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Abstract

We consider the problem of finding a set of k vertices of maximal total influence in a given
undirected network, under the independent cascade (IC) model of influence spread. It is known
that influence is submodular in the IC model, and hence a greedy algorithm achieves a (1 −
1/e) approximation to this problem; moreover, it is known to be NP-hard to achieve a better
approximation factor in directed networks.

We show that for undirected networks, this approximation barrier can be overcome: the
greedy algorithm obtains an (1− 1/e+ c) approximation to the set of optimal influence, for some
constant c > 0. Our proof proceeds via probabilistic analysis of bond percolation in arbitrary
finite networks. We also show that the influence maximization problems remains APX-hard in
undirected networks.
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1 Introduction

Network diffusion models a scenario in which local interaction along edges in a graph can generate
global cascades in network state. Such diffusion processes have attracted a significant amount of
recent attention, having been studied in the context of network reliability [5, 3], bond percolation in
statistical physics [14, 17], the spread of disease [6, 19], and diffusion of social influence [12, 13, 18].

We focus on the following standard diffusion process. We are given a (possibly directed) graph
G with edge weights pe ∈ (0, 1]. An unweighted graph H is then constructed at random as follows:
independently for each edge e in G, we add e to graph H with probability pe. We can therefore
think of G as specifying a distribution over graphs, and think of H as a realization of a graph
from this distribution. It is then assumed that diffusion (i.e., of disease, influence, spin state, etc.)
spreads along the edges realized in H; that is, an infected vertex v will ultimately infect each node u
reachable from v in H. This is known in the social influence literature as the independent cascades
model of diffusion [12]. Despite being simple to describe, this random graph process has proven
difficult to analyze in arbitrary networks. For example, it includes the Erdös-Renyi random graph
model as a special case, and much of the prior research from percolation theory focuses on particular
graph classes such as lattice networks [14, 17].

One striking example of an algorithmic problem that admits analysis for this diffusion model is
the influence maximization problem. This problem is primarily motivated by applications to viral
marketing: the goal is to select individuals in a network to target with a marketing intervention (e.g.,
free product samples) in order to maximize a subsequent cascade of product adoption. Formally,
the algorithmic problem is as follows. For a set S of vertices of G, write val(S) for the expected
number of nodes reachable from vertices in S in the realized graph H. In the context of influence
spread, we can think of val(S) as a measure of the influence of set S. Given network G, the influence
maximization problem is to find a set S of size k such that val(S) is maximized.

Kempe et al. [12] first formulated this problem, and noted that the function val(S) is monotone
and submodular. The influence maximization problem is therefore an instance of monotone sub-
modular function maximization subject to a cardinality constraint, and hence the greedy algorithm
(which repeatedly selects the node that maximizes the marginal contribution to val(·)) obtains a
(1− 1/e) approximation in polynomial time. Moreover, this approximation factor is the best possi-
ble: it is NP-hard to achieve an approximation (1− 1/e+ ε) for any ε > 0 [13].

The above results apply to general directed networks. However, many network diffusion pro-
cesses are modeled on undirected networks. For instance, one might estimate the probability of one
individual influencing another as a function of the amount of interaction or contact between them,
which is symmetric. We ask: how well can the influence maximization problem be approximated
in undirected networks? Note that the directed-network analysis of the greedy algorithm implies
that one can achieve at least a (1 − 1/e)-approximation, so the relevant question is whether the
lower bound of (1 − 1/e) for submodular function maximization applies to influence maximization
in undirected networks. We show that the answer is no: there exists a constant c > 0 such that it
is possible to approximate the maximum influence to within a factor of (1− 1/e+ c) in polynomial
time. Moreover, this approximation factor is achieved by the standard greedy algorithm.

Our Results and Techniques. Our main result is that the greedy algorithm for submodular
function maximization achieves an approximation factor of (1−1/e+c) for the influence maximization
problem in undirected networks, for some fixed c > 0. This result applies even to a version of the
influence maximization problem that is generalized in two ways: first, each node v has a non-
negative weight w(v) and the goal is to maximize the total weight of nodes influenced; second, there
is a specified set U of permitted vertices and the selected set S must be contained in U .

We do not make a serious attempt to optimize the constant c; we expect that our analysis can
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Figure 1: A tight example for the performance of greedy in a directed network, for k = 2. The
optimal solution is {v2, v3} for a total weighted influence of 2. The greedy algorithm could select
node v1 first, then v2, for a total weighted influence of 3

2 .

be tightened to achieve a significantly improved constant, but we leave this for future work. As
a complement to our main result, we also show that the influence maximization problems remains
APX-hard in undirected networks. In what follows, we give an overview of the approach used in
establishing our main result.

Before describing our techniques in detail, let us first consider a few relevant examples. To
illustrate the crucial difference between directed and undirected networks, consider the case k = 2.
In Figure 1 we describe a directed network for which the approximation factor of the greedy algorithm
is 3/4, which is tight for k = 2. The example is a tree with edges directed away from the root, where
the root v1 has two children v2 and v3; the weight of v1 is 0, and the weight of each child is 1. Each
edge has weight 1/2. In this example, the optimal solution is {v2, v3}, with val({v2, v3}) = 2. The
greedy algorithm might1 first select node v1, then either v2 or v3, for a total value of 3

2 . The crucial
feature driving the gap in this example is that the nodes in the optimal solution influence disjoint
sets of nodes, but there is a node v1 whose influence has a high amount of intersection with that of
v2 and of v3 (over randomness in the influence process).

Consider what occurs in this example if edges are undirected. The optimal solution is still {v2, v3},
and val({v2, v3}) = 2 as before. However, we now have val({v2}) = val({v3}) = 5

4 (due to the path
through v that connects v2 and v3) whereas val({v1}) = 1. The greedy algorithm therefore finds
the optimal solution in the undirected version of the example. Intuitively, this difference is driven
by the fact that, in undirected networks, the presence of a node whose range of influence overlaps
that of multiple elements of the optimal solution, there must be overlapping influence among the
optimal elements themselves. The key to our main result is showing that this intuition applies more
generally in undirected networks.

Establishing the general result requires that we overcome subtle difficulties in the analysis of
percolation on networks. For instance, our analysis requires that we establish the following fact
(which we refer to as the XYZ lemma, and which appears below as Lemma 6): for any three nodes
x, y, and z in G, if all three nodes are connected (i.e., are in the same component) with some
probability p, then at least one pair of these nodes must be connected with probability significantly
larger than p. To build some intuition for why this is necessary for our result, suppose there exists
a graph G and vertices x, y, z that are all connected with probability ε, but the probability that
any two are connected without the other is significantly less than ε. Using such a graph G as a
building block, we can construct a counter-example to our main result. See Figure 2, where we show

1Note that one could perturb the vertex weights so that this is the unique outcome of the greedy algorithm.
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Figure 2: An example illustrating that the XYZ lemma is necessary to show that the performance of
the greedy algorithm improves on undirected networks. The set of valid seed nodes is U = {v1, v2, v3},
and k = 2. The supposed graph G is such that x,y,z are all connected with probability ε > 0, but
the probability that exactly two of these nodes are connected is negligible. The optimal solution is
{v2, v3} for a total weighted influence of 4 + o(ε). The greedy algorithm selects v1 first, then v2, for
a total weighted influence of 3 +O(ε).

how to construct (using such a G) an undirected network for which the approximation factor of the
greedy algorithm is arbitrarily close to 3/4, when k = 2. This example extends to larger k as well,
resulting in an approximation factor arbitrarily close to 1− 1/e. Our main result therefore requires,
in particular, that we prove the XYZ lemma (in addition to other technical facts about percolation
on undirected networks).

We now give a more detailed overview of our approach. Our analysis of the greedy algorithm
proceeds in three steps. First, we establish that the worst-case instances of the influence maximiza-
tion problem must be of a particular form. Specifically, the optimal solution, OPT = {o1, . . . , ok},
should be such that the influence function val(·) is nearly linear on OPT, and nearly equal for each
singleton in OPT. We show that if this were not the case, then we can immediately establish that
the greedy algorithm will achieve an approximation factor significantly better than (1− 1/e). This
part of the analysis does not make use of undirectedness.

In the second step, we consider the implications of the linearity of val(·) on OPT when the
network is undirected. In particular, it must be that any given node in OPT is very rarely in the
same component as another node from OPT, over realizations of the network. Indeed, if this occurred
often for some oi ∈ OPT, then val(oi) would be significantly smaller than val(OPT)−val(OPT\{oi}),
the marginal value of oi given the other elements of OPT, violating approximate linearity.

As it turns out, this non-connectedness of OPT has strong implications for the relationship
between OPT and the set of nodes selected by the greedy algorithm. Consider the first k/4 nodes
selected by the greedy algorithm, say S. If the greedy algorithm is to have a low approximation
factor relative to OPT, then it should be that val(oi) is significantly larger than val(oi ∪S)− val(S);
otherwise, the greedy algorithm could select oi as its next element and achieve a better-than-expected
approximation factor. Intuitively, in order for val(oi ∪ S)− val(S) to be small relative to val(oi), it
should be that oi is often in the same component as some node in S. But, since there are k elements
of OPT and k/4 elements of S, we arrive at a contradiction: if each oi is often in the same component
as a node in S, then a pigeonhole argument implies that some nodes in OPT must often be in the
same component as other nodes from OPT, which we know does not occur.

The above argument relies on the intuition that, in order for val(oi ∪ S) − val(S) to be small
(relative to val(oi)), it must be that oi is often in the same component as some node in S. Formalizing
this intuition is the third step of our analysis, and the most technical. To see why this is not obvious,
suppose that there is some node s ∈ S such that oi and s are very rarely in the same component
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but, when they are, that component is extremely large. Otherwise, when oi and s are in different
components, those components are very small. In this hypothetical situation, a large fraction of
val(oi) is due to events in which oi is in the same component as s, and hence val(oi ∪ S)− val(S) is
small. We must therefore prove that this scenario cannot occur: if the component containing oi is
large conditional on it including s, then one of oi or s must have a large expected component size
unconditionally. Establishing this fact, which may be of independent interest, requires a technical
probabilistic analysis of the random graph model. This analysis is captured in our XYZ Lemma
(Lemma 6), which relates conditional and unconditional connection probabilities.

Related work Models of network influence have long been studied in the sociology and market-
ing literature [11, 21, 8]. The problem of finding the most influential set of nodes in a network
was originally posed by Domingos and Richardson [7, 20]. A formal development of the influence
maximization problem and the independent cascades model, along with a greedy algorithm based
upon submodular maximization, was given by Kempe et al. [12]. The lower bound of (1 − 1/e) on
approximability of this problem was subsequently established in Kempe at al. [13]. Many subsequent
works have studied the nature of diffusion in online social networks, using empirical data to estimate
influence probabilities and infer network topology; see [16, 9, 15].

It is known that many alternative formulations of the influence maximization problem are com-
putationally difficult. In particular, the problem of determining influence spread given a particular
seed set, in the IC model, is #P-hard [4].

Various other models of influence spread have been proposed and analyzed in the literature, with
much of the prior work focusing on models that admit submodular influence functions [18, 13]. Such
models have also been extended to include interations between multiple diffusive processes [10, 2].
We focus on the IC model, and leave open the question of whether these alternative models also
admit improved approximation factors in undirected networks.

2 Preliminaries

The input to the undirected influence maximization problem is a five-tuple 〈G(V,E), U, p, w, k〉
where G(V,E) is an undirected graph, U ⊆ V is the set of allowed seed vertices, p : E → [0, 1]
is a probability function on the edges, w is a non-negative integer weight function on the vertices,
and k is a positive integer. A problem instance defines an influence function, val : 2V → R+, in the
following manner. First, we define a distribution over unweighted, undirected graphs H(V ′, E′) as
follows: V ′ = V , and for each e ∈ E independently, we add e to E′ with probability pe. Then, for
any S ⊆ V , we define val(S) to be the expectation, over realizations of graph H, of the total weight
of all vertices that lie in the same component as a node in S.

The goal of the influence maximization problem is to choose a set of seed vertices S ⊆ U , with
|S| = k, such that val(S) is maximized. We will tend to write val(S | T ) to mean val(S∪T )−val(T ),
the marginal value of S given T . The greedy algorithm for the influence maximization problem
proceeds by repeatedly adding to its solution set S the vertex v ∈ U that maximizes val(v | S), until
k nodes have been chosen. It is known that val is a monotone submodular function [12], and hence
the greedy algorithm obtains a (1− 1/e)-approximation to the influence maximization problem.

Given an instance of the undirected influence maximization problem, we will write GRD for the
solution returned by the greedy algorithm, and OPT = {O1, . . . , Ok} for the optimal solution. Also,
given sets of vertices S and T , we will tend to write S → T for the event that some vertex in S lies
in the same component as a vertex in T , over realizations of the random graph process.

In the remainder of the paper, we will assume without loss of generality that the given instance is
unweighted, that is, each vertex in G(V,E) has unit weight. A weighted instance can be transformed
in polynomial-time into an unweighted instance such that he reduction preserves the approximation
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factor as follows. Suppose we are given a weighted instance G(V,E) with a weight function w on
the vertices. Let Γ = Θ(val(OPT)) be some estimate of the value of OPT that is accurate to
within a constant factor (such an estimate can be computed by simply running the greedy strategy
and invoking the standard analysis of the greedy algorithm). As a first step in our transformation,
we create a weighted graph G′(V,E) such that each vertex v in G′ has a positive integer weight
w′(v) that is in the range 1 throughout Θ(n2). We do so by defining the weight function w′(v) =
bw(v)/(Γ/n2)c + 1. Clearly, w′(v) ≥ 1 for all each vertex v in G. Furthermore, since no vertex in
G can have weight greater than Θ(Γ), the upper bound of Θ(n2) on the weight of any vertex in G′

follows. It is easy to verify that for any set S of seed vertices, we have

(Γ/n2)valG′(S)− n(Γ/n2) ≤ valG(S) ≤ (Γ/n2)valG′(S).

Thus any α-approximate solution in G′ can be mapped to an α(1−o(1))-approximate solution in G.
As a next and the final step in the transformation, we convert G′(V,E) into an unweighted graph
G′′(V ′′, E′′) such that for any set S of seed vertices, we have valG′(S) = valG′′(S), thus completing
the proof. This is done by simply attaching (w′(v) − 1) auxiliary vertices to each vertex v in G′,
such that these auxiliary vertices are connected by edges with probability 1. Hence whenever vertex
v is reached in G′′, a total weight of w′(v) is collected – same as in the graph G′. The set of allowed
seed vertices is kept unchanged through both transformations above. It is easy to verify that this
transformation can be done in polynomial-time since all vertex weights are bounded by Θ(n2).

3 Main Result: Approximation Factor of the Greedy Algorithm

In this section we prove our main result, which is a bound on the approximation factor of the greedy
algorithm for the undirected influence maximization problem.

Theorem 1. There exists a constant c > 0 such that, for any instance 〈G(V,E), U, p, w, k〉 of the
undirected influence maximization problem, val(GRD) > (1− 1

e + c)val(OPT).

Our proof of Theorem 1 proceeds as follows. In Section 3.1 we show that Theorem 1 is true
whenever OPT is not of a particular “balanced” form (Lemma 1 and Lemma 2). Then, in Section
3.2, we consider the state of the greedy algorithm after having selected k/4 nodes; we show that either
the greedy algorithm can select its next vertex to have a very high marginal value, proving Theorem
1 (Lemma 4), or else the balanced form of OPT leads to a contradiction. This final contradiction
requires that we establish a number of technical properties of the undirected random graph process,
which are proved in Sections 4, 5, and B.

3.1 Reduction to Balanced Optimal Instances

For a subset X of vertices, we define the normalized influence of X, denoted by ρ(X), to be the ratio

val(X)/|X|
val(OPT)/k

.

Given an ε > 0, we say that a set X of vertices is ε-uniform if for each vertex x ∈ X, (1 − ε) ≤
ρ(x|X \ {x}) ≤ (1 + ε), and that X is ε-independent if for each vertex x ∈ X, Pr[x→ X \ {x}] ≤ ε.
We refer to a set X as ε-balanced if it is both ε-uniform and ε-independent. Roughly speaking, being
ε-balanced means that val(·) is approximately linear and uniform on X. Our goal in this section is to
show that for any ε > 0, either the performance of the greedy algorithm is at least (1−1/e+f(ε)) for
some positive function f(ε), or the optimal solution is ε-balanced for some ε > 0. In the subsequent
sections, we will show our main result, namely, the greedy achieves a strictly better than (1− 1/e)
performance ratio whenever OPT is ε-balanced for some small enough ε > 0.
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We start with the following simple lemma: whenever there exists a set X of vertices whose
normalized influence is strictly greater than 1 and val(X) = Ω(val(OPT)), then the greedy algorithm
beats the 1− 1/e performance ratio. The proof proceeds by modifying the standard analysis of the
greedy algorithm to first compare its performance against val(X) for some number of iterations, then
against val(OPT) for the remaining iterations.

Lemma 1. Suppose for some ε > 0 and δ ∈ (0, 1) there exists a set X ⊆ OPT with |X| = δk such
that ρ(X) > (1 + ε). Then

val(GRD) >

(
1− 1

e

(
1− δ2ε2

4

))
val(OPT).

Proof. Let γ ∈ (0, 1) be a constant to be determined later. We analyze the performance of the
greedy algorithm by comparing the value of the first γδk sets relative to the sets in the collection
X, and then the rest relative to the residual value of the optimal. The value of the first γδk sets
chosen by the greedy algorithm, say a collection Y , is at least

val(Y ) ≥ val(X)

(
1− 1

eγ

)
>

(1 + ε) · δ · val(OPT)

k

(
1− 1

eγ

)
,

where the first inequality follows by applying the standard greedy analysis and measuring val(Y )
relative to val(X), and the second inequality follows from our assumption about the set X.

The next (1 − γδ)k sets chosen by the greedy algorithm, say a collection Z, gets an additional
contribution of at least

val(Z) ≥ (val(OPT)− val(Y ))

[
1− 1

e1−γδ

]
.

Thus total value of the sets chosen by the greedy must be at least

val(Y ) + val(Z) ≥ val(OPT)− val(OPT)− val(Y )

e1−γδ .

Hence the deficit of the greedy algorithm with respect to val(OPT) can be bounded by

val(OPT)− val(Y )

e1−γδ ≤
val(OPT)− (1 + ε)δval(OPT)(1− 1

eγ )

e1−γδ

≤ val(OPT)

e

[
eγδ(1− (1 + ε)δ) + e−γ(1−δ)(1 + ε)δ

]
Let Γ =

[
eγδ(1− (1 + ε)δ) + e−γ(1−δ)(1 + ε)δ

]
. To complete the proof of the lemma, it suffices

to show that by choosing γ = (δε)/2, we can bound Γ by
(

1− δ2ε2

4

)
, that is, Γ < 1 for ε, δ are both

positive. Using the fact that ex ≤ 1 + x+ x2 for |x| < 1, we have

Γ ≤ (1 + γδ + γ2δ2)(1 + ε)δ(1− (1 + ε)δ) + (1− γ + γδ + γ2(1− δ)2)

≤ 1 + γδ − γ(1 + ε)δ + γ2(δ2 − δ3(1 + ε) + (1− δ)2)

≤ 1− γδε+ γ2(δ2 + (1− δ)2)

≤ 1− γδε+ γ2 ≤ 1− δ2ε2

4
,

where the last but one inequality follows from the fact that (δ2 + (1− δ)2) ≤ 1 for δ ∈ (0, 1), and
the last equality follows by choosing γ = (δε)/2. The assertion of the lemma thus follows.
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Our next goal is to show that given any optimal solution OPT, either it contains a setX of vertices
with ρ(X) > 1 and val(X) = Ω(val(OPT)) (and thus Lemma 1 ensures that greedy performs strictly
better than 1 − 1/e) or OPT is essentially ε-uniform. The proof proceeds by showing that if OPT
contains many vertices whose value is much larger or smaller than val(OPT)/k, then this implies
the existence of a set X satisfying the conditions of Lemma 1. One subtlety is that it is not actually
enough for many vertices to have value larger than val(OPT)/k; what we require is that there are
many such large-value vertices even if we only consider the marginal contributions given some small,
fixed subset of OPT. This is what motivates the focus on marginal values given H in the statement
of Lemma 2.

Lemma 2. For any ε > 0, either OPT contains a set X of vertices whose normalized influence is
strictly greater than 1 and val(X) = Ω(val(OPT)), or OPT can be partitioned into three sets L,M,
and H such that (a) val(H) ≤ ε2 · val(OPT), (b) |M | ≥ (1− 2ε)k, and (c) each Oi ∈M satisfies

(1− ε)val(OPT)

k
≤ val(Oi|O−i ∪H) ≤ val(Oi|H) ≤ (1 + ε)val(OPT)

k
,

where O−i denotes the set M \ {Oi}.

Proof. We will give an iterative procedure to construct the decomposition into sets L,M and H
as above, and show that the procedure succeeds unless OPT contains a set X of vertices whose
normalized influence is strictly greater than 1 and val(X) = Ω(val(OPT)).

Initialize Z to contain the vertices {O1, ..., Ok} in OPT, and initialize L = ∅. While there exists

a vertex Oi ∈ Z such that val(Oi|Z \ Oi) < (1−ε)val(OPT)
k , do L = L ∪ {Oi} and Z = Z \ {Oi}. If

upon termination, the set L contains more than εk vertices, then the set X = OPT \ L satisfies

val(X) ≥ val(OPT)− |L| · (1− ε)val(OPT)

k

≥ εval(OPT) + (k − |L|)(1− ε)val(OPT)

k

≥ εval(OPT) + |X|(1− ε)val(OPT)

k

≥ ε
|L|+ |X|

k
val(OPT) + |X|(1− ε)val(OPT)

k

≥ ε
|L|
k

val(OPT) + |X|val(OPT)

k

≥ ε2val(OPT) + |X|val(OPT)

k
.

This gives us the desired set X with normalized influence strictly greater than 1 and val(X) =
Ω(val(OPT)). Assuming |L| < εk, we continue with the decomposition process on the remaining
set Z to identify the sets M and H. Note that in this case, we know that val(L) ≤ ε · val(OPT).
Let σ be an ordering of the vertices in Z created in the following manner. We choose Oσ(1) to
be a vertex O ∈ Z that maximizes val(O). Then Oσ(2) is chosen to be a vertex O ∈ Z that
maximizes val(O|Oσ(1)). In general, we choose Oσ(2) is chosen to be a vertex O ∈ Z that maximizes
val(O|Oσ(1), . . . , Oσ(i−1)). Now consider the largest index j such that

val(Oσ(j)|Oσ(1), . . . , Oσ(j−1)) >
(1 + ε)val(OPT)

k
.

If val(Oσ(1)∪Oσ(2)∪. . .∪Oσ(j)) ≥ ε2OPT, then X = {Oσ(1), . . . , Oσ(j)} gives us a set with normalized
influence strictly greater than 1 and val(X) = Ω(val(OPT)). Otherwise, we continue with our
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decomposition and define H = {Oσ(1), . . . , Oσ(j)}, and M = Z \ H. We now argue that for each
Oi ∈ OPT′, we have

(1− ε)val(OPT)

k
≤ val(Oi|O−i, H) ≤ val(Oi|H) ≤ (1 + ε)val(OPT)

k
.

The first inequality follows from the fact that Oi 6∈ L. The second inequality follows from submod-
ularity of the influence function. The last inequality follows because Oi 6∈ H. This completes the
proof of Lemma 2.

If OPT contains a subset X with ρ(X) > 1 and val(X) = Ω(val(OPT)), then by Lemma 1 we
are already done. So we assume from here onwards that OPT does not contain the desired set of
normalized influence strictly greater than 1 and thus admits a decomposition into sets L,M, and H
as outlined in Lemma 2. We next show that M contains a subset M ′ of size at least |M | − εk such
that M ′ is (5ε)-independent.

Lemma 3. Let L,M,H constitute a decomposition of OPT satisfying the properties of Lemma 2.
Then for any ε ∈ (0, 1/3), there exists a subset M ′ ⊆M of size at least |M | − εk such that for each
Oi ∈M ′, we have Pr[Oi → O−i] ≤ 5ε, where we define the set O−i to be M ′ \ {Oi}.

Proof. Let M1 = {Oi ∈M | Pr[Oi → H] > 2ε}. We will first show that |M1| ≤ εk. To see this, note
that

val(H) ≥
∑
Oi∈M

Pr[Oi → H]val(Oi | M \ {Oi})

≥ 2ε ·
∑

Oi∈M1

Pr[Oi → H]val(Oi | M \ {Oi})

≥ 2ε ·
∑

Oi∈M1

Pr[Oi → H]val(Oi | M \ {Oi}, H)

≥ 2ε|M1|
(1− ε)val(OPT)

k
> ε2 · val(OPT)

for any ε ∈ (0, 1/3) whenever |M1| ≥ εk. But this contradicts our assumption that val(H) ≤
ε2val(OPT).

Let M ′ = M \M1. We will now show that for each vertex Oi ∈M ′, we have Pr[Oi →M ′ \ {Oi}]
is at most 5ε. We argue this as follows:

Pr[Oi →M ′ \ {Oi}] = Pr[Oi →M ′ \ {Oi} | Oi → H] · Pr[Oi → H]

+ Pr[Oi →M ′ \ {Oi} | Oi 6→ H] · Pr[Oi 6→ H]

≤ Pr[Oi → H] + Pr[Oi →M ′ \ {Oi} | Oi 6→ H]

Thus it suffices to show that Pr[Oi →M ′ \ {Oi} | Oi 6→ H] ≤ 3ε for all Oi ∈M ′. To see this, we
first observe that for each Oi ∈M ′ (in fact the analysis below applies to each Oi ∈M and not just
M ′), we have ∑

j

Pr[Oi → j ∧Oi → O−i ∧Oi 6→ H] ≤ 2εval(OPT)

k
,

since val(Oi|O−i, H) ≥ (1− ε)val(OPT)
k and val(Oi|H) ≤ (1 + ε)val(OPT)

k . So, we have
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2εval(OPT)

k
≥

∑
j

Pr[Oi → j ∧Oi → O−i ∧Oi 6→ H]

=
∑
j

Pr[Oi → O−i | Oi → j ∧Oi 6→ H] · Pr[Oi → j ∧Oi 6→ H]

≥
∑
j

Pr[Oi → O−i | Oi 6→ H] · Pr[Oi → j ∧Oi 6→ H]

≥ Pr[Oi → O−i | Oi 6→ H] · val(Oi | H)

≥ Pr[Oi → O−i | Oi 6→ H] · (1− ε)val(OPT)

k

Hence it follows that

Pr[Oi → O−i | Oi 6→ H] ≤ 2ε

1− ε
≤ 3ε,

for any ε ∈ (0, 1/3), concluding the proof of the lemma.

3.2 Proving Theorem 1 for Balanced Optimal Instances

Let L,M,M ′, H be a decomposition of OPT satisfying the properties of Lemma 2 and Lemma 3.
Let S = {g1, g2, ..., gk/4} be the first k/4 nodes selected by the greedy algorithm.

The strategy of the proof is as follows. We first show that if the greedy algorithm does not
achieve an approximation much better than 1 − 1/e, then the marginal influence of each Oi ∈ M ′,
given S, must not be too large (Lemma 4). On the other hand, since elements of M ′ have low
probability of being in the same connected component, we must conclude that many elements of M ′

have low probability of being in the same connected component as S (Lemma 5). These two facts are
seemingly contradictory, since the marginal influence of Oi given S is low when, roughly speaking,
the probability that Oi and S are in the same component is large. To formalize this intuition, we
must establish bounds on the correlation between component sizes and connectivity events; this
bound is captured in the XYZ Lemma (Lemma 6). Finally, to apply the XYZ Lemma to sets M ′

and S, we will show that it suffices to consider the part of each set’s influence that is “well-behaved”
in a certain sense (Lemma 7). We begin by establishing that if val(Oi | S) is too large for any
Oi ∈M ′, then the greedy algorithm attains an approximation factor better than 1− 1/e.

Lemma 4. Suppose there exists an Oi ∈M ′ such that v(Oi | S) ≥ 4
5 ·

val(OPT)
k . Then val(GRD) >

(1− 1
e + c)val(OPT ) for a fixed constant c.

Proof. Suppose v(Oi | S) ≥ 4
5 ·

val(OPT)
k . Then Oi is a candidate for gk/4+1 (the greedy element

to pick after S), and in particular all previous greedy elements from S achieved at least this much
marginal value. But since 4

5 > (1−1/k)k/4 for all k ≥ 4, we conclude that val(S) > (1−(1−1/k)k/4+

c′)val(OPT) for some fixed constant c′. We then have val(GRD) > (1− 1
e +c′(1−1/k)3k/4)val(OPT)

as required, where the value of c in the lemma statement is c′ · e−3/4.

We next establish that, since Pr[Oi → O−i] ≤ 5ε for each Oi ∈M ′, it must be that many Oi ∈M ′
have low probability of sharing a component with a node in S. We prove Lemma 5 in Section 4.

Lemma 5. There exists M ′′ ⊆M ′ with |M ′′| ≥ k/3 such that Pr[Oi → S] < 14
√
ε for all Oi ∈M ′′.

9



Our goal is to show that Lemma 4 and Lemma 5 together imply a contradiction. The following
lemma, which we call the XYZ Lemma, bounds the extent of correlation between component sizes
in bond percolation, and is crucial to our result. Its proof appears in Section 5.

Lemma 6 (XYZ Lemma). In any undirected graph G with a probability function on the edges, For
any 3 vertices x, y, and z, we have Pr[y → z] ≥ 1

4 · Pr[x→ z | x→ y] · Pr[x→ y | x→ z].

Finally, we argue that a large fraction of the total influence of M ′′ is captured by events in which
M ′′ influences a node j in the following well-behaved way. First, the probability that M ′′ influences j
is approxiately the sum of the probabilities that each Oi ∈M ′′ influences j. Second, the probability
that both M ′′ and S influence j is not too much smaller than the probability that M ′′ influences j.
The following definitions make these properties more precise.

Definition 1. We say that a vertex j is exclusive for Oi ∈ M ′′, and write j ∈ Ei, if we have that
Pr[O−i → j | Oi → j ∧ S → j ∧H 6→ j] < 48ε.

Definition 2. We say that a vertex j is good for Oi ∈ M ′′, and write j ∈ Gi, if we have that
Pr[Oi → j ∧ S → j ∧H 6→ j] > 1

100Pr[Oi → j ∧H 6→ j].

The following lemma, proved in Appendix B, states that a large fraction of the influence of M ′′

is generated by events in which a node j is influenced by an Oi for which it is exclusive and good.

Lemma 7. There exists const. c0 s.t.
∑

i

∑
j∈Gi∩Ei Pr[Oi → j ∧ S → j ∧H 6→ j] > c0 · val(OPT).

We now have all the tools needed to complete the proof of our main result.

Proof of Theorem 1: Suppose that the claim of Theorem 1 is not true, so that for any c > 0 there
exists an input instance such that val(GRD) ≤ (1− 1/e+ c)val(OPT). Then by Lemma 1, Lemma
2, and Lemma 3, we can decompose OPT into L,M ′, and H as in the beginning of this section, and
define M ′′ as in Lemma 5. Define S as in the beginning of the section. Choose ε to be arbitrarily
small and write δ = 14

√
ε. We now claim that, for all i and j, we have

Pr[Oi → j | S → j] · Pr[S → j | Oi → j] ≤ 4Pr[Oi → S] ≤ 4δ. (1)

The first inequality of (1) follows by considering the graph in which set S is contracted into a single
vertex, then applying Lemma 6 with y = Oi, z = S, and x = j. The second inequality of (1) is
Lemma 5.

For all i and j ∈ Gi, we know Pr[Oi → j ∧ S → j ∧H 6→ j] ≥ 1
100Pr[Oi → j ∧H 6→ j] from the

definition of Gi, which implies Pr[S → j | Oi → j∧H 6→ j] ≥ 1
100 and hence Pr[S → j | Oi → j] ≥ 1

100
by positive correlation of connection events. Substituting into (1) we conclude that, for all i and
j ∈ Gi,

Pr[Oi → j | S → j ∧H 6→ j] ≤ Pr[Oi → j | S → j] ≤ 400δ. (2)

For all i and j ∈ Ei, we have Pr[O−i → j | Oi → j ∧ S → j ∧H 6→ j] < 48ε from the definition of
Ei, which implies (by positive correlation of connectivity) that

Pr[O−i → j | S → j ∧H 6→ j] < 48ε. (3)

Since Pr[O−i → j | S → j ∧ H 6→ j] = 1 −
∏
k 6=i(1 − Pr[Ok → j | S → j ∧ H 6→ j]), a convexity

argument implies that∑
k 6=i

Pr[Ok → j | S → j ∧H 6→ j] < k(1− (1− 48ε)1/k) < 100ε (4)

10



for sufficiently small ε, where the last inequality holds via the Binomial approximation. Applying the
union bound to (2) and (4), we conclude that

∑
i : j∈Gi∩Ei Pr[Oi → j | S → j ∧H 6→ j] < 100(ε+ 4δ)

for all j, and hence∑
i : j∈Gi∩Ei

Pr[S → j ∧Oi → j ∧H 6→ j] ≤
∑

i : j∈Gi∩Ei

Pr[S → j] · Pr[Oi → j | S → j ∧H 6→ j]

< 100(ε+ 4δ)Pr[S → j].

Taking a sum over all j, we conclude∑
j

∑
i : j∈Gi∩Ei

Pr[S → j ∧Oi → j ∧H 6→ j] <
∑
j

O(δ) · Pr[S → j] = O(δ) · val(S).

However, Lemma 7 implies
∑

i

∑
j∈Gi∩Ei Pr[Oi → j ∧ S → j ∧ H 6→ j] > c0 · val(OPT) for some

constant c0. We therefore conclude that val(S) ≥ c2 · 1
δval(OPT) for some constant c2, which

contradicts val(S) ≤ val(OPT) when δ is sufficiently small. We have therefore reached contradiction,
and hence we must have that val(GRD) > (1− 1/e+ c)val(OPT) for some constant c > 0.

4 Proof of the Connectivity Lemma

In this section we prove Lemma 5, which states roughly that if many elements of the optimal solution
have low probability of being connected to each other, then many of them must have low probability
of being connected to the first k/4 elements of the greedy solution.

We first recall the formal statement of the Lemma. We let S = {g1, g2, ..., gk/4} be the set of
the first k/4 vertices chosen by the greedy algorithm. We also let L,M,M ′, H be a decomposition
of OPT satisfying the properties of Lemma 2 and Lemma 3. Lemma 5 states that there exists a set
M ′′ ⊆M ′ of size at least k/3 such that, for each Oi ∈M ′′, Pr[Oi → S] < 14

√
ε.

The following lemma will be the workhorse for proving Lemma 5.

Lemma 8. For any constant γ > 0, suppose T = {O1, O2, ..., Ok/2} ⊂ OPT is an arbitrary set of
k/2 vertices chosen by the optimal algorithm such that every Oj ∈ T satisfies Pr[Oj → S] ≥ γ. Then
there exists a set T ′ ⊆ T of size at least k/16 such that for each Oj ∈ T ′, Pr[Oj → T \{Oj}] ≥ γ2/36.

Proof. Consider the weighted bipartite graph H on nodes in S ∪ T such that for each gi ∈ S and
Oj ∈ T there is an edge (gi, Oj) of weight wij = Pr[gi → Oj ]. Assume w.l.o.g. that total weight of
edges incident on any node Oj is exactly γ. We say that a node gi ∈ S is heavy if the total weight
incident on gi in H is at least γ/3. Let S1 ⊆ S be the set of heavy nodes in S. We say that a node
Oj ∈ T is heavy if its weighted degree to nodes in S1 is at least γ/3. Let T1 ⊆ T be the set of heavy
nodes in T . A node in S or T that is not heavy is referred to as a light node. Note that the number
of light nodes in T , say β, satisfies the following relation: β(2γ/3) ≤ (k/4)(γ/3). Thus β ≤ k/8 and
|T1| ≥ k/2− k/8 = 3k/8. Let T2 be the set of nodes in T1 that that have an edge e to a node in S1

such that the weight of e is greater than γ/6. That is, each node in T2 contributes a weight of more
than γ/6 to a single good node in S1. Let T3 = T1 \ T2. We consider separately the case in which
|T2| is large and the case in which |T2| is small.

If |T2| ≥ 5k/16, then at least |T2| − |S| ≥ k/16 nodes in T2 contribute at least γ/6 amount of
weight incident on them to a node in g ∈ S1, such that g has a total weighted degree of at least
γ/6 from other nodes in T . For any of these k/16 nodes Oj , we have that Oj is connected to the
corresponding node g with probability at least γ/6, which is then connected to another node in T
with probability at least γ/6. This then implies Pr[Oj → T \ {Oj}] ≥ γ2/36 as required.

Otherwise, if |T2| < 5k/16, then |T3| ≥ k/16. For each node Oj ∈ T3, at least γ/6 of its incident
weight is on edges to good nodes in S1 that themselves receive at least γ/6 of weight from other
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nodes in T . For any of these k/16 nodes Oj ∈ T3, we have that Oj is connected to one of these
corresponding nodes in S1, say g, with probability at least γ/6, which is then connected to another
node in T with probability at least γ/6. This implies Pr[Oj → T \ {Oj}] ≥ γ2/36 as required.

Suppose there exists some T ⊂M ′ with |T | = k/2 such that Pr[Oj → S] ≥ 14
√
ε for each Oj ∈ T .

Then by Lemma 8 there exists some Oj ∈ T such that Pr[Oj → T\{Oj}] ≥ (14
√
ε)2/36 > 5ε. But

then this implies Pr[Oj → O−j ] > 5ε, which contradicts the definition of M ′ (by Lemma 3). We
conclude that there cannot exist such a set T . Since |M ′| < 5

6k, this implies that there exist at least
k/3 nodes Oi ∈M ′ such that Pr[Oi → S] < 14

√
ε, completing the proof of Lemma 5.

5 Proof of the XYZ Lemma

In this section we prove the XYZ Lemma, which was stated earlier as Lemma 6. We’ll begin by
restating Lemma 6.

Lemma 6 (XYZ Lemma). In any undirected graph G with a probability function on the edges, for
any 3 vertices x, y, and z, we have Pr[y → z] ≥ 1

4 · Pr[x→ z | x→ y] · Pr[x→ y | x→ z].

We note that the inequality in the XYZ Lemma is tight up to the factor of 4. That is, there are
instances in which Pr[y → z] ≤ Pr[x → z | x → y] · Pr[x → y | x → z], even when the connection
probabilities are bounded away from 1. To see this, consider a line graph on three nodes, with
endpoints y and z each connected to a middle vertex x. In this example the events x→ z and x→ y
are independent, and the intersection of those two events is precisely the event y → z. Thus, for this
example, we have Pr[y → z] = Pr[x→ z] · Pr[x→ y] = Pr[x→ z | x→ y] · Pr[x→ y | x→ z].

We begin our proof of the XYZ Lemma by defining some new notation and making simple
observations. We then provide a high-level description of the proof. The technical part of the
argument is a sequence of claims that bound the probability of various connection events. We will
then complete the proof by relating the event that y and z are connected to an alternative sequence
of connection events.

Notation and Observations. Viewing G as a probability distribution over graphs, we say a
realization of G is a subgraph of G in which each edge is present independently with probability
as specified in G. We write H ∼ G to mean that H is drawn from the distribution G. Given a
realization H and subsets of vertices A and B, write A →H B for the event that some vertex in
A is connected to some vertex in B. We will often abuse notation and represent a singleton set
{a} by simply a, so that if a and b are vertices then a →H b is the event that a is connected to b.
We also extend this notation to more than two parameters, so that if a, b, c are vertices of H then
a→H b→H c is the event that all three vertices are connected in H, etc.

We next define an ordering σ over subgraphs of G that will be used throughout the proof. Fix an
arbitrary ordering over the edges of G. We then order the subgraphs of G lexicographically according
to this edge order. We write H1 <σ H2 to mean that H1 occurs before H2 in this ordering. Also,
we say H is the σ-minimal subgraph satisfying property P if H satisfies P and H ≤σ H ′ for any
H ′ satisfying P . Finally, we will write > for a null entry in the ordering σ, with > >σ H for any
subgraph H.

Given vertices a and b, and a realization H of G, we write MinH(a, b) for the σ-minimal subgraph
of H that connects node a to node b. That is, MinH(a, b) is the σ-minimal connected subgraph that
contains both a and b. We will define MinH(a, b) = > if no such subgraph exists. Note that a→H b
is precisely the event that MinH(a, b) 6= >. Note also that if H and H ′ are two subgraphs with
a→H b, but a 6→H′ b, then MinH(a, b) <σ MinH′(a, b).
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We further extend the notation Min in two ways. First, we will allow more than two parameters,
so that MinH(a, b, c) is the σ-minimal connected subgraph of H that contains a, b, and c. Also,
when there are only two parameters, we allow one or both parameters to be a set of vertices. In this
case, MinH(A,B) is the σ-minimal subgraph of H that connects some node in A to some node in
B, or > if no such subgraph exists. Note that if a →H b, then MinH(a, b) is always a simple path
from a to b. Also, if a →H b →H c then MinH(a, b, c) is always a tree whose leaves are a subset of
{a, b, c}. Finally, if a→H b→H c, then we always have MinH(a, b) ⊆MinH(a, b, c).

We will write Γ(a, b) for the distribution of MinH(a, b) (with randomness over H ∼ G), condi-
tioned on a →H b. Note that ∅ has probability 0 under Γ(a, b), except for the trivial case a = b.
Write Supp(a, b) for the support of Γ(a, b). We extend the definition of Γ and Supp to allow three
parameters that are all singletons, or two parameters that are sets of vertices, in the same way
as Min. We will also write Γ(a, b|c) for the distribution of MinH(a, b) when we condition on the
event that a, b, and c are all in the same connected component of H. Equivalently, Γ(a, b|c) is the
distribution over subgraphs defined by first drawing γ from Γ(a, b, c), then considering the minimal
subgraph of γ′ that connects vertex a to vertex b.

In our proof, we will be interested primarily in the nature of subgraph MinH(x, y, z). We
will sometimes abuse notation slightly and think of MinH(x, y, z) as a set of edges, rather than
a subgraph. Note that if x →H y →H z then MinH(x, y, z) = MinH(x, y) ∪MinH(z,MinH(x, y)).
Furthermore, MinH(z,MinH(x, y)) is a simple path from z to some vertex j ∈ MinH(x, y). Given
some γ ∈ Supp(x, y, z), we will write J(γ) for this vertex j. In other words, if γ = MinH(x, y, z)
and j = J(γ), then γ = MinH(x, j) ∪MinH(y, j) ∪MinH(z, j).

Proof Overview. Before going into the details of the proof, let us describe our high-level approach.
We will bound the probability that y and z are in the same component in a realization of G by
considering a sequence of events defined via a thought experiment. We imagine drawing Ĥ as a
realization of G, and then (separately and independently) drawing some γxy ∼ Γxy. We emphasize
that γxy is unrelated to the graph Ĥ; in particular, it is not necessarily the case that MinĤ(x, y) =

γxy. We will first consider the event that Ĥ contains a path µ from z to a node in γxy. We’ll show
that this event occurs with probability at least PrH∼G[x →H z | x →H y]. Assuming that this
occurs, we will then consider the path from x to z consisting of µ plus part of γxy; call this path
γ′xz. Again, this path does not necessarily exist in Ĥ. We then consider the event that Ĥ contains
a path µ′ from y to a node in γ′xz. We will show that this event occurs with probability at least
1
2PrH∼G[x →H y | x →H z]. Finally, we consider the probability that paths µ and µ′ intersect; a
symmetry argument will establish that this occurs with probability at least 1/2. Combining these
probability bounds will prove the lemma, since these events imply that µ∪µ′ is a connected subgraph
of Ĥ that contains a path from y to z. An important subtlety in the proof is that we must choose
the paths µ and µ′ carefully in order to apply our desired symmetry argument. We will therefore
study slightly modified versions of the first two events, crafted to ensure that the distributions over
paths µ and µ′ are nicely behaved.

Technical Probabilistic Bounds. We begin by establishing some bounds on the probability
of certain connection events. Our first claim establishes that the probability that z →H x, given
x →H y, is the same as the probability of the following event. Draw a random path γ from the
distribution Γ(x, y) of minimal x− y paths, then draw H ∼ G conditioned on H not containing an
x− y path lexicographically less than γ; the event is that z is connected to γ in this graph H.

Claim 1.
Pr γ∼Γ(x,y),

H∼G: MinH(x,y)≥σγ
[z →H γ] = PrH [z →H x | x→H y].
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Proof.

PrH [z →H x | x→H y] =
∑

γ∈Supp(x,y)

PrH [MinH(x, y) = γ | x→H y] · PrH [z →H γ | MinH(x, y) = γ]

= Pr γ∼Γ(x,y),
H∼G: MinH(x,y)=γ

[z →H γ]

= Pr γ∼Γ(x,y),
H∼G: MinH(x,y)≥σγ

[z →H γ]

where the first equality is simply expanding event x →H y by conditioning on the identity of
MinH(x, y), the second equality is the definition of Γ(x, y), and the last equality follows because
the existence of a path from z to γ does not depend on whether or not the edges in γ are actually
present in realization H, only on the fact that no lexicographically lesser path from x to y exists in
H.

We next show that if we modify Claim 1 so that path γ is drawn from the distribution Γ(x, y|z)
rather than Γ(x, y), then this can only increase the probability that z is connected to γ. Intuitively,
this is because Γ(x, y|z) favors paths that are more likely to be connected to z, as it draws from the
distribution of subgraphs connecting all of x, y, z restricted to paths from x to y.

Claim 2.
Pr γ∼Γ(x,y|z),

H∼G: MinH(x,y)≥σγ
[x→H γ] ≥ PrH [z →H x | x→H y].

Proof. We have the following, which follows precisely as in Claim 1 except for the inequality, which
is proven below.

PrH [z →H x | x→H y] =
∑

γ∈Supp(x,y)

PrH [MinH(x, y) = γ | x→H y] · PrH [z →H γ | MinH(x, y) = γ]

= Pr γ∼Γ(x,y),
H∼G: MinH(x,y)=γ

[z →H γ]

≤ Pr γ∼Γ(x,y|z),
H∼G: MinH(x,y)=γ

[z →H γ]

= Pr γ∼Γ(x,y|z),
H∼G: MinH(x,y)≥σγ

[z →H γ].

As in Claim 1, the last equality follows because the identity of the minimal path from z to γ
does not depend on whether or not the edges in γ are actually present, only on the fact that no
lexicographically lesser path from x to y exists in H.

We now prove the inequality. For notational convenience, let

pxy(γ) := PrH∼G[z →H γ | MinH(x, y) = γ],

let Γxy(γ) be the probability of γ under Γ(x, y), and let Γxy|z(γ) be the probability of γ under
Γ(x, y|z). Under this notation, the inequality to prove is∑

γ

Γxy(γ) · pxy(γ) ≤
∑
γ

Γxy|z(γ) · pxy(γ)

To see this, note that Γxy|z(γ) =
Γxy(γ)pxy(γ)∑
γ′ Γxy(γ′)pxy(γ′) . It therefore suffices to show that

[∑
γ

Γxy(γ)pxy(γ)

]2

≤
∑
γ

Γxy(γ)pxy(γ)2.
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This follows from Cauchy-Schwarz, since∑
γ

Γxy(γ)pxy(γ) =
∑
γ

√
Γxy(γ)

(√
Γxy(γ)pxy(γ)

)

≤

√∑
γ

Γxy(γ)

√∑
γ

Γxy(γ)pxy(γ)2


=

√∑
γ

Γxy(γ)pxy(γ)2,

where we used the fact that
∑

γ Γxy(γ) ≤ 1.

Our final claim makes two modifications to Claim 2. First, we swap the roles of z and y for
notational convenience that will become apparent later; this does not affect the argument2. Second,
we modify Claim 2 so that, after drawing path γ from Γ(x, z|y), we also draw a path µ from y to γ,
according to distribution Γ(y, γ), and reveal that H contains no path from y to γ lexicographically
less than µ. Our claim is that, in expectation, this will reduce the probability that y is connected
to γ by at most 1

2 .
More formally, let E be the following event. Draw γ′ ∼ Γ(x, z|y), then draw µ ∼ Γ(y, γ). Draw

H ∼ G subject to MinH(x, z) ≥σ γ′ and MinH(y, γ′) ≥σ µ. Then E is the event that y →H γ′ under
this distribution of H.

Claim 3. For E as defined above,

Pr[E ] ≥ 1

2
PrH [y →H x | x→H z].

Proof. Let E ′ be defined similarly to E , except that when we draw H we do not condition on
MinH(y, γ′) ≥σ µ; only that MinH(x, z) ≥σ γ′. Then Claim 2 (swapping the roles of y and z)
precisely states that Pr[E ′] ≥ PrH [y →H x | x→H z]. So it suffices to show that Pr[E ] ≥ 1

2Pr[E ′].
For fixed γ′, let D(γ′) be the distribution over H conditioned on MinH(x, z) ≥σ γ′. From the

definition of E , we have

Pr[E ] = Eγ′∼Γ(x,z|y), µ∼Γ(y,γ′)

[
PrH∼D(γ′)[y →H γ′ | MinH(y, γ′) ≥σ µ]

]
= Eγ′∼Γ(x,z|y), µ∼Γ(y,γ′)

[
PrH∼D(γ′)[y →H γ′ ∧MinH(y, γ′) ≥σ µ]

PrH∼D(γ′)[MinH(y, γ′) ≥σ µ]

]
≥ Eγ′∼Γ(x,z|y), µ∼Γ(y,γ′)

[
PrH∼D(γ′)[y →H γ′ ∧MinH(y, γ′) ≥σ µ]

]
= Eγ′∼Γ(x,z|y), µ∼Γ(y,γ′)

[
PrH∼D(γ′)[MinH(y, γ′) ≥σ µ | y →H γ′] · PrH∼D(γ′)[y →H γ′]

]
≥ Eγ′∼Γ(x,z|y), µ∼Γ(y,γ′)

[
1

2
PrH∼D(γ′)[y →H γ′]

]
=

1

2
Pr[E ′]

as required, where the final inequality follows by symmetry: MinH(y, γ′) and µ are drawn from the
same distribution given γ′, and hence the probability that MinH(y, γ′) ≥σ µ is at least 1

2 .

Let E be the event from Claim 3, and let γ′ and µ′ be defined as in event E . Let γ = γ′ ∪ µ;
note that γ ∈ Supp(x, y, z). Let j = J(γ). Conditioning on event E , let µ′ = MinH(y, γ′). Recall

2We stated Claim 2 without this change to more easily draw a parallel between its proof and the proof of Claim 1.
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that γ′ is a simple path from x to z that contains vertex J(γ). Let πz denote the probability (over
all randomness in event E , but conditioning on E) that µ′ intersects γ′ on the subpath connecting
J(γ) to z. That is, µ′ intersects γ′ no “farther” from z than µ does. Then note that we can assume
without loss of generality that πz ≥ 1

2 ; if not, we simply relabel vertices x and z. Note that this is
the only point at which we consider relabeling the vertices x, y, z.

Assumption: πz ≥ 1
2 .

We now have the tools we need to complete the proof of Lemma 6.

Proof of Lemma 6. Consider the following thought experiment. Draw Ĥ as a realization of G,
and then separately draw γxy ∼ Γ(x, y). Let E1 be the event z →Ĥ γxy. We will also define a
refined version of event E1, which we call E ′1. This event E ′1 will imply E1, but will also satisfy the
stronger property that, conditioning on event E ′1, the connection between z and γxy occurs via a
path µ such that γxy ∪ µ is distributed according to Γ(x, y, z). Roughly speaking, E ′1 is the event
that z is connected to γxy even after certain edges have been removed from Ĥ.

We now define E ′1 more formally, as follows. Given γxy, we will define a randomized mapping Ψ
on the set of subgraphs of G that include γxy, with the following properties:

1. Ψ(H) ⊆ H for all H,

2. MinΨ(H)(x, y) = γxy for all H, and

3. the distribution over Ψ(H), with randomness taken over H ∼ G (conditional on H containing
γxy) and in Ψ, is precisely the uniform distribution over the set of subgraphs H ′ for which
MinH′(x, y) = γxy.

Before proving the existence of Ψ, let us finish the definition of E ′1. Write H ′ for the random variable
representing Ψ(Ĥ ∪ γxy). The event E ′1 will then be the event that z →H′ γxy, with randomness
taken over Ĥ, γxy, and Ψ. Note that by property 1 of Ψ, E ′1 implies E1. Moreover, property 3 implies
that Ψ(Ĥ ∪ γxy) is distributed precisely as a realization drawn from G, conditional on γxy being the
minimal path connecting x to y.

To see that an appropriate mapping Ψ exists, note that condition 3 states that Ψ should map the
uniform distribution over graphs including γxy to the uniform distribution over graphs H for which
MinH(x, y) = γxy. The former distribution stochastically dominates the latter, since the difference
in the supports of the distributions is upward-closed (with respect to the addition of edges). It is
therefore possible to map the former distribution to the latter by shifting probability mass from
subgraphs H to subgraphs H ′ with H ′ ⊆ H [22]. Such a transformation precisely defines a mapping
Ψ satisfying the required properties.

Claim 4. Pr[E ′1] = PrH [z →H x | x→H y].

Proof. From the definition of E ′1, plus the observation that (for fixed γxy, and randomness taken over
Ĥ) the graph H ′ = Ψ(Ĥ) is distributed uniformly over the set of graphs H for which γxy would be
the minimal path from x to y (if present), we have Pr[E ′1] = Pr γ∼Γ(x,y),

H∼G: MinH(x,y)≥σγ
[z →H γ]. Claim 1

then implies the desired result.

For the remainder of the argument we will condition on the event E ′1. Let µ = MinH′(z, γxy)
be the minimal path from z to γxy in H ′. Let γ′xyz = µ ∪ γxy, and let j = J(γ′xyz). Let γ′yj be the
path from y to j contained in γ′xyz. Thinking of γ′xyz as a random variable (over the randomness in

Ĥ, γxy, and H ′), we have γ′xyz ∼ Γ(x, y, z). This is because γxy ∼ Γ(x, y|z) (since we condition on
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event E ′1) and µ ∼ Γ(z, γxy). Let γ′xz be the path from x to z contained in γ′xyz. Again thinking of

Γ(x, z|y) as a random variable over the randomness in γxy, Ĥ, and H ′, we have that γ′xz ∼ Γ(x, z|y).
Let E2 be the event y →H′ γ

′
xz.

Claim 5. Pr[E2 | E ′1] ≥ 1
2PrH [y →H x | x→H z]

Proof. Condition on event E ′1, and on the identity of γ′xyz from the discussion immediately preceeding
this claim. Think now of H ′ as a random variable, drawn from G subject to the conditions imposed
by E ′1 and the identity of γ′xyz. These conditions are precisely that H ′ contains µ (the path from
z to J(γ′xyz) in γ′xyz) and that MinH′(x, y, z) ≥σ γ′xyz. That is, H ′ does not contain a subgraph
lexicographically less than γ′xyz that connects x, y, and z.

The condition MinH′(x, y, z) ≥σ γ′xyz is precisely equivalent to the following pair of conditions:
MinH′(x, z) ≥σ γ′xz and MinH′(y, γ

′
xz) ≥σ γ′yj . To see this, note that if H ′ contains a lexicographi-

cally smaller sugraph in Supp(x, y, z), then this occurs either because it contains a lesser path from
x to z than γ′xz, or a lesser path from y to γ′xz than γ′yj .

But we can now apply Claim 3, since this distribution of H ′ is precisely the distribution described
in event E . We therefore have Pr[E2] = Pr[E ] ≥ 1

2PrH [y →H x | x→H z], as required.

Conditioned on E2 occurring, there is a minimal path µ′ from y to γ′xz in H ′, call it µ′. Let E3 be
the event that µ and µ′ intersect. Note that E3 certainly occurs if µ′ intersects γ′xz on the subpath
of γ′xz connecting z to j, since that subpath is precisely µ. But this probability is precisely what we
defined to be πz, which is at least 1

2 by assumption. We therefore have Pr[E3 | E ′1 ∧ E2] ≥ 1
2 .

Observe that E ′1∩E2∩E3 imply that y and z are in the same component in H. We therefore have

PrH [y →H z] ≥ Pr[E ′1 ∩ E2 ∩ E3]

= Pr[E ′1] · Pr[E2 | E ′1] · Pr[E3 | E ′1 ∧ E2]

≥ 1

4
Pr[x→H z | x→H y]Pr[x→H y | x→H z],

using Claims 4 and 5. This completes the proof of the Lemma 6.

6 APX-Hardness of Undirected Influence Maximization

We now establish that the problem of undirected influence maximization is APX-hard.

Theorem 2. There exists an ε0 > 0 such that it is NP-hard to obtain a (1 − ε0)-approximation to
the undirected influence maximization problem.

Proof. We reduce from the problem of finding a vertex cover in cubic graphs (all vertices have degree
exactly 3). It is known that there exists an ε > 0 and a parameter K(n) so that it is NP hard to
decide whether an n-vertex cubic graph has a vertex cover of size ≤ K(n) (a Yes-instance) or if any
subset of K(n) vertices leaves at least εm edges uncovered (a No-instance) [1].

Given a vertex cover instance 〈G = (V,E),K(n)〉 on n vertices and m edges, we construct an
instance 〈G′(V ′, E′), U, p, w, k〉 of undirected influence maximization as follows. The graph G′(V ′, E′)
is an undirected graph where (a) the vertex set V ′ = L∪R contains a vertex v for each vertex v ∈ V ,
as well as a vertex e for each edge e ∈ E, and (b) the edge set E′ contains an edge (v, e) iff e is
incident on vertex v in the graph G(V,E). Thus G′ is a bipartite graph where the left partition L
corresponds to vertices in G and the right partition R corresponds to edges in G, and each vertex
in L has degree 3 while each vertex in R has degree 2. Finally, the set U of allowed seed vertices is
precisely the set L, the cascade probability function p is defined to be uniform i.e. p(e) = p for some
fixed p for every edge e ∈ E′, the weight function w is defined to be 0 for vertices in L and 1 for
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vertices in R, and k = K(n). We will argue that for a suitable choice of the parameter p, there exists
constants 0 < ε1 < ε2 such that whenever G is a Yes-instance of vertex cover, then the optimal value
for the influence maximization problem is at least (1 − ε1)|R|, and whenever G is a No-instance of
vertex cover, then the optimal value for the influence maximization problem is at most (1− ε2)|R|.
It follows that the undirected influence maximization problem is APX-hard.

To analyze the optimal value in the instance G′(V ′, E′), we analyze three quantities of interest
for each edge e. For any set S ⊆ L of seed vertices, and a vertex e = (u, v) ∈ R, we define (a) φ0 as
the probability that e is activated when neither u nor v are in S, (b) φ1 as the probability that edge
e is activated when only one of u and v is in S, and (c) φ2 as the probability that edge e is activated
when both u and v are in S. Then it is easy to verify that

φ0 ≤ p
(
p2 + (1− p2)p2

)
+
(
1− p

(
p2 + (1− p2)p2

)) (
p
(
p2 + (1− p2)p2

))
φ1 ≤ p+ (1− p)

(
p2 + (1− p2)p2

)
φ2 = p+ (1− p)p,

where the bound on φ1(e) is exact whenever the seed set S corresponds to a vertex cover in G. We
are now ready to bound the optimal value based for influence maximization on whether or not G
was a Yes-instance of vertex cover. Let k = K(n) = m/3(1 +α) for some α ∈ [0, 1] (since any vertex
cover in a cubic graph G must have size at least m/3 and at most n ≤ 2m/3).

Yes-instance analysis: When G(V,E) is a Yes-instance, there is a set S ⊆ V of size k such that
every edge in E has at least one end-point in S. We will choose the set S as our set of seed vertices
in G′(L∪R,E′). Clearly, every vertex e ∈ R is adjacent to at least one vertex in our seed set S. As
degree of each vertex is exactly 3, it must be the case that 3(k −m/3) = αm edge vertices in R are
adjacent to two vertices in S. Thus val(S) ≥ (1 − α)mφ1 + αmφ2. Let Vyes = (1 − α)mφ1 + αmφ2

denote the above lower bound on the optimal solution value when G(V,E) is a Yes-instance.

No-instance analysis: When G(V,E) is a No-instance, for any set S ⊆ V of size k, at least εm edges
are left uncovered. It then follows that for any set S ⊆ L in G′, at least εm vertices in R have no
chosen seed vertex adjacent to them. If for a set S, the number of uncovered edges is exactly ε′m for
some ε′ ≥ ε, then (1−α−2ε′)-fraction of edges are covered exactly once and (α+ε′)-fraction of edges
are covered twice. Thus for such a set S of seed vertices, we have val(S) ≤ ε′mφ0 +(1−α−2ε′)mφ1 +
(α+ε′)mφ2. Note that φ2−φ1 ≤ φ1−φ0 for all p ∈ [0, 1] since (φ1−φ0)−(φ2−φ1) = p2(1−p2)4 which
is non-negative for all p ∈ [0, 1]. It follows that the preceding upper bound on val(S) is maximized
when ε′ = ε. Hence, for any set S, we have val(S) ≤ εmφ0 + (1− α− 2ε)mφ1 + (α+ ε)mφ2. Let Vno
denote this lower bound on the optimal solution value when G(V,E) is a No-instance.

Now let edge cascade probability p = 1− ε/D where ε is the gap parameter for the vertex cover
instance and D > 1 is a parameter whose value will be determined later. Then a simple calculation

shows that Vyes − Vno ≥
(

16ε5

D4 − 64ε6

D5

)
m. Choosing D = 8ε, we get Vyes − Vno ≥ ε

83
m, which (due to

the known hardness of finding a vertex cover in cubic graphs) proves Theorem 2.
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A Omitted Proofs

Proof of Lemma 1: Let γ ∈ (0, 1) be a constant to be determined later. We analyze the perfor-
mance of the greedy algorithm by comparing the value of the first γδk sets relative to the sets in the
collection X, and then the rest relative to the residual value of the optimal. The value of the first
γδk sets chosen by the greedy algorithm, say a collection Y , is at least

val(Y ) ≥ val(X)

(
1− 1

eγ

)
>

(1 + ε) · δ · val(OPT)

k

(
1− 1

eγ

)
,

where the first inequality follows by applying the standard greedy analysis and measuring val(Y )
relative to val(X), and the second inequality follows from our assumption about the set X.

The next (1 − γδ)k sets chosen by the greedy algorithm, say a collection Z, gets an additional
contribution of at least

val(Z) ≥ (val(OPT)− val(Y ))

[
1− 1

e1−γδ

]
.

Thus total value of the sets chosen by the greedy must be at least

val(Y ) + val(Z) ≥ val(OPT)− val(OPT)− val(Y )

e1−γδ .

Hence the deficit of the greedy algorithm with respect to val(OPT) can be bounded by

val(OPT)− val(Y )

e1−γδ ≤
val(OPT)− (1 + ε)δval(OPT)(1− 1

eγ )

e1−γδ

≤ val(OPT)

e

[
eγδ(1− (1 + ε)δ) + e−γ(1−δ)(1 + ε)δ

]
Let Γ =

[
eγδ(1− (1 + ε)δ) + e−γ(1−δ)(1 + ε)δ

]
. To complete the proof of the lemma, it suffices

to show that by choosing γ = (δε)/2, we can bound Γ by
(

1− δ2ε2

4

)
, that is, Γ < 1 for ε, δ are both

positive. Using the fact that ex ≤ 1 + x+ x2 for |x| < 1, we have

Γ ≤ (1 + γδ + γ2δ2)(1− (1 + ε)δ) + (1− γ + γδ + γ2(1− δ)2)(1 + ε)δ

≤ 1 + γδ − γ(1 + ε)δ + γ2(δ2 − δ3(1 + ε) + (1− δ)2)

≤ 1− γδε+ γ2(δ2 + (1− δ)2)

≤ 1− γδε+ γ2

≤ 1− δ2ε2

4
,

where the last but one inequality follows from the fact that (δ2 + (1− δ)2) ≤ 1 for δ ∈ (0, 1), and
the last equality follows by choosing γ = (δε)/2. The assertion of the lemma thus follows. �
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Proof of Lemma 2: We will give an iterative procedure to construct the decomposition into sets
L,M and H as above, and show that the procedure succeeds unless OPT contains a set X of vertices
whose normalized influence is strictly greater than 1 and val(X) = Ω(val(OPT)).

Initialize Z to contain the vertices {O1, ..., Ok} in OPT, and initialize L = ∅. While there exists

a vertex Oi ∈ Z such that val(Oi|Z \ Oi) < (1−ε)val(OPT)
k , do L = L ∪ {Oi} and Z = Z \ {Oi}. If

upon termination, the set L contains more than εk vertices, then the set X = OPT \ L satisfies

val(X) ≥ val(OPT)− |L| · (1− ε)val(OPT)

k

≥ εval(OPT) + k
(1− ε)val(OPT)

k
− |L|(1− ε)val(OPT)

k

≥ εval(OPT) + |X|(1− ε)val(OPT)

k

≥ ε
|L|+ |X|

k
val(OPT) + |X|(1− ε)val(OPT)

k

≥ ε
|L|
k

val(OPT) + |X|val(OPT)

k

≥ ε2val(OPT) + |X|val(OPT)

k
.

This gives us the desired set X with normalized influence strictly greater than 1 and val(X) =
Ω(val(OPT)). Assuming |L| < εk, we continue with the decomposition process on the remaining set
Z to identify the sets M and H. Note that in this case case, we know that val(L) ≤ ε · val(OPT).
Let σ be an ordering of the vertices in Z created in the following manner. We choose Oσ(1) to
be a vertex O ∈ Z that maximizes val(O). Then Oσ(2) is chosen to be a vertex O ∈ Z that
maximizes val(O|Oσ(1)). In general, we choose Oσ(2) is chosen to be a vertex O ∈ Z that maximizes
val(O|Oσ(1), . . . , Oσ(i−1)). Now consider the largest index j such that

val(Oσ(j)|Oσ(1), . . . , Oσ(j−1)) >
(1 + ε)val(OPT)

k
.

If val(Oσ(1) ∪ Oσ(2) ∪ . . . ∪ Oσ(j)) ≥ ε2OPT, then X = {Oσ(1), . . . , Oσ(j)} gives us a set with
normalized influence strictly greater than 1 and val(X) = Ω(val(OPT)). Otherwise, we continue
with our decomposition and define H = {Oσ(1), . . . , Oσ(j)}, and M = Z \H. We now argue that for
each Oi ∈ OPT′, we have

(1− ε)val(OPT)

k
≤ val(Oi|O−i, H) ≤ val(Oi|H) ≤ (1 + ε)val(OPT)

k
.

The first inequality follows from the fact that Oi 6∈ L. The second inequality follows from
submodularity of the influence function. The last inequality follows because Oi 6∈ H. �

Proof of Lemma 3: Let M1 = {Oi ∈ M | Pr[Oi → H] > 2ε}. We will first show that |M1| ≤ εk.
To see this, note that
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val(H) ≥
∑
Oi∈M

Pr[Oi → H]val(Oi | M \ {Oi})

≥ 2ε ·
∑

Oi∈M1

Pr[Oi → H]val(Oi | M \ {Oi})

≥ 2ε ·
∑

Oi∈M1

Pr[Oi → H]val(Oi | M \ {Oi}, H)

≥ 2ε|M1|
(1− ε)val(OPT)

k
> ε2 · val(OPT)

for any ε ∈ (0, 1/3) whenever |M1| ≥ εk. But this contradicts our assumption that val(H) ≤
ε2val(OPT).

Let M ′ = M \M1. We will now show that for each vertex Oi ∈M ′, we have Pr[Oi →M ′ \ {Oi}]
is at most 5ε. We argue this as follows:

Pr[Oi →M ′ \ {Oi}] = Pr[Oi →M ′ \ {Oi} | Oi → H] · Pr[Oi → H]

+Pr[Oi →M ′ \ {Oi} | Oi 6→ H] · Pr[Oi 6→ H]

≤ Pr[Oi → H] + Pr[Oi →M ′ \ {Oi} | Oi 6→ H]

Thus it suffices to show that Pr[Oi →M ′ \ {Oi} | Oi 6→ H] ≤ 3ε for all Oi ∈M ′. To see this, we
first observe that for each Oi ∈M ′ (in fact the analysis below applies to each Oi ∈M and not just
M ′), we have ∑

j

Pr[Oi → j ∧Oi → O−i ∧Oi 6→ H] ≤ 2εval(OPT)

k
,

since val(Oi|O−i, H) ≥ (1− ε)val(OPT)
k and val(Oi|H) ≤ (1 + ε)val(OPT)

k . So, we have

2εval(OPT)

k
≥

∑
j

Pr[Oi → j ∧Oi → O−i ∧Oi 6→ H]

=
∑
j

Pr[Oi → O−i | Oi → j ∧Oi 6→ H] · Pr[Oi → j ∧Oi 6→ H]

≥
∑
j

Pr[Oi → O−i | Oi 6→ H] · Pr[Oi → j ∧Oi 6→ H]

= Pr[Oi → O−i | Oi 6→ H] ·
∑
j

Pr[Oi → j ∧Oi 6→ H]

≥ Pr[Oi → O−i | Oi 6→ H] · val(Oi | H)

≥ Pr[Oi → O−i | Oi 6→ H] · (1− ε)val(OPT)

k

Hence it follows that
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Pr[Oi → O−i | Oi 6→ H] ≤ 2ε

1− ε
≤ 3ε,

for any ε ∈ (0, 1/3), concluding the proof of the lemma.
�

B Proof of the Exclusive and Good Contribution Lemma

In this section we prove Lemma 7. Let us first recall the statement of the Lemma. We have
S = {g1, g2, ..., gk/4} is the set of the first k/4 vertices chosen by the greedy algorithm. We also have
that L,M,M ′,M ′′, H is a decomposition of OPT satisfying the properties of Lemma 2, Lemma 3,
and Lemma 5. Recall the definitions of exclusive and good nodes for Oi, denoted Ei and Gi, from
Section 3.2:

Definition 3. We say that a vertex j is exclusive for Oi ∈ M ′′, and write j ∈ Ei, if Pr[O−i →
j | Oi → j ∧ S → j ∧H 6→ j] < 48ε.

Definition 4. We say that a vertex j is good for Oi ∈ M ′′, and write j ∈ Gi, if Pr[Oi → j ∧ S →
j ∧H 6→ j] > 1

100Pr[Oi → j ∧H 6→ j].

Then Lemma 7 states that there exists a positive constant c0 such that∑
Oi∈M ′′

∑
j∈Gi∩Ei

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ] > c0 · val(OPT).

The proof of Lemma 7 proceeds via a sequence of claims. Let us first make some definitions for
notational convenience. For sets of nodes A and B, let EBA be shorthand for the event [A→ B]; that
is, that a node in A is connected to a node in B. We allow either A or B to be an individual node.

Claim 6. For each Oi ∈M ′′, ∑
j

Pr[EjOi ∧ ¬E
j
O−i
∧ EjS ∧ ¬E

j
H ]

> (1− 12ε)
∑
j

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ].

Proof. Since Oi ∈M ′′ ⊆M , we have

(1− ε) · val(OPT)

k
≤
∑
j

Pr[EjOi ∧ ¬E
j
O−i
∧ ¬EjH ]

≤
∑
j

Pr[EjOi ∧ ¬E
j
H ]

≤ (1 + ε) · val(OPT)

k

from which we can conclude that
∑

j Pr[EjOi ∧O−i → j ∧ ¬EjH ] < 2εval(OPT)
k , and hence

∑
j

Pr[EjOi ∧O−i → j ∧ EjS ∧ ¬E
j
H ] < 2ε

val(OPT)

k
.
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On the other hand, we know from Lemma 4 that v(Oi | S) < 4
5 ·

val(OPT)
k , and hence∑

j

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ] = val(Oi | H)− val(Oi | S,H)

≥ (1− ε)val(OPT)

k
− val(Oi | S)

≥ (
1

5
− 2ε)

val(OPT)

k

Putting these inequalities together, and supposing (1/5− 2ε) ≥ 1/6, we have∑
j

Pr[EjOi ∧O−i → j ∧ EjS ∧ ¬E
j
H ]

< 2ε
val(OPT)

k

< 12ε
∑
j

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

and hence ∑
j

Pr[EjOi ∧ ¬E
j
O−i
∧ EjS ∧ ¬E

j
H ]

> (1− 12ε)
∑
j

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

as required.

We can use the previous claim to show that much of the influence of Oi is due to nodes that are
exclusive to Oi, even if we restrict our attention to nodes that are also covered by S but not covered
by H.

Claim 7. For all Oi ∈M ′′,∑
j∈Ei

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ] >

3

4

∑
j

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ].
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Proof. Let λ be such that
∑

j∈Ei Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ] = λ

∑
j Pr[EjOi ∧ E

j
S ∧ ¬E

j
H ]. Then

(1− 12ε)
∑
j

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

<
∑
j

Pr[EjOi ∧ ¬E
j
O−i
∧ EjS ∧ ¬E

j
H ]

=
∑
j∈Ei

Pr[EjOi ∧ ¬E
j
O−i
∧ EjS ∧ ¬E

j
H ]

+
∑
j 6∈Ei

Pr[EjOi ∧ ¬E
j
O−i
∧ EjS ∧ ¬E

j
H ]

<
∑
j∈Ei

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

+(1− 48ε)
∑
j 6∈Ei

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

= λ
∑
j

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

+(1− 48ε)(1− λ)
∑
j

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ].

It follows that (1− 12ε) < λ+ (1− 48ε)(1− λ), from which we conclude λ ≥ 3/4 as required.

We next claim that much of the influence of each Oi is captured by nodes that are good for Oi.
We will actually show something stronger: that this is true even if we restrict our attention only to
good nodes that are also exclusive to Oi.

Claim 8. There exists a constant c1 > 0 such that, for each i,∑
j∈Gi∩Ei

Pr[EjOi ∧ ¬E
j
H ] ≥ c1

∑
j

Pr[EjOi ∧ ¬E
j
H ].

Proof. We first claim that, for each i,

3

20

∑
j∈Ei

Pr[EjOi ∧ ¬E
j
H ] ≤

∑
j∈Ei

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ].

To see this, note ∑
j∈Ei

Pr[EjOi ∧ ¬E
j
H ] ≤

∑
j

Pr[EjOi ∧ ¬E
j
H ]

≤ 5
∑
j

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

≤ 5 · 4

3

∑
j∈Ei

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

as required, where the second inequality follows because val(Oi | S,H) ≤ 4
5(1 − ε)val(OPT)

k ≤
4
5val(Oi | H).
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Now suppose
∑

j∈Ei∩Gi Pr[EjOi ∧ ¬E
j
H ] = λ

∑
j∈Ei Pr[EjOi ∧ ¬E

j
H ]. We then have

3

20

∑
j∈Ei

Pr[EjOi ∧ ¬E
j
H ]

≤
∑
j∈Ei

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

≤
∑

j∈Ei∩Gi

Pr[EjOi ∧ ¬E
j
H ] +

∑
j∈Ei\Gi

1

100
Pr[EjOi ∧ ¬E

j
H ]

= λ
∑
j∈Ei

Pr[EjOi ∧ ¬E
j
H ] +

1

100
(1− λ)

∑
j∈Ei

Pr[EjOi ∧ ¬E
j
H ]

from which we conclude 3
20 ≤ λ+ 1

100(1− λ), which implies λ ≥ 14
99 .

But now, since
∑

j∈Ei Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ] ≥ 3

4

∑
j Pr[EjOi ∧ E

j
S ∧ ¬E

j
H ] from the previous claim,

we get ∑
j∈Gi∩Ei

Pr[EjOi ∧ ¬E
j
H ] ≥ 14

99

∑
j∈Ei

Pr[EjOi ∧ ¬E
j
H ]

≥ 14

99

∑
j∈Ei

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

≥ 14

99
· 3

4

∑
j

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

≥ 14

99
· 3

4
· 1

5

∑
j

Pr[EjOi ∧ ¬E
j
H ],

where the last inequality follows because val(Oi | S,H) ≤ 4
5(1 − ε)val(OPT)

k ≤ 4
5val(Oi | H). This

yields the desired result, with constant factor c1 = 14
99 ·

3
4 ·

1
5 >

1
50 .

We can now complete the proof of Lemma 7. We have∑
i

∑
j∈Gi∩Ei

Pr[EjOi ∧ E
j
S ∧ ¬E

j
H ]

≥
∑
i

∑
j∈Gi∩Ei

1

100
Pr[EjOi ∧ ¬E

j
H ]

≥ c1

100

∑
i

∑
j

Pr[EjOi ∧ ¬E
j
H ]

>
c1

100

∑
i

(1− ε)val(OPT)

k

≥ c1

100
· k

3
(1− ε)val(OPT)

k
= c0val(OPT)

for constant c0 = c1
100 ·

1
3 · (1− ε) >

c1
400 , completing the proof of Lemma 7.
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