, 7, 8, 13, 25, 27, 29, 32, 53]). These graphs are of interest typically when r and t are large
relative to the number of vertices in the graph.

One particularly interesting range of the parameters is when r = Θ(n) [25–27], i.e., when the
induced matchings are of linear size. We use the notation RS(n) to denote the largest possible value
for the parameter t such that an (r, t)-RS graph on n vertices with r = Θ(n) exists. It is a major
open problem to determine the asymptotic of RS(n) [26, 27, 30], but currently there is a huge gap
between existing upper and lower bounds for RS(n). In particular, it is known that for any constant
c < 1/4, a (c · n, t)-RS graph with t = nΩ(1/ log logn) exists [25] (see also [29]). However, the best
known upper bound only shows that for (c · n, t)-RS graphs, where c is any constant less than 1/4,
t is upper bounded by n

log(x) n
, with x = O(log 1

c ), (log(x)(n) denotes the x-fold iterative logarithm

of n) [26]. Slightly better upper bounds are known for large values of c; in particular, it is shown
in [27] that for 1/5 < c < 1/4, t = O(n/ log n). We refer the interested reader to [7, 27] for more
on the history of Ruzsa-Szemerédi graphs and to [7, 29] for their application to different areas of
computer science, including proving lower bounds for streaming algorithms.

Obtaining (r, t)-RS graphs for r = Θ(n) and t = nε (for some constant ε > 0) seems to be
out of the scope of the state-of-the-art techniques; however, Alon et al. [7] provide a surprising
construction of (very) dense RS graphs when we allow r to be just slightly sublinear : there are
(r, t)-RS graphs on n vertices with parameters r = n1−o(1) and r · t =

(n
2

)
− o(n2) [7]. While our

lower bound for insertion-only streams requires the use of (r, t)-RS graphs with r = Θ(n) (hence
naturally leads to a dependence on RS(n)), for our lower bound for dynamic streams it suffices to
work with RS graphs with r = n1−o(1) and hence we can directly use the construction of [7] (hence
avoiding dependency on RS(n)).

2.2 Tools from Information Theory

We briefly review some basic concepts from information theory needed for establishing our lower
bounds. For a broader introduction to the field, we refer the reader to the excellent text by Cover
and Thomas [19].

In the following, we denote the Shannon Entropy of a random variable A by H(A) and the mutual
information of two random variables A and B by I(A;B) = H(A)−H(A | B) = H(B)−H(B | A).
If the distribution D of the random variables is not clear from the context, we use HD(A) (resp.
ID(A;B)). We use H2 to denote the binary entropy function where for any real number 0 < δ < 1,
H2(δ) = δ log 1

δ +(1− δ) log 1
1−δ . We know that 0 ≤ H(A) ≤ |A| and equality holds iff A is uniform

on its support. Similarly, I(A;B) ≥ 0 and equality holds iff A and B are independent of each
other.

We use the following basic properties of entropy and mutual information (proofs can be found
in [19], Chapter 2).

4



Fact 2.2. Let A, B, C be random variables.

1. Conditioning reduces the entropy: H(A | B,C) ≤ H(A | B); equality holds iff A and C are
independent conditioned on B.

2. Chain rule for entropy: H(A,B) = H(A) +H(B | A).

3. Chain rule for mutual information: I(A,B;C) = I(A;C) + I(B;C | A).

4. Conditional sub-additivity of mutual information: if A1,A2, . . . ,At are conditionally inde-
pendent given B, then I(A1,A2, . . . ,At;B) ≤ ∑t

i=1 I(Ai;B).

5. Conditional super-additivity of mutual information: if A1,A2, . . . ,At are conditionally inde-
pendent given C, then I(A1,A2, . . . ,At;B | C) ≥ ∑t

i=1 I(Ai;B | C).

The following claim (Fano’s inequality) states that if a random variable A can be used to
estimate the value of another random variable B, then A should “consume” most of the entropy of
B.

Claim 2.3 (Fano’s inequality). For any binary random variable B and any (possibly randomized)
function f that predicts B based on A, if Pr(f(A) 6= B) = δ, then H(B | A) ≤ H2(δ).

Finally, we prove the following auxiliary lemma that allows us to decompose any random variable
with high entropy to a convex combination of relatively small number of near uniform distributions
plus a low probability “noise term”.

Lemma 2.4. Let X ∼ D be a random variable on {0, 1}n such that H(X) ≥ n−∆. For any ε > 0,
there exist k + 1 distributions µ0, µ1, . . . , µk on {0, 1}n, along with k + 1 probabilities p0, p1, . . . , pk
(
∑

i pi = 1) for some k = O(n/ε), such that D =
∑

i pi · µi, p0 = O(ε), and for any i ≥ 1,

1. log |supp(µi)| ≥ n− ∆
ε − logΘ(nε ).

2. ‖µi − Ui‖tvd = O(ε), where Ui denotes the uniform distribution on supp(µi).

Proof. Partition the support of D into k′ sets S0, S1, . . . , Sk′ for k′ = Θ(n/ε) such that S0 contains
every element a ∈ {0, 1}n where Pr(X = a) < 2−2n, and for each i ≥ 1, Si contains every element a

where (1+ ε)−(i+1) ≤ Pr(X = a) < (1+ ε)−i. We say that a set Si is large if |Si| ≥ 2(n−
∆
ε
−logΘ(n

ε
))

and is otherwise small. Let L (resp. S) denote the set of all elements that belong to a large set
(resp. a small set). Moreover let k be the number of large sets, and, without loss of generality,
assume S1, . . . , Sk are these large sets.

We define the k+ 1 distributions in the lemma statement as follows. Let µ0 be the distribution
D conditioned on X being in S0 ∪ S (i.e., S0 and elements from small sets), and let p0 = PrD(X ∈
S ∪ S0); for each i ≥ 1, let µi be the distribution D conditioned on X being in Si (i.e., the i-th
large set) and let pi = PrD(X ∈ Si).

By construction, the described distributions satisfy D =
∑

i pi · µi. Moreover, for each i ≥ 1,
since the support Si of µi is a large set, we have log |supp(µi)| ≥ n− ∆

ε − logΘ(nε ); since each

element a in supp(µi) has PrD(X = a) ∈ [(1 + ε)−(i+1), (1 + ε)−i), it is straightforward to verify
that ‖µi − Ui‖tvd = O(ε). Hence it only remains to argue that p0 = O(ε).

It is easy to see that PrD(X ∈ S0) = o(1) and therefore in the following we prove that PrD(X ∈
S) = O(ε). Let Z ∈ {0, 1} be a random variable that denotes whether X chosen from D belongs
to L or S. We have,

H(X | Z) ≥ H(X)−H(Z) ≥ H(X)− 1 ≥ n−∆− 1 (1)

5



where the first inequality is by chain rule of entropy (Fact 2.2-(2)). Moreover, since the total number

of elements belonging to small sets is at most Θ(n/ε) · 2(n−∆
ε
−logΘ(n

ε
)) = 2n−

∆
ε ,

H(X | Z) = Pr(Z = 0) ·H(X | Z = 0) + (1− Pr(Z = 0)) ·H(X | Z = 1)

≤ Pr(Z = 0) · log
(
2n−

∆
ε

)
+ (1− Pr(Z = 0)) · log (2n)

(since H(A) ≤ |A| for any random variable A)

= n− Pr(Z = 0) ·
(
∆

ε

)

and consequently, if Pr(Z = 0) > 2ε, then H(X | Z) < n − 2∆ < n − ∆ − 1, a contradiction to
Eq (1). This finalizes the proof that p0 = O(ε).

2.3 Communication Complexity and Information Complexity

Communication complexity and information complexity play an important role in our lower bound
proofs. We now provide necessary definitions for completeness.

Communication complexity. Our lowers bounds for streaming algorithms are established through
communication complexity lower bounds. Here, we briefly provide some relevant background; for a
more detailed treatment of communication complexity, we refer the reader to the excellent text by
Kushilevitz and Nisan [40].

We focus on two models of communication, namely, the two-player one-way communication
model, and the multi-party number-in-hand simultaneous message passing model (SMP).

One-way Communication Model. Let P be a relation with domain X ×Y ×Z. Alice receives
an input X ∈ X and Bob receives Y ∈ Y, where (X,Y ) are chosen from a joint distribution D
over X × Y. In addition to private randomness, the players also have an access to a shared public
tape of random bits R. Alice sends a single message M(X,R) and Bob needs to output an answer
Z := Z(M(X,R), Y,R) such that (X,Y,Z) ∈ P .

We use Π to denote a protocol used by the players. Unless specified otherwise, we always assume
that the protocol Π can be randomized (using both public and private randomness), even against
a prior distribution D of inputs. For any 0 < δ < 1, we say Π is a δ-error protocol for P , if the
probability that for any input (X,Y ), Bob outputs some Z where (X,Y,Z) ∈ P is at least 1 − δ
(over the randomness of the protocol Π).

The communication cost of a one-way protocol Π for a problem P on an input distribution D,
denoted by ‖Π‖, is the worst-case size of the message sent from Alice to Bob in the protocol Π,
when the inputs are chosen from the distribution D. Communication complexity CCδ

1-way,D(P ) of
a problem P with respect to a distribution D is the minimum communication cost of any one-way
protocol Π that is required to solve P on every instance w.p. at least 1− δ.

SMP Communication Model. Let P be a (k + 1)-ary relation with domain X1 × . . . × Xk ×
Z. In the SMP communication model, k players P (1), . . . , P (k) recieve inputs X1, . . . ,Xk, jointly
distributed according to a prior distribution D over X1×. . .×Xk. In addition to private randomness,
the players also have an access to a shared public tape of random bits R. Each of the players
simultaneously sends a single message Mj(Xj , R) to an external party called the referee and referee
needs to output an answer Z := Z(M1(X1, R), . . . ,Mk(Xk, R), R) such that (X1, . . . ,Xk, Z) ∈ P .

6



Similar to the one-way communication model, we let Π denote the protocol used by the players
and define δ-error protocols for P over a distribution D analogously. The communication cost of a
SMP protocol Π for a problem P on an input distribution D, denoted by ‖Π‖, is the sum of the
worst-case size of the messages sent by players to the referee, i.e., ‖Π‖ :=

∑
i∈[k] |Mi|, when the

inputs are chosen from the distribution D. Communication complexity CCδ
SMP,D(P ) in SMP model

is defined the same as in the one-way communication model.

Remark 2.5. To facilitate our proofs, we sometimes need to give the referee an auxiliary input as
well, which is jointly distributed with the input of the k players. The referee’s answer then would be
a function of the k messages he receives as well as his input. As a convention, we typically ignore
this artificial feature of the model and only include it implicitly.

Information Complexity. There are several possible definitions of information complexity of
a communication problem that have been considered depending on the application (see, e.g., [10–
12, 15]). In this paper, we use the notion of (external) information cost of a protocol. Roughly
speaking, information cost of a one-way or SMP protocol is the average amount of information one
can learn about the input of the players that are sending the messages by observing the transcript
of the protocol.

More formally, the information cost of a one-way protocol Π with respect to a distribution D is
ICostD(Π) = ID(Π;X), where X ∼ D is the random variable for the input to Alice, Π := Π(X) is
the random variable denoting the message sent from Alice to Bob in the protocol Π, concatenated
with the public randomness R used by Π. The information complexity ICδ

1-way,D(P ) of P with
respect to a distribution D is the minimum ICostD(Π) taken over all one-way protocols Π that are
required to solve P on every instance w.p. at least 1− δ.

Similarly, the information cost of a SMP protocol is defined as
∑k

j=1 ID(Πj;X1, . . . ,Xk), where

Xi denotes the input of the player P (i) and Πi := Πi(Xi) denotes the message sent from the player
P (i) to the referee concatenated with the public randomness R used by Π. Information complexity
ICδ

SMP,D(P ) of a problem P in the SMP communication model can also be defined analogous to the
one-way communication model.

Remark 2.6. The requirement in the above definitions that Π is correct everywhere, even outside
the support of the distribution D is crucial: we analyze our lower bounds on distributions that are
“trivial” and the only reason that these lower bounds are meaningful (i.e., are non-zero) is that these
protocols are required to succeed uniformly.

The following well-known proposition (see, e.g., [15]) relates communication complexity and
information complexity.

Proposition 2.7. For every 0 < δ < 1 and every distribution D:

(i) CCδ
1-way,D(P ) ≥ ICδ

1-way,D(P ) (ii) CCδ
SMP,D(P ) ≥ ICδ

SMP,D(P )

Proof. We only prove this for the SMP model; the result for the one-way model can be proven
similarly. Let Π be a SMP protocol with the minimum communication complexity for P on D and
R denote the public randomness of Π; we have,

ICδ
SMP,D(P ) ≤ ICostD(Π) =

k∑

i=1

ID(Πi;X) =

k∑

i=1

ID(Πi,R;X)

(Πi contains both the message of player P (i) and the public randomness R)

7



=

k∑

i=1

ID(R;X) + ID(Πi;X,R) (chain rule of mutual information (Fact 2.2-(3)))

=

k∑

i=1

ID(Πi;X,R) = E
R∼R

[ k∑

i=1

ID(Πi;X | R = R)
]

(R ⊥ X and hence I(R;X) = 0)

≤ E
R∼R

[ k∑

i=1

HD(Πi;X | R = R)
]
≤ E

R∼R

[ k∑

i=1

∣∣ΠR
i

∣∣
]

(ΠR
i is the message sent from P (i) and is equal to Πi conditioned on R = R)

≤ ‖Π‖ = CCδ
SMP,D(P )

Connection to Streaming: We conclude this section by pointing out the connection between
the communication models defined in this section and the streaming setting. It is a standard fact
that any streaming algorithm directly works as a one-way communication protocol and hence lower
bounds in the one-way communication model also imply the same bounds on the space complexity
of streaming algorithms in insertion-only streams. Recent results of [4,42] prove a similar situation
for the SMP model and dynamic streams: communication complexity lower bounds in SMP model
imply space lower bounds for dynamic streams. In particular, communication complexity of a k-
player problem in the SMP model is at most k times the space complexity of the same problem in
dynamic streams.

2.4 The Boolean Hidden Hypermatching Problem

We shall use the following communication problem first studied by [55] in proving our lower bounds.

Definition 2 (Boolean Hidden Hypermatching, BHHn,t). The Boolean Hidden Hypermatch-
ing problem is a one-way communication problem in which Alice is given a boolean vector x ∈
{0, 1}n where n = 2kt (for some integer k ≥ 1) and Bob gets a perfect t-hypermatching M

on n vertices, and a boolean vector w ∈ {0, 1}n/t. Let Mx denote the length n/t boolean vector
(
⊕

1≤i≤t xM1,i , . . . ,
⊕

1≤i≤t xMn/t,i
) where {M1,1,, . . . ,M1,t} , . . . ,

{
Mn/t,1, . . . ,Mn/t,t

}
are the edges

of M . It is promised that either Mx = w or Mx = w. The goal of the problem is for Bob to output
Yes when Mx = w and No when Mx = w ( ⊕ stands for addition modulo 2).

The special case of this problem where t = 2 is referred to as the Boolean Hidden Matching
problem, BHMn, and was originally introduced by Gavinsky et al. [28] who established an Ω(

√
n)

lower bound on its one-way communication complexity. This lower bound was extended to Ω(n1−1/t)
for the more general BHHn,t problem by Verbin and Yu [55] (see Section 4 for more details). We
further extend this result and establish a matching lower bound on the information complexity of
BHHn,t (see Theorem 5).

For our purpose, it is more convenient to work with a special case of the BHHn,t problem,
namely BHH0

n,t where the vector w = 0n/t and hence the goal of Bob is simply to decide whether

Mx = 0n/t (Yes case) or Mx = 1n/t (No case). We define BHM0
n := BHH0

n,2 (similar to BHMn). It is
known that (see, e.g. [14,44,55]) any instance of the original BHHn,t problem can be reduced to an
instance of BHH0

2n,t deterministically and with no communication between the players. This allows

for extending the communication and information complexity lower bounds of BHHn,t to BHH0
2n,t

problem (see Corollary 6).

8



BHH0
n,t and Matching Size Estimation. The BHH0

n,t problem has been used previously in [14,
23] to prove lower bounds for estimating matching size in data streams. We now briefly describe
this connection.

The following reduction was first proposed by [14]. Given an instance (x,M)3 of BHH0
n,t, we

create a graph G(V ∪W,E) with |V | = |W | = n as follows:

• For any xi = 1, Alice adds an edge between vi and wi to E.

• For any hyperedge e in the t-hypermatching M, Bob adds to E a clique between the vertices
wi where i is incident on e.

The following claim, proven originally by [14], establishes the correctness of this reduction. For
the sake of completeness, we provide a simple proof this claim here.

Claim 2.8 ([14]). Suppose G(V ∪W,E) is the graph obtained from an instance (x,M) of BHH0
n,t

(for an even integer t) with the property that ‖x‖0 = n/2;

• if Mx = 0n/t (i.e., Yes case), then µ(G) = 3n
4 .

• if Mx = 1n/t (i.e., No case), then µ(G) = 3n
4 − n

2t .

Proof. Denote by M⋆ a maximum matching in G. Since the vertices in V all have degree one,
without loss of generality, we can assume all edges in V ×W belong to M⋆, and we only need to
consider the maximum matching size between the remaining vertices. Since the remaining vertices
in V all have degree 0, we only need to consider the remaining vertices in W (and n/2 vertices in
W remains since ‖x‖0 = n

2 ).
In the Yes case, for each hyperedge e, the clique created by e has t vertices, and even number

of these vertices will be matched by edges in V ×W . Since t is even, even number of the vertices of
the clique remain. Since there is still a clique between these remaining vertices, there is a matching
that matches all of them. Therefore, the total matching size is n

2 + 1
2 · n

2 = 3n
4 .

In the No case, for each hyeredge e, the clique created by e has odd number of vertices remained.
Therefore, for every hyperedge, one vertex will be left unmatched. Since there are n

t hyperedges, n
t

of the remaining vertices will be left unmatched, hence the total matching size is n
2 + 1

2

(
n
2 − n

t

)
=

3n
4 − n

2t .

3 Technical Overview

3.1 Lower Bounds

Our lower bounds are obtained by establishing communication complexity lower bounds in the one-
way model (for insertion-only streams) and in the SMP model (for dynamic streams). We prove
our lower bounds for sparse graphs (first part of Theorem 2) and dense graphs (Theorem 3 and
second part of Theorem 2) using conceptually different techniques; we elaborate below on each case
separately.

3In order to distinguish between matchings and hypermatchings, when not clear from the context, we use M
instead of M to denote a hypermatching.

9



Sparse graphs. We prove this lower bound by analyzing the following k-player problem, referred
to as the sparse matching size estimation (SMS) problem, in the SMP model: each player P (i) (for
i ∈ [k]) is given a matching Mi ⊆ E in a sparse graph G(VS ∪ VP , E) with |VP | = Θ(k) · |VS |; think
of vertices in VS as shared vertices that appear in the input of every player and vertices in VP as
private vertices that appear in the input of only a single player (the partition VS and VP is not
known to the players). In the Yes case, the end-points of every edge are either both shared or both
private such that opt(G) = Θ(VP ), and in the No case, every edge has one shared end-point and
one private end-point, hence opt(G) = Θ(VS).

We can interpret the setup in the SMS problem as follows. For any player P (i) with the matching
Mi, define a binary vector xi over the set V (Mi) of vertices incident on Mi: for any v ∈ V (Mi),
xi(v) = 1 if the vertex v is a shared vertex and xi(v) = 0 otherwise. The vector xi for player P (i)

can be identified uniquely given the set of vertices in V (Mj) of any other player j 6= i. Now, in
the Yes case (resp. the No case) of the SMS problem, for any matching Mi and any two vertices
u, v ∈ V (Mi), xi(u) ⊕ xi(v) = 0 (resp. xi(u) ⊕ xi(v) = 1). One may notice that this setup is quite
similar to the BHM0 problem in the one-way model described in Section 2. Indeed, we ultimately
prove a lower bound on the simultaneous communication complexity of our SMS problem using the
Ω(

√
n) lower bound of BHM0 problem [28]. However, there is an inherent difficulty in performing

such a reduction that we elaborate on next. Addressing this challenge results in a rather non-
standard and protocol-specific reduction of a simultaneous multi-player problem to a two-player
one-way problem, which is one of our central technical contributions.

A standard technique in proving communication lower bounds for multi-player problems is sym-
metrization [51]; here, one reduces a 2-player problem to a k-player problem by letting Bob play the
role of one of the k players and Alice play the role of the remaining (k−1) players. This technique is
used (both explicitly and implicitly) in many known lower bounds for finding approximate match-
ings in different multi-player communication models [9, 33, 36, 38]. The success of this technique in
these cases can be mostly attributed to the fact that in finding an approximate matching, every
player is responsible for communicating the set of edges in his input that belongs to a maximum
matching in the final graph; in other words, the message communicated by a player is typically not
helping in finding the edges of another player.

In contrast, in matching size estimation, the players only need to (together) convey a signal
about whether their common input is a Yes instance or a No instance. In particular, a small number
of players already have enough information to distinguish between the large and small matching
size cases; for example, in the SMS problem, any two players together have sufficient information to
solve the problem completely. Indeed, the two players P (i) and P (j) can identify the set of shared
vertices (and hence the vector xi) and then simply check the parity of one arbitrary edge in Mi

using xi, to distinguish between the two cases. This implies that no matter how we split the role of
the k players between Alice and Bob, Alice already gains enough information from the distribution
to solve the underlying BHM0 instance.

To circumvent this issue, we consider the internals of any fixed protocol ΠSMS for the SMS

problem. We prove that for any protocol ΠSMS, there exists some index i ∈ [k], such that ΠSMS is
solving the BHM0 instance encoded by the matching Mi of player P (i) and the vector xi, defined by
the inputs of players P (j) for j 6= i. In order to prove this, we need to analyze the protocol ΠSMS

on distributions other than the ones defined above for SMS. Interestingly, in these distributions,
there is no large gap between the matching size (in Yes and No cases) and hence a priori it is not
even clear why ΠSMS should perform any non-trivial task over them. Having proved this, we can
then embed any instance of BHM0 into an instance of SMS for the specific protocol ΠSMS, using a
careful reduction, in which we have to crucially use the fact that ΠSMS is a simultaneous protocol
(as opposed to one-way) to obtain a one-way protocol for BHM0.

10



Dense graphs. The starting point of our approach in Theorem 3 is [14] (itself based on a prior
result of [23]) that establishes a reduction for estimating matching size from the BHH0 problem
in the one-way model (as mentioned in Section 2). The setup here is as follows: Alice is given a
matching M , Bob is given a collection of cliques of size Θ(1/ε) (denoted by EB) and depending on
the answer of the “embedded” BHH0 problem in the reduction, the maximum matching in M ∪EB

differs by a factor of (1 + ε). This reduction then implies a lower bound of n1−O(ε) by the known
lower bounds on the communication complexity of BHH0 [55].

To “boost” this lower bound from n1−O(ε) to the super-linear regime, a natural idea is to pro-
vide Alice not with a single matching M , but a collection of t independently chosen matchings
M1, . . . ,Mt, and then ask Alice and Bob to solve the problem for a uniformly at random chosen
matching Mj⋆ and a single collection of Θ(1/ε)-cliques (provided to Bob as before). Intuitively,
Alice now needs to solve t different instances of the BHH0 problem (as index j⋆ is not known to
Alice) and this should make the new problem t times harder than the original one.

There are three main obstacles in implementing this idea: (i) the matchings M1, . . . ,Mt should
be “supported” on Θ(n) vertices, as opposed to the trivial Θ(t · n) vertices (or otherwise the lower
bound would be too weak in terms of size of the final graph), (ii) the matchings should be chosen
independently even though they are supported on essentially the same set of vertices (or otherwise
we cannot argue that the new problem is indeed t times harder), and finally (iii), the reduction
should ensure that Alice and Bob still need to solve the specific embedded BHH0 instance for a
uniformly at random chosen matching Mj⋆ and the Θ(1/ε)-cliques (as otherwise we do not obtain
a valid reduction).

We bypass these obstacles by using RS graphs defined in Section 2. Intuitively, we use RS graphs
to “pack” the matchings M1, . . . ,Mt in the aforementioned reduction over Θ(n) vertices and use the
fact that these matchings are induced to ensure the independence between the different matchings.
Our reduction can be interpreted as “embedding” multiple instances of the BHH0 problem into a
single graph. RS graphs have been used previously in [9, 29, 36, 38] for proving lower bounds for
finding approximate matchings. While it was possible to analyze the hard instances in [9,29,36,38]
using simple counting arguments that crucially exploited the requirement on outputting a valid
matching, we now need to prove the lower bound using information complexity to reduce the original
problem (i.e., matching size estimation) to multiple instances of a simpler problem (i.e., t instances
of BHH0), using a direct-sum style argument. This introduces new challenges, including designing
a reduction from a two-player one-way problem like BHH0 to a multi-player simultaneous problem
that does not “leak” much information. En route, we also establish a lower bound on the information
complexity of BHH0 that matches the best known lower bound on its communication complexity
(see Theorem 5).

3.2 Upper bounds

The main idea behind our algorithms in Theorem 1 is the following structural result that we show:
if we sample each vertex in a graph G w.p. (essentially) 1/α, then the maximum matching size in
the subgraph G′ induced by the sampled vertices can be used to obtain an α-approximate estimate
of matching size in G. Using this result, we design an algorithm that samples the vertices of G at
a rate 1/α to obtain an induced subgraph G′, and maintains a sufficiently large matching in G′ to
estimate opt(G).

For insertion-only streams, a large matching (up to 2 approximation) can be computed simply
by maintaining a maximal matching in G′. For dynamic streams, we use existing results of [9, 16]
that allow finding a (large) matching with size at most k (in our case, k = Θ(n/α2)) in Õ(k2) space
in dynamic streams.

11



4 An Information Complexity Lower Bound for BHH

In this section, we state the known communication complexity results for the BHH problem defined
in Section 2.4 and then prove an information complexity lower bound for this problem.

The following is a hard distribution for BHHn,t used in [55]:

The distribution D for BHHn,t.

• Alice: The input to Alice is a boolean vector x ∈ {0, 1}n chosen uniformly at random.

• Bob: The input to Bob is a perfect t-hypermatching M chosen uniformly at random and a
boolean vector w such that, w.p. 1/2, w = Mx and w.p. 1/2, w = Mx.

The result in [55] can now be stated as follows.

Theorem 4 (Communication Complexity of BHHn,t [55]). For any t ≥ 2, suppose n = 2kt for some
integer k ≥ 1, and δ ∈ (0, 1/2). Let γ := 1

2 − δ; then,

CCδ
1-way,D(BHHn,t) = Ω

(
γ · n1−1/t

)

This bound also holds for the communication cost of the protocols that are only required to be correct
w.p. 1− δ on the distribution D (not necessarily on all inputs).

We point out that the communication lower bound for BHHn,t stated in [55] (and similarly for
BHMn stated in [28]), has a dependence of γ2 instead of γ; however, obtaining the linear dependence
on γ is straightforward (see the proof of Theorem 5 in this paper). This dependence is crucial for
our results in Section 5.1 since we are analyzing protocols which outperforms random guessing only
by a very small probability.

For our application, we need a (stronger) lower bound on the information complexity of BHHn,t

rather than its communication complexity. Since this result does not follow directly from those
of [28,55], for completeness, we provide a proof of this result in this section following the approach
in [28,55]. We remark that one can also use the message compression technique of [34] for bounded
round communication protocols to prove this result.

Theorem 5 (Information Complexity of BHHn,t). For any t ≥ 2, any n = 2kt for some integer
k ≥ 1, and any constant δ < 1/2,

ICδ
1-way,D(BHHn,t) = Ω

(
n1−1/t

)

This bound also holds for the information cost of the protocols that are only required to be correct
w.p. 1− δ on the distribution D (not necessarily on all inputs).

The general idea in the proof of [28,55] is as follows: in any protocol Π, Alice’s message partitions
the set {0, 1}n into 2c sets A1, . . . , A2c (here c := ‖Π‖) and hence for a typical message of Alice,
Bob knows that the random variable X (of Alice’s input) is chosen uniformly at random from some
set Ai with |Ai| ≥ 2n−c. Now consider the hypermatching M of Bob, and the distributions MX

and MX for X uniform on Ai; the main technical result in [28, 55] proves that for any sufficiently

large set Ai (size essentially 2n−(n1−1/t)), if X is chosen uniformly at random from Ai, then the
distribution of MX and MX look identical to Bob. Consequently, since Bob’s task is to, given

12



a vector w, decide whether w was chosen from MX or MX, the advantage of Bob over random
guessing would be negligible.

To prove Theorem 5, we also follow the same approach described above. The main difference
here is that to prove an information complexity lower bound we need to work with protocols that
are randomized even on the distribution D. This makes the problem more challenging since unlike
deterministic protocols, randomized protocols do not split the input into disjoint distributions that
are uniform (i.e., the sets A1, . . . , A2c described above). To overcome this, we use Lemma 2.4 proved
in Section 2.2 to partition the inputs conditioned on Alice’s message into several near uniform parts
and then apply the aforementioned technical result of [28,55] on each part separately to finalize the
proof.

We now provide the formal proof. We say that a set A ⊆ {0, 1}n is a single parity set iff the
parity (i.e., the ⊕ summation) of each string in A is the same. The following lemma is the main
ingredient of the proof in [55] (see Theorem 3.1 in [55]).

Lemma 4.1 ([55]). Suppose n = 2kt for some integer k ≥ 1, A ⊆ {0, 1}n is a single parity set of
size |A| ≥ 2n−c for some c ≥ 1, and x is a vector drawn uniformly at random from A (denote the
distribution by UA). Let M be a perfect t-hypermatching on [n] chosen uniformly at random; there
exists an absolute constant ℓ > 0, such that for all ε ∈ (0, 1], if c ≤ ℓ · ε · n1−1/t, then,

E
M

[
‖pM − qM‖tvd

]
≤ ε

where pM and qM are distributions over {0, 1}n/t whose p.d.f are (for any z ∈ {0, 1}n/t)

pM (z) := Pr
X∼UA

(MX = z)

and
qM(z) := Pr

X∼UA

(MX = z)

respectively. In other words, pM = MUA and qM = MUA.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Define C1 :=
(
2ε3 · ℓ · n1−1/t − 1

)
for a constant ε (depending on δ) to be

determined later4. Suppose towards a contradiction that ICδ
1-way,D(BHHn,t) ≤ C1 and let Π be a

δ-error protocol for BHHn,t on the distribution D with information cost C1. Let Π be the random
variable denoting the message sent from Alice to Bob using Π, and let R be the random variable
denoting the public coins used in the protocol. We have,

ICδ
1-way,D(BHHn,t) = I(Π;X | R) = H(X | R)−H(X | R,Π) = n−H(X | R,Π)

where the last equality is because the input X is uniform on {0, 1}n in D and is chosen independently
of the public coins R. Consequently, we have H(X | R,Π) = n− C1. We further define a random
variable P ∈ {0, 1} that indicates the parity of the input vector X. We have,

H(X | R,Π,P ) ≥ H(X | R,Π)−H(P ) = n− C1 − 1

4Here, unlike the case in Theorem 4, we are not particularly interested in achieving the best dependence on the
parameter δ, since in our proofs that require this theorem we always work with constant values of δ; this allows us
to simplify the proof significantly.

13



where the inequality is by chain rule of entropy (Fact 2.2-(2)). Hence,

E
R,π,P

[
H(X | R = R,Π = π,P = P )

]
≥ n−C1 − 1

For brevity, we denote the event (R = R,Π = π,P = P ) by Z. Define C2 :=
C1+1

ε = 2ε2 · ℓ ·n1−1/t.
By Markov inequality,

Pr
Z
(n−H(X | Z) ≥ C2) ≤

ER,π,P

[
n−H(X | R = R,Π = π,P = P )

]

C2
≤ C1 + 1

C2
= ε

Hence, w.p. at least 1 − ε, H(X | Z) ≥ n − C2. Assuming this event happens, let XZ denote
the random variable X conditioned on Z and hence H(XZ) ≥ n − C2. We emphasize here that
the randomness in XZ lies both in the distribution D and in the private randomness used by the
protocol.

Now consider the task of Bob for solving BHHn,t. Bob is given a perfect t-hypermatching M , a
vector w, a message Π = π (from Alice), and the public coins R = R. Suppose, additionally, we
provide the parity of the input X to Bob for free , i.e., Bob knows P = P . Conditioned on the
aforementioned event happening (w.p. 1− ε), Bob knows that the input of Alice is chosen from the
distribution of the random variable XZ with H(XZ) ≥ n− C2. For the hypermatching M of Bob,
Bob is given a vector w chosen from the distribution of either MXZ or MXZ and his task is to
distinguish between these two cases. In the rest of the proof, we show that total variation distance
of these two distributions is small and hence, by Fact 2.1, Bob will not able to distinguish them
using a single sample.

Note that since the protocol is not deterministic, the distribution of XZ is not necessarily
uniform over its support and hence we cannot directly apply Lemma 4.1 to bound the total variation
distance between the distributions MXZ and MXZ . To bypass this, we first apply Lemma 2.4
on the random variable XZ with the parameter ∆ = C2 and ε to obtain a sequence of k + 1
distributions µ0, . . . , µk where k = O(n/ε). For any i ≥ 1, let Ui be the uniform distribution
over the support of µi. By Lemma 2.4, ‖µi − Ui‖tvd = O(ε). Since M is chosen independently of
XZ , this implies that ‖Mµi − MUi‖tvd = O(ε) and ‖Mµi − MUi‖tvd = O(ε). Furthermore, by

Lemma 2.4, |supp(Ui)| = |supp(µi)| ≥ 2n−
∆
ε
−logΘ(n/ε) ≥ 2n−εℓn1−1/t

, and hence by Lemma 4.1,

EM

[
‖MUi −MUi‖tvd

]
= O(ε). Finally, by triangle inequality, EM

[
‖Mµi −Mµi‖tvd

]
= O(ε).

Again fix an i ≥ 1. Suppose we further specify to Bob that XZ is chosen from µi. We say that
Bob is successful if for the given matching M and the vector w, he can correctly identify whether
w is chosen from Mµi or Mµi; in other words, use one sample (i.e., w) to distinguish between
Mµi or Mµi. Denote the event that Bob is successful by success. For the following equations, let
the summation over x ranges over all possible values of ‖Mµi − Mµi‖tvd (since there are only n!
matchings, there are at most n! choices); we have,5

Pr(success) =
∑

x

Pr
(
‖Mµi −Mµi‖tvd = x

)
· Pr

(
success | ‖Mµi −Mµi‖tvd = x

)

≤
∑

x

Pr
(
‖Mµi −Mµi‖tvd = x

)
·
(
1

2
+

x

2

)
(by Fact 2.1)

5As stated after Theorem 4, to obtain a dependence of γ instead of γ2 in the communication complexity lower
bound proofs of [28,55], simply replace the Markov bound argument at the end of the their proofs with the slightly
more careful argument based on probability of being successful presented here.

14



=
1

2
+

1

2
·
∑

x∈[0,1]
Pr

(
‖Mµi −Mµi‖tvd = x

)
· x

=
1

2
+

1

2
· E

[
‖Mµi −Mµi‖tvd

]
=

1

2
+O(ε)

To summarize, the advantage of Bob over randomly guessing the output is at most ε (for the
unlikely event that H(XZ) < n−C1) plus O(ε) (for the unlikely event that X is chosen from µ0 in
Lemma 2.4) plus O(ε) (for the advantage over random guessing, i.e., when event success happens
in µi for i ≥ 1). In summary, the probability of success of Bob is at most 1

2 + O(ε) < 1 − δ, by
choosing ε small enough in compare to δ. This means that the protocol succeeds w.p. strictly less
that 1− δ, a contradiction.

For our purpose, it would be more convenient to work with a special case of the BHHn,t problem,
namely BHH0

n,t in which the vector w = 0n/t and hence the goal of Bob is simply to decide whether

Mx = 0n/t (Yes case) or Mx = 1n/t (No case). We define BHM0
n := BHH0

n,2 (similar to BHMn). It
is known that (see, [14, 44, 55]) any instance of the original BHHn,t problem can be reduced to an
instance of BHH0

2n,t deterministically and with no communication between the players.
The following corollary summarizes the results in this section.

Corollary 6. For any n = 2kt (for some integer k ≥ 1), there exists a distribution DBHH for BHH0
n,t

such that:

• For any δ ∈ (0, 1) and γ := 1
2 − δ, CCδ

1-way,DBHH
(BHH0

n,t) = Ω(γ · n1−1/t).

• For any constant δ < 1/2, ICδ
1-way,DBHH

(BHH0
n,t) = Ω(n1−1/t).

• Alice’s input X ∼ DBHH is supported on boolean vectors x ∈ {0, 1}n with ‖x‖0 = n
2 .

Moreover, these bounds also hold for, respectively, the communication cost and information cost of
the protocols that are only required to be correct w.p. 1−δ on the distribution DBHH (not necessarily
on all inputs).

We remark that this distribution satisfy the requirement of the Claim 2.8 (i.e., ‖x‖0 = n
2 ) and

hence can be used in the reduction for the matching size problem mentioned in Section 2.

5 Space Lower Bounds for α-Approximating Matching Size

In this section, we present our space lower bounds for α-approximation algorithms in dynamic
streams. As already remarked in Section 2, by the results of [4, 42], it suffices to prove the lower
bound in the SMP model.

5.1 An Ω(
√
n/α2.5) Lower Bound for Sparse Graphs

We consider the sparse graphs case in this section (i.e., Part (1) of Theorem 2), and show that
any single-pass streaming algorithm that computes an α-approximation of matching size must use
Ω(

√
n/α2.5) bits of space even if the input graph only have O(n) edges.

Define the sparse matching size estimation problem, SMSn,k, as the following k-player com-
munication problem in the SMP model: each player P (i) is given a matching Mi over a set V
of n + n

k vertices6 and the goal of the players is to approximate the maximum matching size of

6To simplify the exposition, we use n+
n
k

instead of the usual n as the number of vertices.

15



G(V,
⋃

i∈[k]Mi) to within a factor better than k+1
2 . We prove the following lower bound on the

communication complexity of SMSn,k.

Theorem 7. For any sufficiently large n, and k ≥ 2, there exists a distribution D for SMSn,k such

that for any constant δ < 1/2: CCδ
SMP,D(SMSn,k) = Ω

( √
n

k
√
k

)

Part (1) of Theorem 2 immediately follows from Theorem 7.

Proof of Theorem 2, Part (1). Any SMP protocol for estimating matching size to within a factor
of α < k+1

2 can be used to solve the SMSn,k problem. Moreover, as stated in Section 2.3, SMP
communication complexity of a k-player problem is at most k times the space complexity of any
single-pass streaming algorithm in dynamic streams [4, 42]; this finalizes the first part of the proof.

To see that the space complexity holds even when the input graph is both sparse and having
bounded arboricity, notice that any graph G in SMSn,k has exactly k · n

k = n edges (hence sparse);
furthermore, since each player is given a matching (which is always a forest), the arboricity of G is
at most k ≤ 2α.

In the following, we focus on proving Theorem 7. This theorem is ultimately proved by a
reduction from the BHM0 problem defined in Section 4. However, this reduction is non-standard
in the sense that it is protocol-dependent : given any protocol Π for SMS, we create a protocol for
BHM0 by embedding an instance of BHM0 in the input of SMS, whereby the embedding is designed
specifically for the protocol Π. It is worth mentioning that BHM0 is a hard problem even in the
one-way model, while the distribution that we create for SMS is only hard in the SMP model,
meaning that if any player is allowed to send a single message to any other player (instead of the
referee), then Õ(1) bits of communication suffices to solve the problem. Therefore, a key technical
challenge here is to design a reduction from a one-way problem to a problem that is “inherently”
simultaneous, or in other words, is easy to solve in the one-way model.

5.1.1 A Hard Input Distribution for SMSn,k

Let DBHM be the hard input distribution of BHM0
2n
k

in Corollary 6 (for t = 2) and DY
BHM and DN

BHM

be, respectively, the distribution on Yes and No instances of DBHM.

The distribution DSMS for SMSn,k:

1. For each i ∈ [k], independently draw a BHM0
2n
k

instance (MB
i , x

B
i ) ∼ DBHM.

2. Draw a random permutation σ :
[
n+ n

k

]
→

[
n+ n

k

]
.

3. For each player i ∈ [k], we define a mapping σi : [
2n
k ] →

[
n+ n

k

]
as follows:

• For each j ∈ [2nk ] with xB
i (j) = 1, if xB

i (j) is the ℓ-th smallest index with value 1, let
σi(j) := σ(ℓ)a.

• For each j ∈ [2nk ] with xB
i (j) = 0, if xB

i (j) is the ℓ-th smallest index with value 0, let
σi(j) := σ(i · n

k + ℓ).

4. The input to each player P (i) is a matching Mi :=
{
(σi(u), σi(v)) | (u, v) ∈ MB

i

}
.

aHere, we use the fact that ‖xB

i ‖0 =
n
k

in DBHM by Corollary 6

16



Observe that the distribution DSMS is defined by k instances of BHM0
2n
k

, i.e., (MB
i , x

B
i ) (for

i ∈ [k]), along with a mapping σ. The mapping σ relates the vectors xB
i to the set of vertices in the

final graph G while ensuring that across the players, for any j ∈ [2nk ] where xB
i (j) = 1, the vertex

that j maps to is shared, while the vertices with xB
i (j) = 0 are unique to each player. Moreover, the

mapping σi provided to each player effectively describes the set of vertices (denoted by Vi) that the
edges of P (i) will be incident on, and the matching MB

i describes the edges between Vi. Hence, we
can uniquely define the input of each player P (i) by the pair (MB

i , σi), and from now on, without
loss of generality, we assume the input given to each player P (i) is the pair (MB

i , σi).
We should note right away that the distribution DSMS is not a “hard” distribution for SMSn,k in

the traditional sense: it is not hard to verify that for any graph G ∼ DSMS, opt(G) is concentrated
around its expectation, and hence it is trivial to design a protocol when instances are promised to
be only sampled from DSMS: always output EG∼DSMS

[opt(G)], which requires no communication
from the players.

Nevertheless, the way we use the distribution DSMS as a hard distribution is to consider any
protocol ΠSMS that succeeds uniformly, i.e., on any instance of SMSn,k; we then execute ΠSMS on
DSMS and argue that in order to perform well on every instance of DSMS, ΠSMS must convey a
non-trivial amount of information about the input of the players in some sub-distribution of DSMS.
To continue, we need the following definitions.

Definition 3 (Input Profile). For each graph G ∼ DSMS, we define the input profile of G to be a
vector f ∈ {Yes,No}k, where f(i) = Yes iff the i-th BHM instance (MB

i , x
B

i ) in G is a Yes instance
and otherwise f(i) = No.

The 2k different possible input profiles partition DSMS into 2k different distributions. For any
input profile f , we use the notation DSMS | f to denote the distribution of DSMS conditioned on its
input profile being f . Two particularly interesting profiles for our purpose are the all-equal profiles,
i.e., fYes := (Yes, . . . ,Yes) and fNo := (No, . . . ,No), due to the following claim.

Claim 5.1. For any graph G ∼ (DSMS | fYes), opt(G) ≥ n
2+

n
2k , and for any graph G ∼ (DSMS | fNo),

opt(G) ≤ n
k .

Proof. In (DSMS | fYes), each BHM instance (MB
i , x

B
i ) (for i ∈ [k]) is drawn from DY

SMS, meaning
that for every edge (u, v) ∈ MB

i , xB
i (u) ⊕ xB

i (v) = 0. Therefore, either xB
i (u) = xB

i (v) = 0 or
xB
i (u) = xB

i (v) = 1. Since MB
i is a perfect matching over the set [2nk ] and the hamming weight of

xB
i is n

k (by Corollary 6), for half of the edges in MB
i , we must have xB

i (u) = xB
i (v) = 0. Moreover,

as DSMS maps every vertex with xB
i (j) = 0 to a distinct vertex in G, these 1

2 ·
∣∣MB

i

∣∣ = n
2k edges are

vertex-disjoint with any other edge in the final graph G. Hence, between the k players, these edges
together form a matching of size k · n

2k = n
2 . Finally, there is also a matching of size n

2k between the

shared vertices: simply use the edges corresponding to a matching MB
i of an arbitrary player P (i)

that are incident on shared vertices. This means that in this case, opt(G) ≥ n
2 + n

2k .
In (DSMS | fNo), each BHM instance (MB

i , x
B
i ) (for i ∈ [k]) is drawn from DN

SMS, meaning that
for every edge (u, v) ∈ MB

i , xB
i (u) ⊕ xB

i (v) = 1. Therefore, exactly one of xB
i (u) or xB

i (v) is equal
to 1. In DSMS, for every player, the vertices where xB

i (j) = 1 are all mapped to the (same) set
of vertices

{
σ(1), σ(2), . . . , σ(nk )

}
(denoted by V0). Therefore, in the final graph G, every edge of

every player is incident on some vertex in V0, and hence the maximum matching size in G is at
most |V0| = n

k .

In the following, we fix any δ-error protocol ΠSMS for SMSn,k. By Claim 5.1, ΠSMS is also a
δ-error protocol for distinguishing between the two distributions (DSMS | fYes) and (DSMS | fNo):

17



simply output Yes if the estimate of opt(G) is strictly larger than n
k and output No otherwise.

From here on, with a slight abuse of notation, we say that ΠSMS outputs Yes whenever it estimates
opt(G) strictly larger than n

k and outputs No otherwise (this notation is defined over any input, not
necessarily chosen from (DSMS | fYes) or (DSMS | fNo)).

Intuitively, to distinguish between (DSMS | fYes) and (DSMS | fNo), one should solve (at least
one of) the BHM0 instances embedded in the distribution. This naturally suggests the possibil-
ity of performing a reduction from BHM0 and arguing that the distribution on (DSMS | fYes) and
(DSMS | fNo) is a hard distribution for SMSn,k. However, in the case of these two distributions, the
k BHM0 instances are highly correlated and hence it is hard to reason about which BHM0 instance
is “actually being solved”. To get around this, we try ΠSMS on other input profiles, with, informally
speaking, less correlation across the BHM instances. An immediate issue here is that, unlike the
case for the distributions (DSMS | fYes) and (DSMS | fNo), the matching sizes for graphs drawn from
the other input profiles do not have a large gap. Hence, a priori it is not even clear what the actual
task of ΠSMS is, or why ΠSMS should be able to distinguish them. However, we show that there
are special pairs of input profiles (other than fYes and fNo) with our desired property (i.e., “low”
correlation between the BHM0 instances) that ΠSMS is still able to distinguish. These pairs are ul-
timately connected to the (property of) protocol ΠSMS itself and hence vary across different choices
for the protocol ΠSMS; this is the main reason that we perform a protocol-dependent reduction in
our proof.

For any input profile f , define pY
f (resp. pN

f ) as the probability that ΠSMS outputs Yes (resp.
No) when its input is sampled from DSMS | f . We define the notation of informative index for the
protocol ΠSMS.

Definition 4 (Informative Index). We say that an index i ∈ [k] is γ-informative for the protocol
ΠSMS iff there exist two input profiles f and g where f(i) = Yes, g(i) = No, and f(j) = g(j) for all
j 6= i, such that pY

f + pN
g ≥ 1 + 2γ. In this case, the input profiles f and g are called the witness of

i.

Informally speaking, if ΠSMS has a γ-informative index i, then ΠSMS can distinguish whether
the i-th BHM0 instance is a Yes or No instance w.p. at least 1

2 + γ (i.e., ΠSMS solves the i-th BHM0

instance). In the rest of this section, we prove that indeed every protocol ΠSMS has an informative
index.

Lemma 5.2. Any δ-error protocol ΠSMS for SMS has a γ-informative index for γ = 1−2δ
2k .

Proof. Suppose towards a contradiction that for any two input profiles f and g that differ only on
one entry (say i, and f(i) = Yes, g(i) = No), we have, pY

f + pN
g < 1 + 2γ for γ = 1−2δ

2k .
Consider the following sequence of (k + 1) input profiles:

(fYes =)(Yes,Yes, . . . ,Yes), (No,Yes, . . . ,Yes), (No,No, . . . ,Yes), . . . , (No,No, . . . ,No)(= fNo)

whereby, for the j-th input profile of this sequence (denoted by fj), the first j − 1 entries of fj are
all No, and the rest are all Yes.

Observe that for any j ∈ [k], the input profiles fj and fj+1 differ in exactly one entry j, and
fj(j) = Yes, while fj+1(j) = No. Hence, by our assumption, we have pY

fj
+ pN

fj+1
< 1 + 2γ, which

implies

pY
fj < 1 + 2γ − pN

fj+1
= pY

fj+1
+ 2γ (pY

fj+1
+ pN

fj+1
= 1)

Therefore,

pY
f1 < pY

f2 + 2γ < pY
f3 + 2γ · 2 < · · · < pY

fk+1
+ 2γ · k

18



which implies (by adding pN
fk+1

to both sides of the inequality)

pY
f1 + pN

fk+1
< pY

fk+1
+ pN

fk+1
+ 2γ · k = 1 + 2γ · k = 2 · (1− δ) (2)

by our choice of γ. However, since ΠSMS is a δ-error protocol for SMSn,k, by Claim 5.1, the
probability that ΠSMS succeeds in distinguishing (DSMS | fYes) from (DSMS | fNo) on the distribution
1
2 (DSMS | fYes)+

1
2 (DSMS | fNo) is at least 1− δ. Therefore, 1

2 · (pY
f1
+pN

fk+1
) ≥ 1− δ, a contradiction

to Eq (2).

In the next section, we use existence of a γ-informative index in any protocol ΠSMS for SMSn,k

to obtain a protocol for BHM0
2n
k

w.p. of success at least 1
2 + γ, based ΠSMS.

5.1.2 The Reduction From the BHM0
2n
k

Problem

Recall that ΠSMS is a δ-error protocol for the distribution DSMS. Let i⋆ be a γ-informative index of
ΠSMS (as in Lemma 5.2), and let input profiles fi⋆ and gi⋆ be the witness of i⋆.

Protocol ΠBHM. A protocol for reducing BHM0
2n
k

to SMSn,k

Input: An instance (M,x) ∼ DBHM of BHM0
2n
k

.

Output: Yes if Mx = 0
n
k and No if Mx = 1

n
k .

1. Bob creates the input (MB
i⋆ , σi⋆) for the player P (i⋆) as follows:

• Let MB
i⋆ = M .

• Using public randomness, Bob picks σi⋆ to be a uniformly random injection from [2nk ]
to [n+ n

k ].

• Let Vi⋆ be the image of σi⋆ (i.e., Vi⋆ =
{
σi⋆(j) | j ∈ [2nk ]

}
).

2. Alice generates the inputs for all other players. Using private randomness, Alice first ran-
domly partitions the set [n+ n

k ] \ Vi⋆ into (k− 1) sets {V ′
i }i∈[k]\{i⋆}, where each V ′

i has size
n
k . She then generates the input of each player P (i) (i 6= i⋆) as follows:

• If fi⋆(i) = Yes (resp. fi⋆(i) = No), Alice draws a BHM0
2n
k

instance (MB
i , x

B
i ) from DY

BHM

(resp. from DN
BHM).

• The mapping σi : [
2n
k ] → [n+ n

k ] is defined as follows. For the n
k entries in [2nk ] where xi

is 0, Alice assigns a uniformly random bijection to V ′
i . For each entry j in [2nk ] where

xB
i (j) = 1, suppose xB

i (j) is the ℓ-th 1 of xi, Alice assigns σi(j) = σi⋆(j
′) where j′ is

the index such that x(j′) is the ℓ-th 1 of x.a

3. Bob runs ΠSMS for the i⋆-th player and Alice runs ΠSMS for all other players and sends the
messages of all other players to Bob.

4. After receiving the messages from Alice, Bob runs the referee part of the protocol ΠSMS,
and outputs the same answer as ΠSMS.

aRecall that x is the input vector to Alice in a BHM
0 instance.

19



It is relatively straightforward to verify that the distribution of the instances created by this
reduction and the original distributions (DSMS | fi⋆) and (DSMS | gi⋆) are identical. Formally,

Claim 5.3. Suppose (M,x) is a Yes (resp. No) BHM instance; then the SMS instance constructed
by Alice and Bob in the given reduction is sampled from DSMS | fi⋆ (resp. DSMS | gi⋆).

The proof of this claim is deferred to the end of this section.

Proof of Theorem 7. Let γ = 1−2δ
2k ; we first argue that ΠBHM outputs a correct answer for BHM0

2n
k

w.p. at least 1
2 + γ. If the input BHM0 instance (M,x) is a Yes (resp. No) instance, then by

Claim 5.3, the distribution of the SMS instance created in ΠBHM is exactly DSMS | fi⋆ (resp.

DSMS | gi⋆); consequently, ΠSMS outputs the correct answer w.p. 1
2 ·

(
pY
fi⋆

+ pN
gi⋆

)
. Since i⋆ is a

1−2δ
2k -informative instance, we have 1

2 ·
(
pY
fi⋆

+ pN
gi⋆

)
≥ 1

2 + 1−2δ
2k = 1

2 + γ and hence the protocol

ΠBHM outputs the correct answer w.p. at least 1
2 + γ.

Now notice that in ΠBHM, Alice is sending messages of k − 1 players in ΠSMS to Bob and hence
communication cost of ΠBHM is at most the communication cost of ΠSMS. Since solving BHM 2n

k

on DBHM w.p. of success 1
2 + γ requires at least Ω(γ ·

√
n
k ) bits of communication by Corollary 6,

we have ‖ΠSMS‖ = Ω(γ ·
√

n
k ). Moreover, γ = ε

k for some constant ε bounded away from 0 (since

δ is a constant bounded away from 1/2), hence we obtain that CCδ
SMP,D(SMSn,k) = Ω

( √
n

k
√
k

)
for

D := 1
2 (DSMS | fi⋆) + 1

2 (DSMS | gi⋆).

It only remains to prove Claim 5.3.

Proof of Claim 5.3. Suppose the input BHM0 instance (M,x) is a Yes instance. We need to prove
that the distribution of the SMS instance created by the protocol ΠBHM is the same as the distri-
bution DSMS | fi⋆ (the case where (M,x) is a No instance is similar). In the following, we will go
through the construction of DSMS conditioned on fi⋆ step by step and explain how the reduction
captures each step of the construction.

Firstly, in the distribution DSMS | fi⋆, we draw k instances of BHM0, where the i-th instance
(MB

i , x
B
i ) is drawn from the Yes (resp. No) BHM0 instances if fi⋆(i) = Yes (resp. fi⋆(i) = No). It is

straightforward to verify that for any i 6= i⋆, in the reduction, the BHM0 instance created by Alice
is drawn following fi⋆(i). The i⋆-th instance corresponds to the original input of Alice and Bob and
since we assume it is a Yes instance, this instance is also sampled following fi⋆(i). This implies that
the first part of the input of every player (i.e., the matchings over [2nk ]) are drawn the way in the
reduction as in the original distribution.

Secondly, in the original distribution, we draw a random permutation σ : [n + n
k ] → [n + n

k ]
and use σ to define the mapping σi of each player i: map the vertices j (j ∈ [2nk ]) where xi(j) = 1
(resp. xi(j) = 0) to the same set of vertices

{
σ(1), σ(2), . . . , σ(nk )

}
(resp. to a private set of vertices{

σ(i · n
k + 1), σ(i · n

k + 2), . . . , σ(i · n
k + n

k )
}
) in the final graph G.

In the reduction, Bob picks a random injection σi⋆ , and defines the image of σi⋆ by Vi⋆ ; Alice
randomly partition [n + n

k ] \ Vi⋆ into k − 1 sets of size n
k each. For each of the other player i 6= i⋆,

Alice assigns the entries in [2nk ] where xi is 1 to V ∗ following the same procedure as DSMS. For the
entries in [2nk ] where xi is 0, Alice assigns a random bijection to Vi.

To see that the two ways of defining the mappings σi’s are equivalent in the original distribution
and in the reduction, simply note that one can decompose the choice of the random permutation σ
into the following steps:

1. Pick a random subset of size 2n
k (i.e., Vi⋆).

20



2. Partition the remaining universe into k − 1 sets of size n
k each.

3. Pick a random permutation for each set (which is equivalent to picking a random bijection as
used in the reduction).

Therefore, the mappings σi’s created by the reduction induce the same distribution as the
mappings created by DSMS. Hence, the distribution of the inputs of all players created by the
protocol ΠBHM is the same as the distribution DSMS | f1.

5.2 An Ω(n/α2) Lower Bound for Dense Graphs

We switch to the dense graphs case in this section (i.e., Part (2) of Theorem 2), and establish a
better lower bound of Ω(n/α2) for computing an α-approximate matching size in dynamic streams.

We define Matchingn,k,α as the k-player simultaneous communication problem of estimating the
matching size to within a factor of α, when edges of an n-vertex input graph G(V,E) are parti-
tioned across the k-players. In this section, we prove the following lower bound on the information
complexity of Matchingn,k,α in the SMP communication model.

Theorem 8 (Lower bound for Matchingn,k,α). For any sufficiently large n and α, there exists some

k = α ·
(
n
α

)o(1)
and a distribution DM for Matchingn,k,α such that for any constant δ < 1

2 :

ICδ
SMP,DM

(Matchingn,k,α) = Ω(nk/α2)

Theorem 8, combined with Proposition 2.7, immediately gives the same lower bound on the SMP
communication complexity of Matchingn,k,α. Since SMP communication complexity of a k-player
problem is at most k times the space complexity of any single-pass streaming algorithm in dynamic
streams [4, 42], this immediately proves the Ω(n/α2) lower bound in Part (2) of Theorem 3. We
now prove Theorem 8.

The hard distribution DM for Matchingn,k,α:

Parameters: r = N1−o(1), t =
(N2 )−o(N2)

r , k = (α+1)N
r , n = N + k · r.

1. Fix an (r, t)-RS graph GRS on N vertices with induced matchings MRS
1 , . . . ,MRS

t .

2. Pick j⋆ ∈ [t] and θ ∈ {0, 1} independently and uniformly at random.

3. For each player P (i) independently,

(a) Denote by Gi the input graph of P (i), initialized to be a copy of GRS with vertices
Vi = [N ]. Moreover, define V ∗

i as the set of vertices incident on the matching MRS
j⋆ .

(b) Let x(i) be a t-dimensional vector, whereby x(i)(j⋆) = θ and for any j 6= j⋆, x(i)(j) is
chosen uniformly at random from {0, 1}.

(c) For any j ∈ [t], if x(i)(j) = 0 remove the matching MRS
j⋆ from Gi (otherwise, do

nothing).

4. Pick a random permutation σ of [n]. For every player P (i), for each vertex v in Vi \V ∗
i with

label j (∈ [N ]), relabel v to σ(j). Enumerate the vertices in V ∗
i (from the one with the

smallest label to the largest), and relabel the j-th vertex to σ(N + (i − 1) · 2r + j). In the
final graph, the vertices with the same label correspond to the same vertex.

21



The vertices whose labels belong to σ([N ]) are referred to as shared vertices since they belong
to the input graph of every player, and the vertices V ∗

i are referred to as the private vertices of the
player P (i) since they only appear in the input graph of P (i) (in the final graph, i.e., after relabeling).
We point out that, in general, the final graph constructed by this distribution is a multi-graph with
n vertices and O(kN2) = O(n2/α) edges (counting the multiplicities); the multiplicity of each edge
is also at most k. Finally, the existence of an (r, t)-RS graph GRS with the parameters used in this
distribution is guaranteed by a result of [7] (see Section 2.1).

Claim 5.4. Let:

opt1 := min
G

(
opt(G) | G is chosen from DM conditioned on θ = 1

)

opt0 := max
G

(
opt(G) | G is chosen from DM conditioned on θ = 0

)
.

then, µ1 > α · µ0.

Proof. Notice that in each graph Gi, except for the matching MRS
j⋆ , all other matching edges are

incident on the set of shared vertices. This implies that across the players, the total contribution of
all matchings except for MRS

j⋆ ’s is at most N . Consequently, when θ = 0, i.e., when the matching

MRS
j⋆ of each player is removed, opt(G) ≤ N . On the other hand, when θ = 1, since the matching

MRS
j⋆ of each player is incident on a unique set of vertices of G (i.e., private vertices), they form a

matching of size k · r = (α+ 1) ·N . Hence, opt(G) ≥ (α + 1) ·N in this case.

Claim 5.4 shows that any δ-error protocol ΠMatching for Matchingn,k,α can determine the value of
the parameter θ in the distribution DM (also with error prob. δ). We use this fact to prove a lower
bound on the mutual information between the parameter θ and the message of the players. Define
θ, σ, and J , as random variables for, respectively, the parameter θ, the random permutation σ,
and the index j⋆ in the distribution. We have the following simple claim.

Claim 5.5. For any δ < 1/2 and δ-error protocol ΠMatching, I(θ;ΠMatching | σ,J ,R) = Ω(1).

Proof. As proven in Claim 5.4, protocol ΠMatching can be used directly to determine the value of θ
w.p. 1 − δ. Hence, by Fano’s inequality (Claim 2.3), H(θ | ΠMatching,R) ≤ H2(δ), since ΠMatching

uses the message ΠMatching together with the public coins R to output the answer. We further have,

H2(δ) ≥ H(θ | ΠMatching,R) ≥ H(θ | ΠMatching,R,σ,J)
(conditioning reduces the entropy (Fact 2.2-(1)))

= H(θ | σ,R,J) − I(θ;ΠMatching | R,σ,J) = 1− I(θ;ΠMatching | R,σ,J)

where the last equality is because θ is chosen uniformly at random from {0, 1} independent of σ,R
and J . Consequently, we have I(θ;ΠMatching | R,σ,J) ≥ 1 − H2(δ) = Ω(1) (since δ < 1/2 is a
constant).

We now use the bound in Claim 5.5 to lower bound the information cost of any δ-error protocol
ΠMatching.

Lemma 5.6. For any δ < 1/2 and δ-error protocol ΠMatching, ICostDM
(ΠMatching) = Ω(t).

Proof. By Claim 5.5, I(θ;ΠMatching | R,σ,J) = Ω(1); in the following, we prove that for this to
happen, information cost of ΠMatching needs to be Ω(t). We have,

I(θ;ΠMatching | R,σ,J) = E
j∈[t]

I(θ;ΠMatching | R,σ,J = j)

22



=
1

t

t∑

j=1

I(θ;ΠMatching | σ,R,J = j)

=
1

t

t∑

j=1

I(Yj ;Π
(1)
Matching

, . . . ,Π
(k)
Matching

| σ,R,J = j)

Here, for any j ∈ [t], Yj := (X1,j ,X2,j , . . . ,Xk,j), where Xi,j (for any i ∈ [k]) is the random variable
denoting x(i)(j). This equality holds since conditioned on J = j, for any i ∈ [k], each x(i)(j) is
assigned to be θ (i.e., θ = Xi,j conditioned on J = j) . Moreover,

I(θ;ΠMatching | R,σ,J) ≤ 1

t

t∑

j=1

k∑

i=1

I(Yj ;Π
(i)
Matching

| σ,R,J = j)

by conditional sub-additivity of mutual information (Fact 2.2-(4)) since for any i ∈ [k], Π
(i)
Matching

and

Π
−i
Matching

are independent conditioned on Yj ,σ,R and J = j. We can also drop the conditioning
on the event J = j and have,

I(θ;ΠMatching | R,σ,J) ≤ 1

t

t∑

j=1

k∑

i=1

I(Yj ;Π
(i)
Matching | σ,R)

since Π
(i)
Matching is a function of (Xi,σi) where Xi := (Xi,1, . . . ,Xi,t) is a random variable for the

vector x(i). Moreover, Xi defines the graph Gi without the labels, i.e., over the set of vertices
Vi := [N ] and σi is the random variable denoting how the vertices of the player P (i) map to G, i.e.,
specify the labels of vertices. Therefore (Xi,σi) is independent of J = j (given the input graph Gi,
each matching has the same probability of being the chosen matching for j⋆); hence it is easy to see
that all four random variables in above term are independent of the event J = j. Moreover, since
Yj and Y −j are independent of each other, conditioned on σ and R, by conditional super-additivity
of mutual information (Fact 2.2-(5)),

I(θ;ΠMatching | R,σ,J) ≤ 1

t

k∑

i=1

I(Y1, . . . ,Yt;Π
(i)
Matching | σ,R)

=
1

t

k∑

i=1

I(X1, . . . ,Xk;Π
(i)
Matching | σ,R)

(Y1, . . . ,Yt uniquely determines X1, . . . ,Xk and vice versa)

≤ 1

t

k∑

i=1

I(X1, . . . ,Xk,σ1, . . . ,σk;Π
(i)
Matching

,R)

(by chain rule of mutual information (Fact 2.2-(3)))

=
1

t
· ICostDM

(ΠMatching)

where the last equality is because (Xi,σi) uniquely determines the input to the player P (i) for i ∈ [k]
and vice versa. Since I(θ;ΠMatching | R,σ,J) = Ω(1), we obtain that ICostDM

(ΠMatching) = Ω(t).

Theorem 8 now follows from Lemma 5.6 by noticing that n = (2α + 1) · N , r = 2αN/k and

t ≥ N2

2r = N ·k
2α = Ω(nk/α2).

23



6 Space Lower Bounds for (1 + ε)-Approximating Matching Size

In this section, we present our space lower bounds for algorithms that compute a (1+ε)-approximation
of the maximum matching size in graph streams. We first introduce some notation which will be
used throughout this section.

Notation. Fix any (r, t)-RS graph GRS(V,E) (for any parameters r, t) with induced matchings
MRS

1 , . . . ,MRS
t . For each matching MRS

i , we assume an arbitrary ordering of the edges in MRS
i ,

denoted by ei,1, . . . , ei,r, and further denote ei,j := (ui,j, vi,j) for all j ∈ [r]. Let L(MRS
i ) :=

{ui,1, . . . , ui,r} and R(MRS
i ) := {vi,1, . . . , vi,r}. We emphasize that we do not require GRS(V,E) to

be necessarily a bipartite graph; each bipartition L(MRS
i ) and R(MRS

i ) (for i ∈ [t]) is defined locally
for the matching itself and hence a vertex v is allowed to belong to, say, L(MRS

i ) and R(MRS
j ) for

i 6= j, simultaneously.
Furthermore, for each matching MRS

i and any boolean vector x ∈ {0, 1}r, we define the matching
MRS

i |x as the subset of (the edges) of MRS
i obtained by retaining the edge ei,j ∈ MRS

i (for any j ∈ [r])
iff x(j) = 1. In addition, for the vertex set R(MRS

i ) and any perfect p-hypermatching7 M on [r],
we define the p-clique family of M on R(MRS

i ) to be a set of |M| cliques where the vertices Ce of
each clique is defined by a distinct hyperedge e ∈ M: Ce := {vi,k | k ∈ e}.

6.1 Insertion-Only Streams

We define Matchingn,ε as the two-player one-way communication problem of estimating the matching
size to within a factor of (1 + ε), when Alice and Bob are each given a subset of the edges of an n-
vertex input graph G(V,E). In this section, we prove the following lower bound on the information
complexity of Matchingn,ε.

Theorem 9 (Lower bound of Matchingn,ε). For any sufficiently large n and sufficiently small ε < 1
2 ,

there exists a distribution DM for Matchingn,ε such that for any constant δ < 1
2 :

ICδ
1-way,DM

(Matchingn,ε) = RS(n) · n1−O(ε)

The lower bound of theorem 9, together with Proposition 2.7, implies the same lower bound on
the one-way communication complexity of Matchingn,ε. Since one-way communication complexity
is a lower bound on the space complexity of any single-pass streaming algorithm in insertion-only
streams, this immediately proves Part (1) of Theorem 3.

In the following, we focus on proving Theorem 9. Suppose the maximum value for RS(n) is
achieved by an (r, t)-RS graph with the parameter r = crs · n. We propose the following (hard)
input distribution DM for Matchingn,ε.

7Throughout this section, we use p instead of the usual parameter t for hypermatchings in order to avoid confusion
with the parameter t in RS graphs

24



The hard distribution DM for Matchingn,ε:

Parameters: N := n
2−2crs

, r := crs ·N , t := RS(N), and p :=
⌊

crs

2ε

⌋
.

• The input to the players is a graph G(V,EA ∪ EB) where EA is given to Alice and EB is
given to Bob.

• Alice:

1. Let V1 (⊂ V ) and V2 := V \ V1 be, respectively, a set of N and n−N vertices.

2. Let H be any fixed (r, t)-RS graph with V (H) = V1.

3. Draw r-dimensional binary vectors x(1), . . . , x(t) independently following the distribu-
tion DBHH for BHH0

r,p.

4. The input to Alice is the edge-set EA := M1 ∪ . . . ∪Mt, where Mj := MRS
j |x(j) .

• Bob:

1. Pick j⋆ ∈ [t] uniformly at random.

2. For the vector x(j
⋆), draw a perfect p-hypermatching M following the distribution

DBHH conditioned on x(j
⋆); consequently, (x(j

⋆),M) is a BHH0
r,p instance drawn from

the distribution DBHH.

3. Let EB,1 be an arbitrary perfect matching between V1 \ V (MRS
j⋆ ) and V2.

4. Let EB,2 be the edges of the p-clique family of M on R(MRS
j⋆ ).

5. The input to Bob is the edge-set EB := EB,1 ∪ EB,2.

We say that the instance (x(j
⋆),M) of BHH0

r,p in the distribution (denoted by IBHH) is embedded
inside DMM. The following claim established the connection between IBHH and maximum matching
size in G.

Claim 6.1. Let:

optYes := min
G

(
opt(G) | G is chosen from DM conditioned on IBHH being a Yes instance

)

optNo := max
G

(
opt(G) | G is chosen from DM conditioned on IBHH being a No instance

)

then, (1− ε) · optYes > optNo.

Proof. Let M⋆ be a maximum matching in G. Since all vertices in V2 have degree 1, without
loss of generality, we can assume M⋆ contains the matching EB,1 between V1 \ V (MRS

j⋆ ) and V2.

Consequently the size of M⋆ only depends on how many vertices in V (MRS
j⋆ ) can be matched with

each other.
Consider the subgraph H := G[L(MRS

j⋆ )∪R(MRS
j⋆ )] of G; by Claim 2.8, if IBHH is a Yes instance,

then opt(H) = 3r
4 . Hence, in this case,

opt(G) = |V2|+ opt(H) = N − 2r +
3r

4
= N − 5crsN

4
=

4− 5crs

4
·N

If IBHH is a No instance, then opt(H) = 3r
4 − r

2p . Hence, in this case,

opt(G) = |V2|+ opt(H) ≤ N − 2r +
3r

4
− r

2p
= N − 5crsN

4
− crs

2p
N =

4− 5crs

4
·N − crs

2p
N

25



The bound on optYes and optNo now follows from the fact that p ≤ crs
2ε and therefore crs

2pN ≥ εN >

ε ·
(
4−5crs

4 ·N
)
.

Fix any δ-error protocol ΠMatching for Matchingn,ε on DM; Claim 6.1 implies that ΠMatching is
also a δ-error protocol for solving the embedded instance IBHH: simply return Yes whenever the
estimate is larger than optNo and return No otherwise. We now use this fact to design a protocol
ΠBHH for solving BHH0

r,p on DBHH, and prove that the information cost of ΠMatching is t times the

information cost of BHH0
r,p.

The protocol ΠBHH for reducing BHH0
r,p to Matchingn,ε:

1. Let (x,M) be the input BHH0
r,p instance (x is given to Alice and M is given to Bob).

2. Using public randomness, Alice and Bob sample an index j⋆ ∈ [t] uniformly at random.

3. Let x(1), . . . , x(t) be t vectors in {0, 1}r whereby x(j
⋆) = x and for any j 6= j⋆, x(j) is sampled

by Alice using private randomness as in the distribution DM. Alice creates the edges EA

following the distribution DM using these vectors.

4. Given the p-hypermatching M as input, Bob creates EB,1 as an arbitrary perfect matching
between V1 \ V (MRS

j⋆ ) and V2. He also creates EB,2 as the edges of the p-clique family of M
on R(MRS

j⋆ ) (V1, V2, and MRS
j⋆ are defined exactly as in DM).

5. The players then run ΠMatching on the graph G(V,EA∪EB) and Bob outputs Yes if the output
is larger than optNo and No otherwise.

The correctness of the protocol follows immediately from Claim 6.1. We now bound the infor-
mation cost of this new protocol.

Lemma 6.2. ICostDBHH
(ΠBHH) ≤ 1

t · ICostDM
(ΠMatching).

Proof. We have,

ICostDBHH
(ΠBHH) = IDBHH

(X;ΠBHH,R) = IDBHH
(X;ΠR

BHH | R)

(by chain rule of mutual information (Fact 2.2-(3)) and since I(X;R) = 0 as X ⊥ R)

= IDBHH
(X;ΠMatching | J)

(R = J and the message of ΠBHH is the same as ΠMatching after fixing the index j⋆)

= E
j∈[t]

[
IDBHH

(X;ΠMatching | J = j)
]
=

1

t
·

t∑

j=1

IDBHH
(Xj ;ΠMatching | J = j)

=
1

t
·

t∑

j=1

IDM
(Xj ;ΠMatching | J = j)

(joint distribution of ΠMatching and Xj, conditioned on J = j, is the same under DM and DBHH)

=
1

t
·

t∑

j=1

IDM
(Xj ;ΠMatching)

26



where the last equality is true since the random variables Xj and ΠMatching are both independent
of the event J = i (by definition of the distribution DM). Finally,

ICostDBHH
(ΠBHH) =

1

t
·

t∑

j=1

IDM
(Xj ;ΠMatching)

≤ 1

t
· IDM

(X1, . . . ,Xt;ΠMatching)

(by conditional super-additivity of mutual information (Fact 2.2-(5)) since Xj ⊥ X<j)

=
1

t
· IDM

(EA;ΠMatching) =
1

t
· ICostDM

(ΠMatching)

where the second last inequality is because the set of edges in EA can be determined uniquely by
the vectors x(1), . . . , x(t) and vice versa.

Theorem 9 now follows from Lemma 6.2, lower bound of Ω(r1−1/p) = n1−O(ε) for BHH0
r,p in

Corollary 6, and the choice of t = RS(n).

6.2 Dynamic Streams

We define Matchingn,k,ε as the k-player simultaneous communication problem of estimating the
maximum matching size to within a factor of (1+ε), when edges of an n-vertex input graph G(V,E)
are partitioned across the k-players and the referee (see Remark 2.5). In this section, we prove the
following lower bound on the information complexity of Matchingn,k,ε in the SMP communication
model.

Theorem 10 (Lower bound for Matchingn,k,ε). For any sufficiently large n and sufficiently small

ε < 1
2 , there exists some k = no(1) and a distribution DM for Matchingn,k,ε such that for any constant

δ < 1
2 :

ICδ
SMP,DM

(Matchingn,k,ε) = n2−O(ε)

Theorem 10, combined with Proposition 2.7, immediately proves the same lower bound on the
SMP communication complexity of Matchingn,k,ε. Since SMP communication complexity of a k-
player problem is at most k times the space complexity of any single-pass streaming algorithm in
dynamic streams [4, 42] (and k = no(1)), this immediately proves Part (2) of Theorem 3.

In the following, we focus on proving Theorem 10. We propose the following (hard) distribution
DM for Matchingn,k,ε. Intuitively, the distribution DM can be seen as imposing the hard distribution
for matching size estimation in [14] on each induced matching in the hard instance of [9] for finding
approximate matchings.

27



The hard distribution DM for Matchingn,k,ε:

Parameters: r = N1−o(1), t =
(N2 )−o(N2)

r , k = N
ε·r , n = N + k · r, and p :=

⌊
1
8ε

⌋
.

1. Fix an (r, t)-RS graph GRS on N vertices.

2. Pick j⋆ ∈ [t] uniformly at random and draw a BHH0
r,p instance (x(j

⋆),M) from the distri-
bution DBHH.

3. For each player P (i) independently,

(a) Denote by Gi the input graph of P (i), initialized to be a copy of GRS with vertices
Vi = [N ].

(b) Let V ∗
i be the set of vertices matched in the j⋆-th induced matching of Gi. Change

the induced matching MRS
j⋆ of Gi to Mj⋆ := MRS

j⋆ |x(j⋆) .

(c) For any j ∈ [t] \ {j⋆}, draw a vector x(i,j) ∈ {0, 1}r following the distribution DBHH for
BHH0

r,p, and change the induced matching MRS
j of Gi to Mj := MRS

j |x(j) .

(d) Create the p-clique family of M on the vertices R(MRS
j⋆ ), and give the edges of the

p-clique family to the referee.

4. Pick a random permutation σ of [n]. For every player P (i), for each vertex v in Vi \V ∗
i with

label j (∈ [N ]), relabel v to σ(j). Enumerate the vertices in V ∗
i (from the one with the

smallest label to the largest), and relabel the j-th vertex to σ(N + (i − 1) · 2r + j). In the
final graph, the vertices with the same label correspond to the same vertex.

The vertices whose labels belong to σ([N ]) are referred to as shared vertices since they belong
to the input graph of every player, and the vertices V ∗

i are referred to as the private vertices of the
player P (i) since they only appear in the input graph of P (i) (in the final graph, i.e., after relabeling).
We point out that, in general, the final graph constructed by this distribution is a multi-graph with
n vertices and O(kN2) = O(n2) edges (counting the multiplicities); the multiplicity of each edge is
also at most k. Finally, the existence of an (r, t)-RS graph GRS with the parameters used in this
distribution is guaranteed by a result of [7] (see Section 2.1).

Similar to the lower bound in Section 6.1, let IBHH be the embedded BHH0
r,p instance (x(i),M).

The following claim is analogous to Claim 6.1 in Section 6.1.

Claim 6.3. Let:

optYes := min
G

(
opt(G) | G is chosen from DM conditioned on IBHH being a Yes instance

)

optNo := max
G

(
opt(G) | G is chosen from DM conditioned on IBHH being a No instance

)

then, (1− ε) · optYes > optNo.

Proof. We partition the edges of G into k + 1 groups: for any i ∈ [k], group i contains the edges
that are between the private vertices V ∗

i of player P (i), and group k+1 contains the edges incident
on at least one shared vertex. Let Hi := G[V ∗

i ], i.e., the subgraph of G induced on the vertices V ∗
i .

If IBHH is a Yes instance, then for any i ∈ [k], opt(Hi) =
3r
4 by Claim 2.8. Since V ∗

i are private
vertices, one can choose any matching from each Hi, and the collection of the chosen edges form a

28



matching of G. Therefore,

opt(G) >

k∑

i=1

opt(Hi) =
3kr

4
=

3N

ε

Note that, opt(G) is strictly larger than 3N
ε since one can add (any) edge between the public vertices

to the matching.
If IBHH is a No instance, then opt(Hi) =

3r
4 − r

2p . Since the maximum matching size in G is at
most the summation of the maximum matching size in each group, we have

opt(G) ≤
k∑

i=1

opt(Hi) +N ≤ 3kr

4
− kr

2p
+N ≤ 3N

ε
− 3N

and the gap between optYes and optNo follows.

Fix any δ-error protocol ΠMatching for Matchingn,k,ε on DM; Claim 6.3 implies that ΠMatching is
also a δ-error protocol for solving the embedded instance IBHH: simply return Yes whenever the
estimate is larger than optNo and return No otherwise. In the following, we use this fact to design
a protocol ΠBHH for solving BHH0

r,p on DBHH, and then prove that the information cost of ΠMatching

is t times the information cost of BHH0
r,p.

In the protocol ΠBHH, Alice will simulate all k players of Matchingn,k,ε and Bob will simulate
the referee; Alice and Bob will use public coins to draw the special index j⋆ and the permutation σ.
Together with the input from DBHH, Alice and Bob will be able to create a Matchingn,k,ε instance.
The reduction is formally defined as follows (the parameters used in the reduction are exactly the
same as that in the definition of DM).

The protocol ΠBHH for reducing BHH0
r,p to Matchingn,k,ε:

1. Let (x,M) be the input BHH0
r,p instance (x is given to Alice and M is given to Bob).

2. Using public randomness, Alice and Bob sample an index j⋆ ∈ [t], and a permutation σ on [n]
uniformly at random.

3. For any player P (i), let x(i,1), . . . , x(i,t) be t vectors in {0, 1}r whereby x(i,j
⋆) = x (i.e., Alice’s

input in the BHH0
r,p problem) and for any j 6= j⋆, x(i,j) is sampled by Alice using private

randomness as in the distribution DM. Alice then uses these vector together with permutation
σ to create the input graph Gi for each player P (i) for i ∈ [k] following how Gi is created in
the distribution DM for Matchingn,k,ε.

4. The vertices R(MRS
j⋆ ) of each player will be mapped (by σ) to a different set of vertices in G.

Since Bob knows σ and j⋆, and the (input) p-hypermatching M, Bob can create the p-clique
families of each player (following the input of the referee in DM).

5. The players then run ΠMatching on the Matchingn,k,ε that they created, and Bob outputs Yes

if the matching size estimate is larger than optNo and No otherwise.

It is straightforward to verify that the distribution of the Matchingn,k,ε instance created by the
protocol ΠBHH is identical to the distribution DM. The correctness of the protocol now follows
immediately from Claim 6.1. In the remainder of this section, we bound the information cost of
this protocol.

29



Lemma 6.4. ICostDBHH
(ΠBHH) ≤ 1

t · ICostDM
(ΠMatching).

Proof. We have,

ICostDBHH
(ΠBHH) = IDBHH

(X;ΠBHH,R) = IDBHH
(X;ΠR

BHH | R)

(by chain rule of mutual information (Fact 2.2-(3)) and since I(X;R) = 0 as X ⊥ R)

= IDBHH
(X;ΠMatching | σ,J ,RM) = E

j∈[t]

[
IDBHH

(X;ΠMatching | σ,RM,J = j)
]

where the second last equality is because R = (σ,J ,RM) (RM is the public randomness of
ΠMatching), and the message of ΠBHH is the same as ΠMatching after fixing the index j⋆. For any
j ∈ [t], define Yj := (X1,j,X2,j , . . . ,Xk,j) where Xi,j is a random variable for the vector x(i,j).
With this notation, conditioned on J = j, we have X = Yj and also the joint distribution of
(ΠMatching,σ,Yj ,RM) conditioned on J = j, is the same under both DM and DBHH. Hence,

ICostDBHH
(ΠBHH) =

1

t

t∑

j=1

IDM
(Yj ;ΠMatching | σ,RM,J = j)

=
1

t

t∑

j=1

IDM
(Yj ;Π

(1)
Matching

, . . . ,Π
(k)
Matching

| σ,RM,J = j)

≤ 1

t

t∑

j=1

k∑

i=1

IDM
(Yj ;Π

(i)
Matching

| σ,RM,J = j)

=
1

t

t∑

j=1

k∑

i=1

IDM
(Yj ;Π

(i)
Matching | σ,RM)

where the last inequality is by conditional sub-additivity of mutual information (Fact 2.2-(4)) since

Π
(i)
Matching

⊥ Π
<i
Matching

| σ,Yj ,RM,J = j; this is because conditioned on the given random variables

and J = j, the message of each player P (i) (i.e., Π
(i)
Matching) is only a function of x(i,j) for j 6= j⋆ and

since these vectors are chosen independently, the messages would be independent.
Moreover, the reason we can drop the conditioning on the event J = j (in the last equality

above) is as follows: Π
(i)
Matching

is a function of (Xi,σi) where Xi := (Xi,1, . . . ,Xi,t) is a random

variable for the vector x(i). Xi defines the graph Gi without the labels, i.e., over the set of vertices
Vi := [N ] and σi is the random variable denoting how the vertices of the player P (i) are mapped to
G, i.e., specifies the labels of vertices. Therefore, (Xi,σi) is independent of J = j (given the input
graph Gi, each matching has the same probability of being the chosen matching for j⋆); hence it is
easy to see that all four random variables in above term are independent of the event J = j.

Finally, since Yj and Y −j are independent of each other even conditioned on σ,RM, by condi-
tional super-additivity of mutual information (Fact 2.2-(5)),

ICostDBHH
(ΠBHH) ≤

1

t

k∑

i=1

IDM
(Y1, . . . ,Yt;Π

(i)
Matching

| σ,RM, )

=
1

t

k∑

i=1

IDM
(X1, . . . ,Xk;Π

(i)
Matching | σ,RM, )

(Y1, . . . ,Yt uniquely define X1, . . . ,Xk and vice versa)

30



≤ 1

t

k∑

i=1

IDM
(X1, . . . ,Xk,σ;Π

(i)
Matching ,RM)

(by chain rule of mutual information (Fact 2.2-(3)))

=
1

t
· ICostDM

(ΠMatching)

where the last equality is because (Xi,σi) uniquely defines the input to player P (i).

Theorem 10 now follows from Lemma 6.4, lower bound of Ω(r1−1/p) = n1−O(ε) for BHH0
r,p in

Corollary 6, and the choice of t = Θ(n) in the distribution.

7 Space Upper Bounds for α-Approximating Matching Size

In this section, we present our algorithms for achieving an α-approximation of the maximum match-
ing size respectively in Õ(n/α2) space for insertion-only streams and in Õ(n2/α4) space for dynamic
streams, proving Theorem 1.

The main ingredient of both our algorithms is a simple vertex sampling procedure. In the rest
of this section, we first define this sampling procedure and establish its connection to matching
size estimation (Section 7.1). We then build on this connection to provide a meta-algorithm for
matching size estimation (Section 7.2). Finally, we show how to implement this meta-algorithm
in Õ(n/α2) space in insertion-only streams and Õ(n2/α4) space in dynamic streams, which proves
Theorem 1.

7.1 Vertex Sampling Procedure

Consider the following simple vertex sampling procedure.

Samplep(G): sample each vertex v ∈ V in G(V,E) w.p. p, using a four-wise independent hash
function, and return the induced subgraph over the set of sampled vertices.

Note that since O(log n) bits suffices to store a four-wise independent hash function (see,
e.g., [50]), the set of sampled vertices in Samplep(G) can be also be stored (implicitly) in O(log n)
bits.

The following lemma establishes that as long as opt(G) is not too small, the maximum matching
size in the graph that Samplep(G) outputs (for p := logn

α ) can be directly used to obtain an α-
approximation of opt(G).

Lemma 7.1. Let G(V,E) be any graph, α ≥ log n, and p := logn
α ; for Gsmp := Samplep(G),

1. if opt(G) = Ω(α), then opt(Gsmp) ≤ 3 logn
α · opt(G) w.p. 1− o(1).

2. if opt(G) = Ω(α2), then opt(Gsmp) ≥ log2 n
2α2 · opt(G) w.p. 1− o( 1

logn).

Note that for opt(G) = Ω(α2), Lemma 7.1 immediately implies that w.p. 1− o(1),

3 log n

α
· opt(G) ≤ opt(Gsmp) ≤

log2 n

2α2
· opt(G).

31



Proof of Lemma 7.1. Fix a maximum matching M⋆ in G and denote the set of vertices matched
in M⋆ by V (M⋆). Moreover, let Vsmp(M

⋆) be the set of vertices in V (M⋆) that are sampled by
Samplep(G).

We first prove Part (1) of the lemma. Since M⋆ is a maximum matching in G, every edge in G
must be incident on at least one vertex in V (M⋆). Consequently, in the sampled graph Gsmp, every
edge is incident on at least one vertex in Vsmp(M

⋆), and hence, opt(Gsmp) ≤ |Vsmp(M
⋆)|; therefore,

we only need to upper bound |Vsmp(M
⋆)|. Let X be a random variable denoting |Vsmp(M

⋆)|.
Now, E [X] = p · |V (M⋆)| = p ·2opt(G) = 2 logn

α ·opt(G) by the choice of p. Since opt(G) = Ω(α)
by our assumption in Part (1), E [X] = Ω(log n). Moreover, because Samplep(G) samples vertices
using a four-wise independent hash function, Var [X] ≤ E [X] and hence by Chebyshev inequality,

Pr

(
X ≥ 3 log n

α
· opt(G)

)
= Pr

(
X ≥ 3

2
· E [X]

)
≤ Pr

(
|X − E [X]| ≥ E [X]

2

)

≤ Var [X]

(E [X] /2)2
≤ 4

E [X]
=

1

Ω(log n)
= o(1)

This implies w.p. 1 − o(1), |Vsmp(M
⋆)| ≤ 3 logn

α · opt(G), and since opt(Gsmp) ≤ |Vsmp(M
⋆)| we

obtain the result in Part (1).
We now prove Part (2) of the lemma. Let M⋆

smp be the set of sampled edges from M⋆ that end

up Gsmp. Since opt(Gsmp) ≥
∣∣M⋆

smp

∣∣, it suffices to show that
∣∣M⋆

smp

∣∣ ≥ log2 n
2α2 · opt(G). Let Y be a

random variable denoting
∣∣M⋆

smp

∣∣.
For each edge e ∈ M⋆, e appears in M⋆

smp iff both endpoints of e are sampled by Samplep(G),
which happens w.p. p2 (due to four-wise independence in sampling vertices). Therefore, the ex-

pected number of edges in M⋆
smp is E [Y ] = p2 · opt(G) = log2 n

α2 · opt(G). Since by assumption

in Part (2), opt(G) = Ω(α2), we have E [Y ] = Ω(log2 n). Moreover, since vertices are sampled
in Samplep(G) using a four-wise independent hash function, for any two edges in M⋆, the event
that they appear in M⋆

smp is independent of each other; this implies Var [Y ] ≤ E [Y ], and hence by
Chebyshev inequality,

Pr

(
Y <

log2 n

2α2
· opt(G)

)
= Pr

(
Y <

E [Y ]

2

)
≤ Pr

(
|Y − E [Y ]| ≥ E [Y ]

2

)

≤ Var [Y ]

(E [Y ] /2)2
≤ 4

E [Y ]
=

1

Ω(log2 n)
= o(

1

log n
)

Therefore, w.p. 1− o( 1
logn),

∣∣M⋆
smp

∣∣ ≥ log2 n
2α2 · opt(G), proving Part (2).

7.2 The Meta Algorithm

In this section, we define our meta-algorithm for approximating the matching size in any graph G
based on the vertex sampling procedure defined in the previous section. To continue, we need to
define the notion of matching size testers that are used as subroutines in the meta-algorithm.

Definition 5 (γ-Matching Size Tester). For any constant 0 < γ < 1, a γ-matching size tester
(denoted by Testerγ) is an algorithm that given a graph G and a threshold k, outputs Yes if opt(G) ≥
k, outputs No if opt(G) ≤ γ · k, and otherwise is allowed to output either Yes or No.

Moreover, whenever Testerγ(G, k) outputs No, it also outputs an estimate õpt such that γ ·
opt(G) ≤ õpt ≤ opt(G).

32



Given any γ-matching size tester Testerγ , consider the following algorithm (denoted by Algo-
rithm 1) for achieving an O(α)-approximation of maximum matching size.

1. For each value β ∈
{
log n, 2 log n, 22 log n, . . . , α

}
, let Gβ := Sample log n

β
(G). In parallel, run

Testerγ on each Gβ with the parameter log2 n
2 (i.e., run Testerγ(G

β , log
2 n
2 )).

2. In addition, for β = α, also run Testerγ(G
α, n log2 n

α2 ).

3. At the end of the stream, for each value β, we say β passes if Testerγ(G
β , log

2 n
2 ) outputs Yes;

otherwise, we say β fails.

• If all β fail, output the estimate õptlogn returned by Testerγ(G
log n, log

2 n
2 ).

• If all β pass, output max
{
α, α

log2 n
· õptα

}
, where õptα is defined as follows. if Testerγ(G

α, n log2 n
α2 )

returns No, let õptα be the estimate returned by Testerγ(G
α, n log2 n

α2 ); otherwise, let

õptα := γn log2 n
α2 .

• Otherwise, output β∗

2 where β∗ is the smallest β that fails.

We should remark right away that if opt(G) = Ω(α2), running Testerγ(G
α, n log2 n

α2 ) (step 2
in the algorithm) suffices to obtain an α-approximation (Lemma 7.1 essentially guarantees that

opt(Gα) ∈ [opt(G)
α2 , opt(G)

α ]). Therefore, running tester for O(log α) different values (step 1 in the
algorithm) is only for the case where opt(G) ≤ α2.

Intuitively speaking, for the three cases that determine the output of the algorithm (step 3 in
the algorithm):

• If all β fails, then all testers returns No, which means the maximum matching size in the
sampled graphs are all small: this is for the case opt(G) = Õ(1).

• If all β passes, then all testers return Yes, which means the maximum matching sizes are all
large: this is for the case opt(G) > α2.

• Finally, if some β pass and some β fail, then we are in the case opt(G) ∈ [Õ(1), α2].

We now prove the correctness of Algorithm 1 through considering these three cases separately.

Lemma 7.2. For any α ≥ log n, Algorithm 1 outputs an O(α)-approximation of opt(G) w.h.p.

Proof. First notice that if all β fails, in particular, β = log n fails, and hence the estimate returned
by Testerγ(G

log n, log2 n) (denoted by õptlogn) is a γ-approximation of opt(Glog n). Furthermore,

note that for β = log n, the subsampling probability is logn
β = 1, and hence, Glogn = G. Therefore,

õptlogn is a also γ-approximation of opt(G).
In the following, we analyze the other two cases: (i) all β pass (which would be the case where

opt(G) is large) and (ii) some β pass and some β fail (which will be the case where opt(G) is small).
The following two claims summarize the property of the β that passes and the property of the β
that fails, which will be useful for the analysis.

Claim 7.3. For any β where β2 ≤ opt(G), β passes w.p. 1− o( 1
log n).

33



Proof. By Lemma 7.1 Part (2), when β2 ≤ opt(G), w.p. 1− o( 1
logn),

opt(Gβ) ≥ log2 n

2β2
· opt(G) ≥ log2 n

2β2
· β2 =

log2 n

2
.

Therefore, Testerγ(G
β , log

2 n
2 ) outputs Yes (and hence β passes).

Claim 7.4. For the value β where β
2 ≤ opt(G) ≤ β (if one exists), β fails w.p. 1− o(1).

Proof. By Lemma 7.1 Part (1), when opt(G) ≥ β
2 , w.p. 1− o(1),

opt(Gβ) ≤ 3 log n

β
· opt(G) ≤ 3 log n

β
· β = 3 log n <

γ log2 n

2
(for n sufficiently large).

Therefore, Testerγ(G
β , log

2 n
2 ) outputs No (and hence β fails).

With Claim 7.3 and Claim 7.4, the correctness of case (ii) follows immediately.

Lemma 7.5. If some β pass and some β fail, then β∗

2 is an O(α)-approximation of opt(G).

Proof. We first show that β∗

2 ≥ opt(G)
2α and then show that β∗

2 ≤ opt(G). To see β∗

2 ≥ opt(G)
2α , by

Claim 7.3, for each β where β2 ≤ opt(G), w.p. 1 − o( 1
logn), β passes. Therefore, we can apply

a union bound over all O(log α)(= O(log n)) choices of β, and claim that w.p. 1 − o(1), for all β
where β2 ≤ opt(G), β passes. Now, since β∗ is the smallest β that fails, we have β∗2 ≥ opt(G),

which implies β∗ ≥ opt(G)
β∗ ≥ opt(G)

α . Hence, β∗

2 ≥ opt(G)
2α .

To see β∗

2 ≤ opt(G), we consider two cases: α ≤ opt(G) or α > opt(G). If α ≤ opt(G),

we trivially have β∗

2 ≤ α
2 ≤ opt(G)

2 ≤ opt(G). Now, if α > opt(G), there exists a unique β′ ∈{
log n, 2 log n, 22 log n, . . . , α

}
where β′

2 ≤ opt(G) ≤ β′. Then by Claim 7.4, w.h.p. β′ fails. Since

β∗ is the smallest that fails, β∗ ≤ β′. Hence β∗

2 ≤ β′

2 ≤ opt(G).

It remains to analyze case (i).

Lemma 7.6. If all β passes, max
{
α, α

log2 n
· õptα

}
(denoted by alg) is an O(α)-approximation of

opt(G).

Proof. Recall that if Testerγ(G
α, n log2 n

α2 ) returns No, õptα is the estimate returned by Testerγ , and

if Testerγ returns Yes (i.e., opt(Gα) ≥ γ · n log2 n
α2 ), õptα is defined to be γ · n log2 n

α2 .
Intuitively speaking, Testerγ returning Yes is the special case where the sampled graph Gα has

a matching of size (even) larger than n
α2 , which implies that opt(G) itself is very large (Ω(nα) by

Part (1) of Lemma 7.1). In this case, n
α is always an O(α)-approximation (which is basically α·õptα).

We should remark that the expression we use for alg is a unified expression that works for both
Testerγ outputs Yes and Testerγ outputs No.

We now prove the lemma formally. First note that for either case, õptα ≤ opt(Gα). In the

following, we first show that alg ≤ opt(G), and then show that alg ≥ opt(G)
O(α) .

To see that alg = max
{
α, α

log2 n
· õptα

}
≤ opt(G), firstly, if α > opt(G), then there exists β

used by Algorithm 1 where β
2 ≤ opt(G) ≤ β, and by Claim 7.4, this β fails w.p. 1 − o(1) (which

34



contradicts to the fact that all β pass). Therefore, α ≤ opt(G), and we only need to show that
α

log2 n
· õptα ≤ opt(G). As pointed out above, opt(Gα) ≥ õptα. Hence, w.h.p.,

α

log2 n
· õptα ≤ α

log2 n
· opt(Gα)

≤ α

log2 n
· 3 log n

α
· opt(G) (By Lemma 7.1 Part (1))

≤ opt(G)

proving alg ≤ opt(G).

To see that alg = max
{
α, α

log2 n
· õptα

}
= opt(G)

O(α) , firstly, if opt(G) < α2, trivially

alg ≥ α >
opt(G)

α
.

Therefore, we only need to consider opt(G) ≥ α2. There are two cases: Testerγ(G
α, n log2 n

α2 )

returns Yes or returns No. If Testerγ(G
α, n log2 n

α2 ) returns Yes, then õptα := γn log2 n
α2 , and hence

alg ≥ α

log2 n
· õptα =

α

log2 n
· γn log2 n

α2

=
γn

α
≥ γ · opt(G)

α
=

opt(G)

O(α)

If Testerγ(G
α, n log2 n

α2 ) returns No, then by the definition of Testerγ , õptα ≥ γ · opt(Gα). We
have, w.h.p.,

alg ≥ α

log2 n
· õptα ≥ α

log2 n
· γ · opt(Gα)

≥ γα

log2 n
· log

2 n

2α2
· opt(G) =

opt(G)

O(α)
(Lemma 7.1 Part (2))

Therefore, alg = opt
O(α) for all opt(G) ≥ α, which completes the proof.

7.3 Implementing Matching Size Testers in Graph Streams

We now show how to implement matching size testers in insertion-only streams and dynamic streams.

Claim 7.7. A 0.5-matching size tester Tester0.5(G, k) can be implemented in Õ(k) space in insertion-
only streams.

Proof. Simply maintain a maximal matching M and stop when k/2 edges have been collected. If
|M | = k/2, return Yes, and otherwise return No along with |M | as the estimate.

Proof of Theorem 1, Part (1). Suppose Algorithm 1 returns a c ·α-approximation (Lemma 7.2; c is
a constant). First notice that if α < c log n, Õ( n

α2 ) space is enough to store a maximal matching
of the input graph G which is a 2-approximation of opt(G). Therefore, we only need to consider
α ≥ c log n. Define α̂ = α/c; we have α̂ ≥ log n. Run Algorithm 1 for α̂ using the tester by
Claim 7.7.

By Lemma 7.2, Algorithm 1 returns a c · α̂(= α)-approximation of opt(G) w.h.p. On the other
hand, Algorithm 1 invokes Testerγ(∗, k) for O(log α) times where the largest k used is Õ(max

{
n
α2 , 1

}
) =

Õ( n
α2 ) (recall that α ≤ √

n). Therefore, by Claim 7.7, the space requirement is Õ( n
α2 ).

35



For implementing a matching size tester in dynamic streams, we use the following result from [9,
16].

Lemma 7.8 ( [9, 16]). There exists a constant γ such that a randomized γ-matching size tester
Testerγ(G, k) that succeeds w.p. 1−o( 1n ) can be implemented in dynamic streams using Õ(k2) space.

One simple approach for implementing a tester for Lemma 7.8 is to randomly group the vertices
into Θ(k) groups and compute a maximum matching between the groups. It is shown in [9] that this
can be done in Õ(k2) space, while w.h.p. the size of the maximum matching between the groups is
either Ω(k) (hence tester outputs Yes) or Ω(opt) (hence tester outputs No, along with the matching
size).

Proof of Theorem 1, Part (2). Suppose Algorithm 1 returns a c ·α-approximation (Lemma 7.2; c is

a constant). First notice that if α < c log n, Õ(n
2

α4 ) bits of space is enough to maintain a counter for
each edge slot in the input graph G, which can recover all edges in G. Therefore, we only need to
consider α > c log n. Define α̂ = α/c; we have α̂ ≥ log n. Run Algorithm 1 for α̂ using the Testerγ
by Lemma 7.8. Since Algorithm 1 only invokes Testerγ for O(log n) times, by Lemma 7.8, w.h.p.,
no Testerγ fails.

Now by Lemma 7.2, Algorithm 1 outputs an c · α̂(= α)-approximation of opt(G). On the other
hand, Algorithm 1 invokes Testerγ(∗, k) for O(log α) times where the largest k used is Õ(max

{
n
α2 , 1

}
) =

Õ( n
α2 ) (recall that α ≤ √

n). Therefore, by Lemma 7.8, the space requirement is Õ(n
2

α4 ).

Acknowledgements

We thank Michael Kapralov for many helpful discussions. We are also thankful to anonymous
reviewers of SODA for many valuable comments.

36



References

[1] Ahn, K. J., and Guha, S. Linear programming in the semi-streaming model with application
to the maximum matching problem. Inf. Comput. 222 (2013), 59–79.

[2] Ahn, K. J., and Guha, S. Access to data and number of iterations: Dual primal algorithms
for maximum matching under resource constraints. In Proceedings of the 27th ACM on Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June
13-15, 2015 (2015), pp. 202–211.

[3] Ahn, K. J., Guha, S., and McGregor, A. Graph sketches: sparsification, spanners,
and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012 (2012),
pp. 5–14.

[4] Ai, Y., Hu, W., Li, Y., and Woodruff, D. P. New characterizations in turnstile streams
with applications. In 31st Conference on Computational Complexity, CCC 2016, May 29 to
June 1, 2016, Tokyo, Japan (2016), pp. 20:1–20:22.

[5] Alon, N. Testing subgraphs in large graphs. Random Struct. Algorithms 21, 3-4 (2002),
359–370.

[6] Alon, N., Matias, Y., and Szegedy, M. The space complexity of approximating the
frequency moments. In STOC (1996), ACM, pp. 20–29.

[7] Alon, N., Moitra, A., and Sudakov, B. Nearly complete graphs decomposable into large
induced matchings and their applications. In Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012 (2012),
pp. 1079–1090.

[8] Alon, N., and Shapira, A. A characterization of easily testable induced subgraphs. Com-
binatorics, Probability & Computing 15, 6 (2006), 791–805.

[9] Assadi, S., Khanna, S., Li, Y., and Yaroslavtsev, G. Maximum matchings in dynamic
graph streams and the simultaneous communication model. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016 (2016), pp. 1345–1364.

[10] Bar-Yossef, Z., Jayram, T. S., Kumar, R., and Sivakumar, D. An information statis-
tics approach to data stream and communication complexity. In 43rd Symposium on Foun-
dations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada,
Proceedings (2002), pp. 209–218.

[11] Bar-Yossef, Z., Jayram, T. S., Kumar, R., and Sivakumar, D. Information theory
methods in communication complexity. In Proceedings of the 17th Annual IEEE Conference on
Computational Complexity, Montréal, Québec, Canada, May 21-24, 2002 (2002), pp. 93–102.

[12] Barak, B., Braverman, M., Chen, X., and Rao, A. How to compress interactive commu-
nication. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010 (2010), pp. 67–76.

37



[13] Birk, Y., Linial, N., and Meshulam, R. On the uniform-traffic capacity of single-hop in-
terconnections employing shared directional multichannels. IEEE Transactions on Information
Theory 39, 1 (1993), 186–191.

[14] Bury, M., and Schwiegelshohn, C. Sublinear estimation of weighted matchings in dynamic
data streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings (2015), pp. 263–274.

[15] Chakrabarti, A., Shi, Y., Wirth, A., and Yao, A. C. Informational complexity and
the direct sum problem for simultaneous message complexity. In 42nd Annual Symposium on
Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA
(2001), pp. 270–278.

[16] Chitnis, R., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A., Monem-

izadeh, M., and Vorotnikova, S. Kernelization via sampling with applications to finding
matchings and related problems in dynamic graph streams. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016 (2016), pp. 1326–1344.

[17] Chitnis, R. H., Cormode, G., Hajiaghayi, M. T., and Monemizadeh, M. Parame-
terized streaming: Maximal matching and vertex cover. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015 (2015), pp. 1234–1251.

[18] Clarkson, K. L., and Woodruff, D. P. Numerical linear algebra in the streaming model.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009 (2009), pp. 205–214.

[19] Cover, T. M., and Thomas, J. A. Elements of information theory (2. ed.). Wiley, 2006.

[20] Crouch, M., and Stubbs, D. S. Improved streaming algorithms for weighted matching,
via unweighted matching. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain
(2014), pp. 96–104.

[21] Eggert, S., Kliemann, L., and Srivastav, A. Bipartite graph matchings in the semi-
streaming model. In Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen,
Denmark, September 7-9, 2009. Proceedings (2009), pp. 492–503.

[22] Epstein, L., Levin, A., Mestre, J., and Segev, D. Improved approximation guarantees
for weighted matching in the semi-streaming model. SIAM J. Discrete Math. 25, 3 (2011),
1251–1265.

[23] Esfandiari, H., Hajiaghayi, M. T., Liaghat, V., Monemizadeh, M., and Onak, K.

Streaming algorithms for estimating the matching size in planar graphs and beyond. In Pro-
ceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015 (2015), pp. 1217–1233.

[24] Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., and Zhang, J. On graph
problems in a semi-streaming model. Theor. Comput. Sci. 348, 2-3 (2005), 207–216.

38



[25] Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., and

Samorodnitsky, A. Monotonicity testing over general poset domains. In Proceedings on
34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec,
Canada (2002), pp. 474–483.

[26] Fox, J. A new proof of the graph removal lemma. Annals of Mathematics 174, 1 (2011),
561–579.

[27] Fox, J., Huang, H., and Sudakov, B. On graphs decomposable into induced matchings of
linear sizes. arXiv preprint arXiv:1512.07852 (2015).

[28] Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., and de Wolf, R. Exponential sep-
arations for one-way quantum communication complexity, with applications to cryptography.
STOC (2007), 516–525.

[29] Goel, A., Kapralov, M., and Khanna, S. On the communication and streaming complex-
ity of maximum bipartite matching. In Proceedings of the Twenty-third Annual ACM-SIAM
Symposium on Discrete Algorithms (2012), SODA ’12, SIAM, pp. 468–485.

[30] Gowers, W. Some unsolved problems in additive/combinatorial number theory. preprint
(2001).

[31] Guruswami, V., and Onak, K. Superlinear lower bounds for multipass graph processing.
In Proceedings of the 28th Conference on Computational Complexity, CCC 2013, K.lo Alto,
California, USA, 5-7 June, 2013 (2013), pp. 287–298.

[32] Håstad, J., and Wigderson, A. Simple analysis of graph tests for linearity and PCP.
Random Struct. Algorithms 22, 2 (2003), 139–160.

[33] Huang, Z., Radunovic, B., Vojnovic, M., and Zhang, Q. Communication complexity of
approximate matching in distributed graphs. In 32nd International Symposium on Theoretical
Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany (2015),
pp. 460–473.

[34] Jain, R., Radhakrishnan, J., and Sen, P. A direct sum theorem in communication com-
plexity via message compression. In Automata, Languages and Programming, 30th International
Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings
(2003), pp. 300–315.

[35] Kane, D. M., Nelson, J., and Woodruff, D. P. An optimal algorithm for the distinct
elements problem. In PODS (2010), ACM, pp. 41–52.

[36] Kapralov, M. Better bounds for matchings in the streaming model. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013 (2013), pp. 1679–1697.

[37] Kapralov, M., Khanna, S., and Sudan, M. Approximating matching size from ran-
dom streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014 (2014), pp. 734–751.

[38] Konrad, C. Maximum matching in turnstile streams. In Algorithms - ESA 2015 - 23rd Annual
European Symposium, Patras, Greece, September 14-16, 2015, Proceedings (2015), pp. 840–852.

39



[39] Konrad, C., Magniez, F., and Mathieu, C. Maximum matching in semi-streaming with
few passes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques - 15th International Workshop, APPROX 2012, and 16th International Work-
shop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings (2012), pp. 231–
242.

[40] Kushilevitz, E., and Nisan, N. Communication complexity. Cambridge University Press,
1997.

[41] Li, Y., Nguyen, H. L., and Woodruff, D. P. On sketching matrix norms and the top
singular vector. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014 (2014), pp. 1562–1581.

[42] Li, Y., Nguyen, H. L., and Woodruff, D. P. Turnstile streaming algorithms might as
well be linear sketches. In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014 (2014), pp. 174–183.

[43] Li, Y., Sun, X., Wang, C., and Woodruff, D. P. On the communication complexity
of linear algebraic problems in the message passing model. In Distributed Computing - 28th
International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings
(2014), pp. 499–513.

[44] Li, Y., and Woodruff, D. P. On approximating functions of the singular values in a stream.
In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016 (2016), pp. 726–739.

[45] Li, Y., and Woodruff, D. P. Tight bounds for sketching the operator norm, schatten norms,
and subspace embeddings. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France
(2016), pp. 39:1–39:11.

[46] Lovász, L., and Plummer, D. Matching Theory. AMS Chelsea Publishing Series. American
Mathematical Soc., 2009.

[47] McGregor, A. Finding graph matchings in data streams. In Approximation, Randomization
and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th
InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA,
USA, August 22-24, 2005, Proceedings (2005), pp. 170–181.

[48] McGregor, A. Graph stream algorithms: a survey. SIGMOD Record 43, 1 (2014), 9–20.

[49] McGregor, A., and Vorotnikova, S. Planar matching in streams revisited. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2016, September 7-9, 2016, Paris, France (2016), pp. 17:1–17:12.

[50] Motwani, R., and Raghavan, P. Randomized Algorithms. Cambridge University Press,
1995.

[51] Phillips, J. M., Verbin, E., and Zhang, Q. Lower bounds for number-in-hand multiparty
communication complexity, made easy. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012 (2012),
pp. 486–501.

40



[52] Ruzsa, I. Z., and Szemerédi, E. Triple systems with no six points carrying three triangles.
Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18 (1978), 939–945.

[53] Tao, T., and Vu, V. H. Additive combinatorics, vol. 105. Cambridge University Press, 2006.

[54] Tutte, W. T. The Factorization of Linear Graphs. Journal of the London Mathematical
Society s1-22, 2 (1947), 107–111.

[55] Verbin, E., and Yu, W. The streaming complexity of cycle counting, sorting by reversals,
and other problems. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011
(2011), pp. 11–25.

[56] Zelke, M. Weighted matching in the semi-streaming model. Algorithmica 62, 1-2 (2012),
1–20.

41



A An O(
√
n)-Approximation Algorithm in polylog(n)-Space

For completeness, we sketch the proof of a simple O(
√
n)-approximation algorithm for matching

size estimation in dynamic streams. We emphasize here that this algorithm is already known in the
literature (see, e.g., [37]) and is provided here for the sake of completeness.

Theorem 11 (Folklore). There exists a polylog(n)-space algorithm that with high probability, out-
puts an O(

√
n)-approximation of the maximum matching size in dynamic graph streams.

Proof Sketch. Recall that opt := opt(G) denotes the cardinality of a maximum matching in the
graph G(L,R,E). To achieve an O(

√
n)-approximation to opt, we will establish a simple connection

between the cardinality of a maximum matching and the number of neighbors of a set of
√
n random

vertices chosen from L. Let S ⊆ L be a random set of size
√
n. We denote by N(S) the set of

neighbors of S in the final graph (at the end of the stream), and let k = min {|N(S)| ,√n}. We
show that w.h.p Ω(k) ≤ opt ≤ O(k

√
n). Using the ℓ0-estimation algorithm of Kane et al. [35], we

can estimate |N(S)| to within a constant factor using polylog(n) space with success probability .99
in dynamic steams. This, together with the aforementioned result, suffices to achieve an O(

√
n)-

approximation of the matching size. Note that the error can be made one-sided in a straightforward
way, and the overall probability of success can be boosted to (1− 1/n) by running O(log n) parallel
copies and taking the median value.

We now briefly explain how the aforementioned relation between k and opt is established. We
show that there exist two constants c1, c2 > 1 such that for any k ∈ [

√
n], if opt < k/c1, |N(S)|

is less than k, and if opt > c2k
√
n, |N(S)| is larger than k, each with probability at least 0.99. If

opt < k/c1, then by the extended Hall’s Theorem, there exists a set S′ of (n − k/c1) vertices in L
that has at most k/c1(< k) neighbors. Since k ≤ √

n, the size of S′ is large enough to ensure that
with a constant probability (which can be made to 0.99 by choosing a large enough constant c1),
the

√
n chosen vertices in S are a subset of S′, and hence |N(S)| < k.

On the other hand, if opt > c2 · k√n, then there exists two subset of vertices A ⊆ L and
B ⊆ R, with |A| = |B| ≥ c2 · k

√
n such that there exists a perfect matching between A and B

in G. Consequently, with a constant probability (which can be made to 0.99 by choosing a large
enough constant c2), S contains more than k vertices of A, and the perfect matching ensures that
the number of neighbors of S is more than k.

42


	1 Introduction
	1.1 Models and Previous Work
	1.2 Our Results

	2 Preliminaries
	2.1 Ruzsa-Szemerédi graphs
	2.2 Tools from Information Theory
	2.3 Communication Complexity and Information Complexity
	2.4 The Boolean Hidden Hypermatching Problem

	3 Technical Overview
	3.1 Lower Bounds
	3.2 Upper bounds

	4 An Information Complexity Lower Bound for BHH
	5 Space Lower Bounds for -Approximating Matching Size
	5.1 An (n/2.5) Lower Bound for Sparse Graphs
	5.1.1 A Hard Input Distribution for SMSn,k
	5.1.2 The Reduction From the BHM02nk Problem

	5.2 An (n/2) Lower Bound for Dense Graphs

	6 Space Lower Bounds for (1+)-Approximating Matching Size
	6.1 Insertion-Only Streams
	6.2 Dynamic Streams

	7 Space Upper Bounds for -Approximating Matching Size
	7.1 Vertex Sampling Procedure
	7.2 The Meta Algorithm
	

	A An O(n)-Approximation Algorithm in polylog(n)-Space

