
Approximating matching size from random streams

Michael Kapralov

⇤
Sanjeev Khanna

†
Madhu Sudan

‡

January 3, 2014

Abstract

We present a streaming algorithm that makes one
pass over the edges of an unweighted graph pre-
sented in random order, and produces a polyloga-
rithmic approximation to the size of the maximum
matching in the graph, while using only polylog-
arithmic space. Prior to this work the only ap-
proximations known were a folklore Õ(

p
n) approx-

imation with polylogarithmic space in an n ver-
tex graph and a constant approximation with ⌦(n)
space. Our work thus gives the first algorithm
where both the space and approximation factors are
smaller than any polynomial in n.

Our algorithm is obtained by e↵ecting a stream-
ing implementation of a simple “local” algorithm
that we design for this problem. The local algo-
rithm produces a O(k · n1/k) approximation to the
size of a maximum matching by exploring the ra-
dius k neighborhoods of vertices, for any parameter
k. We show, somewhat surprisingly, that our lo-
cal algorithm can be implemented in the streaming
setting even for k = ⌦(log n/ log log n). Our analy-
sis exposes some of the problems that arise in such
conversions of local algorithms into streaming ones,
and gives techniques to overcome such problems.

⇤MIT CSAIL, 32 Vassar Street Cambridge, MA 02139

USA. Email: kapralov@mit.edu We acknowledge financial

support from grant #FA9550-12-1-0411 from the U.S. Air
Force O�ce of Scientific Research (AFOSR) and the Defense
Advanced Research Projects Agency (DARPA).

†Department of Computer and Information Science, Uni-
versity of Pennsylvania, Philadelphia, PA 19104. Email:

sanjeev@cis.upenn.edu. Supported in part by National Sci-

ence Foundation grants CCF-1116961 and IIS-0904314. This
work was done while the author was a visiting faculty at Mi-
crosoft Research New England, Cambridge, MA 02142.

‡Microsoft Research New England, One Memorial Drive,
Cambridge, MA 02142, USA. madhu@mit.edu

1 Introduction

In this work we consider the task of approximat-
ing the size of a maximum matching in an undi-
rected graph in the setting of streaming algorithms.
The past two decades have seen surprisingly space-
e�cient streaming algorithms for an impressive va-
riety of algorithmic problems. However, thus far
no such algorithms are known for the problem of
estimating the size of a maximum matching. It is
easy to obtain a constant factor approximation to
the size of the maximum matching when O(n) space
is allowed – simply maintain a maximal matching
as edges arrive. When the approximation factor is
allowed to be as large as ⇥(

p
n), it is possible to ob-

tain an estimate in poly-logarithmic space by com-
puting a simple sketch. Our work is motivated by
the question if one can simultaneously achieve poly-
logarithmic space and poly-logarithmic approxima-
tion. We answer this is in the a�rmative by proving
the following result:

Theorem 1.1. There exists a streaming algorithm
that makes one pass over the edges of a graph
presented in random order and outputs poly-
logarithmic approximation to the size of the maxi-
mum matching using poly-logarithmic space.

1.1 Techniques We start by designing a new lo-
cal algorithm for estimating the size of a maximum
matching in a graph, and then develop it into a
streaming algorithm. We give a brief overview be-
low by focusing on the following important special
case: how does one e�ciently distinguish graphs
with an ⌦(n) size matching from graphs which have
no matchings of size n/poly log n.

We start by recalling a simple observation that
a graph G(V,E) has a matching of size ⌦(n) if and
only if for some integer d, it contains a subgraph
H (not necessarily induced) with ⌦(nd) edges such
that all vertices in H have degree ⇥(d). Of course,
the algorithmic challenge is in identifying the right

subset of vertices and the right subset of edges. We
attempt to find such a “right” subset by a simple
filtering process.

Specifically, we find a sequence of graphs G =
G

0

, G
1

, G
2

, . . . as follows. We define a sequence
of nested sets of vertices V = V

0

◆ V
1

◆ V
2

· · ·
appropriately and let Gi be the subgraph induced
by G on Vi. We refer to i as the level of the graph
Gi. The set Vi is chosen to be all vertices whose
degree is su�ciently small (where this threshold
depends on the index i) in Gi�1

. We show that
if any of the graphs is su�ciently dense (has many
edges, relative to its level), then the graph has a
large matching. We also give a converse, and this
suggests a natural local algorithm for finding large
matchings: Estimate the density of edges in Gi and
use this estimate to approximate the matching size.
This idea, it turns out, is easy to implement as a
local algorithm. In the ith stage, vertices determine
their membership in Vi, using information collected
in the (i � 1)th round by its neighbors. Density
of the edges can then be measured by random
sampling.

The main contribution of this work is to convert
the above simple algorithm (strictly speaking, a
variant of the above) into a streaming one. This
conversion leads to two challenges. The first is an
algorithmic one — namely, how can we estimate
the number of edges at a given level? We provide
a solution based on sampling — which crucially
uses the fact that the edges are available in random
order. Roughly to determine if a vertex u 2
Vi, we sample neighbors of u (and the stream
provides us with a sample) and test (recursively)
that not too many of these neighbors are at level
i � 1. Estimating the number of samples needed,
and proving that the required number of samples
are available in a random stream requires some
careful choices in the algorithms (including some
variations on the local algorithm), but fortunately
the parameters work out just right enabling the
algorithm to work e↵ectively.

This leads us to the second challenge which is in
the analysis of our algorithm. We would have liked
to prove statements of the form that the streaming
algorithm correctly identifies the level of a vertex,
but such statements are simply not true. The sam-
pling based algorithms give probabilities with which
vertices are identified at di↵erent levels, and these
probabilities can be far from 0 or 1. Analyzing these
probabilities, especially given that the tests are con-

structed recursively turns out to be hard. We man-
age to get around the task of determining these
probabilities explicitly by defining random variables
that behave roughly like the outcome of the tests,
but are otherwise independent. We then show that
our algorithm e↵ectively ends up simulating these
random variables even though the tests performed
by our algorithm have huge dependencies due to
the fact that the edges are e↵ectively being sampled
without replacement from the graph (to create the
random stream). Specifically, we first analyze our
algorithm in a hypothetical “i.i.d.” case where the
stream consists of edges of the graph are sampled
uniformly and independently (with replacement).
Later we reduce the real case, where the stream is a
random permutation of the edges, to the i.i.d. case
and show that this replacement can be carried out
with relatively little loss in parameters. To finish
the argument, we also show that our initial obser-
vation saying that some level i is dense if and only
if the graph has a large matching, also extends to
the case where the expected density of Gi is large.
Putting the above ingredients together leads to our
algorithm and analysis for the case when the graph
has a su�ciently large matching.

1.2 Related work The problem of designing
streaming algorithms to find approximately max-
imum matchings in bipartite graphs has received
significant attention recently.

Single pass algorithms: Two natural vari-
ants have been considered in the literature: (1)
the edge arrival setting, where edges arrive in the
stream and (2) the vertex arrival setting, when ver-
tices on one side of the graph arrive in the stream
together with all their incident edges. The latter
setting has also been studied extensively in the con-
text of online algorithms, where each arriving vertex
has to either be matched irrevocably or discarded
upon arrival.

In a single pass, the best known approximation
in the edge arrival setting in adversarial streams is
1/2. However, a better algorithm is known under
the assumption of random edge arrivals by [13], who
achieve a 1/2+✏ approximation for a constant ✏ > 0.
On the lower bound side, it is known that no Õ(n)
space algorithm can achieve a better than 1 � 1/e
approximation [7, 10].

In the vertex arrival setting, the best known
algorithms achieve an approximation of 1 � 1/e.
The assumption of vertex arrivals allows one to

leverage results from online algorithms [12, 14, 11].
In the online model vertices on one side of the graph
are known, and vertices on the other side arrive in
an adversarial order. The algorithm has to either
match a vertex irrevocably or discard upon arrival.
The celebrated algorithm of Karp-Vazirani-Vazirani
achieves a 1 � 1/e approximation for the online
problem, which immediately implies an Õ(n) space
streaming algorithm. The 1 � 1/e impossibility
result of [10] applies to the vertex arrival setting,
implying that 1� 1/e approximation is optimal for
this setting.

Multiple-pass algorithms: Several small-
space algorithms with strong approximation guar-
antees are known when multiple passes are
allowed[6, 16, 5, 1, 13]. The best known algo-
rithm [1] achieves a 1�O(

p
log log k/k) in k passes

for the weighted as well as the unweighted version
of the problem using Õ(kn) space. A slightly bet-
ter 1 � e�kkk/k! = 1 � O(1/

p
k) approximation

is known for the maximum cardinality version of
the problem in the vertex arrival model[10]. Re-
cently, [2] showed that the number of passes can
be reduced substantially if slightly more than Õ(n)
space is available. In particular, 1�✏ approximation
can be achieved in O(p/✏) passes using O(n1+1/p)
space. On the lower bound side, it is known that
computing maximum matching size exactly requires
n1+⌦(1/p)/pO(1) space in p passes [8]. Recently,
[9] proved strong lower bounds for the communi-
cation complexity of approximate distributed max-
imum matching. For example, they showed that
the amount of communication needs to be ⌦(kn)
when the graph is stored across k sites and a con-
stant factor approximation is desired, matching the
communication cost of a direct simulation of known
streaming algorithms.

Local algorithms: The problem of obtaining
sublinear time local algorithms for matching prob-
lems has also received significant attention recently.
Very e�cient solutions are known, some of which
yield constant factor approximation to maximum
matching size in poly(d) time, where d is the maxi-
mum degree of the graph (see, e.g. [17, 19, 4, 18, 15]
and references therein). None of these algorithms,
however, seem directly amenable to the streaming
model when the underlying graph has unbounded
degree.

1.3 Organization We present our deterministic
local exploration algorithm for estimating the max-
imum matching size in Section 2. Then in Section 3,
we give an overview of our approach for implement-
ing the local algorithm in the streaming setting.
We present in Section 4, a detailed implementation
of the streaming algorithm. Our analysis consists
of two steps. We first show in Section 5 that our
streaming algorithm correctly estimates the match-
ing size when given a stream of m i.i.d. samples
of the edges of G as input. We then show in Sec-
tion 6 that our streaming algorithm behaves sim-
ilarly when the edges are presented as a random
permutation (i.e. the two executions can be statis-
tically coupled). This completes the proof of our
main result. Finally, we conclude with some future
directions in Section 7.

2 Estimating Matching Size via Local
Explorations

We design here a simple local algorithm to estimate
the size of a maximum matching. The algorithm
is based on an iterative peeling process whereby
in each iteration we remove the vertices with the
highest residual degree. The goal of the process
is to identify an iteration where the number of
edges in the residual graph is large with respect
to the maximum residual degree. Such a graph
naturally certifies existence of a large matching, and
as we show, if there is a large matching, one must
necessarily encounter such a graph in one of the
iterations of the algorithm. This iterative process
lends itself naturally to a sampling-based local
algorithm where we estimate the size of the largest
matching by estimating the number of edges in the
residual graph after each iteration, and determine
membership of an edge in a residual graph by a local
exploration of its end-points.

In the rest of the paper, we will find it more
convenient to work with following decision version
of the estimation problem that we refer to as the
Gap-Matching problem: given a threshold U and
gap parameter g � 1, distinguish between the
following two cases:

YES if G contains a matching of size at least U ;

NO if G does not contain a matching of size larger
than U/g.

In particular, we will interested in designing
algorithms that work for g = ⇥(poly(log n)). We

note that Gap-Matching can be used to obtain an
O(g)-approximation to matching size by running
the Gap-Matching algorithm for a geometrically
decreasing sequence of U ’s, and outputting the
matching size to be at least U⇤/g where U⇤ is the
highest value of U for which the algorithm returns
YES..

In what follows we will denote the degree of a
node u 2 V in G by deg(u). For a set S ✓ V we
will write degS(u) to denote the degree of u 2 V
to the vertices in S. Let dmax denote an upper
bound on maximum degree in G (our main result
holds without any degree assumptions, but our
techniques also have interesting consequences for
bounded degree graphs, so it is useful to introduce
dmax). We start by analyzing the following simple
algorithm for Gap-Matching :

Algorithm 1 Gap matching via distance-k neigh-
borhood exploration

1: procedure GapMatching(U, d
0

, . . . , dk)
Require: d

0

= dmax � d
1

� . . . � dk�1

� dk = 1
2: ⌧i 3

2

Ud
i

g for 0 i k � 1.
3: V

0

 V , E
0

 E
4: for i = 1 to k � 1 do
5: Vi {u 2 Vi�1

: degV
i�1

(u) di}
6: Ei E \ (Vi ⇥ Vi)
7: end for
8: for i = 0 to k � 1 do
9: if |Ei| > ⌧i then

10: return YES
11: end if
12: end for
13: return NO
14: end procedure

Roughly, the algorithm partitions the vertices
of the input graph into distinct levels by an iterative
process. For i 2 [1 : k], let Vi denote the
set of vertices with level at least i, and let Ei

denote the set of edges in the graph induced by
vertices in Vi. Then V

0

is simply V , and Vi+1

is
the set of all vertices of “su�ciently low” degree
(specifically degree at most di+1

) in Gi = (Vi, Ei).
The algorithm simply computes these sets (we argue
later that this can be done locally) and checks if
some level i has su�ciently many edges (relative
to di, the degree threshold for that level). It
outputs yes if such a level exists and no otherwise.
The following lemma argues correctness of this

algorithm.

Lemma 2.1. Let d
0

= dmax � d
1

� . . . � dk�1

�
dk = 1 be any sequence of degrees such that k⌘ <
2g/3 where ⌘ = maxi2[1:k](di�1

/di). Then Algo-
rithm 1 always outputs YES if G is a Yes-instance,
and NO if G is a No-instance.

Proof. We first show that whenever Algorithm 1
outputs YES, then G is a Yes-instance. Let i be
the index for which |Ei| > ⌧i. Then by assigning
a fractional weight of 1/di to each edge in Ei, we
obtain a feasible fractional solution to the matching
polytope with blossom constraints removed (since
vertex degrees are bounded by di in the graph
induced by Ei). The value of this solution is at least
|Ei|/di. It is well-known that any feasible fractional
solution with blossom constraints removed can be
converted to an integral solution whose value is at
least 2/3 times the value of the fractional solution.
ThusG contains an integral matching of size strictly
greater than

2

3
· ⌧i =

2

3
· 1

di
· 3
2

Udi
g

=
U

g
,

and hence is a Yes-instance.
We now prove the converse, that is, whenever

G is a Yes-instance, Algorithm 1 outputs YES.
For 0 i k � 2, let Zi = Vi \ Vi+1

, and let
Zk�1

= Vk�1

. Clearly, Zi’s induce a partition of
the vertex set V . We observe that for 0 i k�2,

|Ei| � |Vi \ Vi+1

| · di+1

= |Zi| · di+1

� |Zi| ·
di
⌘
.

We consider two cases. First, suppose that
|Zi| > U/k for some i k � 2. Then

|Ei| � |Zi|
di
⌘
� U

k

di
⌘

>
3Udi
2g
� ⌧i,

since k⌘ < 2g/3 by our assumption. Otherwise,
removing vertices in Z

0

[Z
1

[. . . [Zk�2

leaves a
matching of size at least |U |�(k�1)|U |/k = |U |/k,
so

|Ek�1

| � U

k
� U

k
· dk�1

⌘
>

3Udk�1

2g
= ⌧k�1

,

since k⌘ < 2g/3 by our assumption. Thus the
algorithm necessarily outputs YES whenever G is a
Yes-instance.

Note that by choosing di = n1�i/k, we can
use the algorithm above to solve the gap matching
problem for g = ⇥(kn1/k). In particular, by set-
ting k = ⇥(log n/ log log n), we conclude that gap
matching can be solved for g = logO(1) n. We state
below two easy corollaries of Algorithm 1. The first
shows that the algorithm above can be implemented
“locally” to obtain an O(log d) approximation to
maximum matching size in G in dO(log d) time, and
the second shows that it can be implemented in the
streaming setting to obtain an O(log d) approxima-
tion to maximum matching size in G in dO(log d)

space, using O(log d) passes over the edges of G.
Note that this latter bound is much weaker than the
main result of this paper: a single-pass streaming
algorithm that obtains a poly-logarithmic approxi-
mation to the matching size using poly-logarithmic
space. An important distinction, however, is that
our main result assumes a random order of arrival
of edges, while the bound shown below holds for an
adversarial order of arrival of edges in the graph.

Lemma 2.2. There is a randomized local algorithm
that, given the ability to sample uniformly random
edges of a graph G with vertex degrees bounded by
d, outputs an O(log d) approximation to maximum
matching size in G in dO(log d) time.

Proof. Our starting point is the simple observation
that if in Algorithm 1, for 0 i k � 1, we
replace the exact quantities |Ei| with estimates
m̃i such that m̃i > ⌧i whenever |Ei| � 2⌧i and
m̃i ⌧i whenever |Ei| ⌧i/2, we get an algorithm
that always outputs yes if there is a matching of
size at least 2U , and outputs no, whenever the
maximum matching size is at most U/2g. Thus
this approximate variant of Algorithm 1 su�ces to
obtain an O(g)-approximation. In what follows, we
show that a randomized local algorithm can be used
to obtain estimates m̃i, 0 i k � 1 to within a
factor of 2 in dO(log d) time.

Let k be the smallest integer such that d
2k. We will sample the behavior of Algorithm 1
with paramaters k = dlog de, di = 2k�i, g =
4k, and by running the algorithm for each U 2
{m/4d,m/2d, 2m/d, ..., n/2}. Clearly, in a degree
d-bounded graph, the maximum matching size is at
least m/2d and is at most n/2. Thus the highest
value U for which Algorithm 1 returns a Yes, the
quantity U/g gives us an O(g) approximation to the
size of the maximum matching. If the algorithm
returns No for all values of U , then we return m/d

as the answer.
We now describe a simple sampling based local

algorithm that mimics the behavior of Algorithm 1
for any value of U . Fix a value of U . The local
algorithm samples a set Ẽ ✓ E of ⇥(d log2 d) edges
uniformly at random, and determines sets Ẽi =
Ẽ\Ei. Since U is lower bounded by m/4d, and g =
⇥(log d), we have min

0ik�1

⌧i = ⌦(m/(d log d)).
A standard application of Cherno↵ bounds now
gives us that ⇥(d log2 d) samples su�ces to obtain
estimates m̃i as described above, with probability
at least 1� 1/poly(d).

Finally, to complete the proof, we describe how
a local algorithm can test whether or not an edge
e = (u, v) 2 Ei. To do this test, the algorithm first
grows a distance i breadth-first search (BFS) tree
from u – let Su denotes this set of vertices. Note
that a vertex that is more than distance i away
from u plays no role in determining if u 2 Vi. It
thus su�ces to consider the graph Gu induced by
Su and apply the iterative process of Algorithm 1
to Gu, and check if u 2 Vi at the end of i iterations
of the process. Since |Su| di, and i dlog de,
this can be implemented in dO(log d) time by a local
algorithm. We repeat the same computation to
determine if v 2 Vi. The edge (u, v) 2 Ei i↵ both u
and v are determined to be in Vi. Total work done is
thus bounded by O(log d)⇥O(log d)⇥⇥(d log2 d)⇥
dO(log d) = dO(log d); where the first O(log d) term
corresponds to number of distinct values of U for
which the algorithm is run, and the second O(log d)
term corresponds to the k distinct values of i for
which the estimate m̃i is computed inside each
iteration. Any single computation of the estimate
m̃i fails with probability at most 1/poly(d). Hence
using the union bound, the overall probability of
error can be bounded by O(log d) ⇥ O(log d) ⇥
1/poly(d) = 1/poly(d).

Lemma 2.3. For any k = O(log d), there is a ran-
domized O(dk+1 log4 d) space algorithm that obtains

an O(kd
1
k)-approximation to maximum matching

size in k passes over edges of G presented in any
(adversarial) order in graphs with vertex degrees
bounded by d.

Proof. The proof is similar to the proof of
Lemma 2.2 with the only modification being that
the local computation step in the proof is imple-
mented in the streaming setting. We will invoke
Algorithm 1 with di = d1�

i

k , and g = ⇥(kd
1
k). The

local algorithm in the proof above needs to com-

pute distance k breadth-first search trees from the
end-points of sampled edges. Total number of edge
samples for which this computation is performed
is bounded by O(log d) ⇥ O(log d) ⇥ ⇥(d log2 d) =
O(d log4 d). The streaming algorithm will grow in
parallel the BFS trees for vertices in all the sam-
ples, expanding the BFS tree by one level in each
streaming pass. Note that this step can be imple-
mented even when the edge arrival order in each
pass is adversarially chosen. Thus after k passes,
the streaming algorithm has gathered precisely the
information used by the local algorithm in the proof
of Lemma 2.2. Total space used in this process is
bounded by O(d log4 d) ⇥ dk = O(dk+1 log4 d), and
hence the assertion of the lemma follows.

One can show a family of instances on which
Algorithm 1 does not give a better than logarithmic
approximation for a natural choice of parameters.

3 An Overview of the Streaming Algorithm

In this section, we give an overview of the ideas
needed to design a single-pass streaming implemen-
tation of Gap-Matching (Algorithm 1) that uses only
poly-logarithmic space and distinguishes between
instances whose matching size is separated by a
poly-logarithmic factor. To motivate the design and
analysis of our algorithm, it is helpful to think of
the stream of edges of G as a collection of i.i.d.
(independent and identically distributed) uniform
samples of edges of G and analyzing various events
under this assumption. Over a stream of length
m, the set of edges seen by the algorithm in the
i.i.d. model is clearly distinct from the set of edges
seen in the random permutation model — i.i.d.
stream will have many repeated edges, with some
edges never appearing in the stream. Neverthe-
less, our algorithm behaves similarly in both cases
(when the edges are sampled i.i.d., or streamed as
a random permutation). Indeed our formal analy-
sis works first with the i.i.d. case (Section 5), and
then shows that the key events in the i.i.d. analysis
have roughly the same probability even when the
edges are taken from a random permutation stream
(Section 6). In the remainder of this section, we
give an overview of the main ideas assuming that
the stream contains m i.i.d samples of edges of G.

A small-space implementation of Algorithm 1
needs to handle the following key steps in the
algorithm:

(A) determine the sets Vi, i = 0, . . . , k � 1;

(B) compare the size of |Ei| = |E \ (Vi ⇥ Vi)| to
the threshold ⌧i, i = 0, . . . , k � 1.

(A) Testing membership in Vi. Algo-
rithm 1 performs residual degree tests for nodes
u 2 V . In particular, given u 2 Vi the algo-
rithm decides whether or not u belongs to Vi+1

by comparing u’s degree in Vi to di+1

. The main
idea behind our implementation is to perform this
test approximately by sampling: instead of com-
puting the degree of u in Vi exactly and compar-
ing it to di+1

, we sample m/di+1

edges of G uni-
formly at random, and for each edge (u,w) in the
sample we test “recursively” if w belongs to Vi.
Note that if degV

i

(u) > 2di+1

, say, we expect at
least two such w’s to appear in the sample, and if
degV

i

(u) < di+1

/2, then we expect to see no such
neighbors in this sample with probability at least
1/2. This gives us the following test for member-
ship of u in Vi+1

, which we denote Vi+1

-Test(u):

Take a sample S of m/di+1

edges of G. If S
contains at least one edge (u,w) with w 2 Vi,

output NO, otherwise YES.

Note that V
0

-Test(u) is trivial in that it out-
puts YES without examining the stream. For
higher values of i, we must show that the number
of samples needed to determine whether w 2 Vi for
some (u,w) 2 S is not too large. Let `i denote the
number of samples needed by Vi-Test(w), maxi-
mized over w 2 Vi�1

. We now derive a recurrence
for `i+1

in terms of `j ’s for j i. A naive bound
would suggest that it takes `i samples to test mem-
bership of w 2 Vi for every (u,w) 2 S and poten-
tially every edge in S may be incident on u, yielding
a bound of `i+1

⇡ m/di+1

·`i, but this would be too
large an overcount. To improve on this we need to
use the fact that u 2 V

1

(and so has not too large a
degree), and further it is in V

2

and so its degree in
V
1

is even less (so most of its neighbors will fail the
V
1

test) etc. More formally, we have that a Vi-node
can have at most dj+1

neighbors that belong to Vj

for all j 2 [0 : i� 1], we get the recursive relation

(3.1) `i+1

=
m

di+1

+`
1

(d
1

/di+1

)+ . . .+`i(di/di+1

).

Indeed, the algorithm samples m/di+1

edges, and
among these edges one expects to find up to

dj+1

/di+1

neighbors of u that belong to Vj , and
hence need to be tested for membership in Vj+1

, for
each j 2 [0 : i� 1] (note that the number of neigh-
bors in Vi is the deciding factor for membership in
Vi+1

). The base case is provided by `
1

= m/d
1

,
since this is the number of edges that need to be
sampled in order to determine if the degree of a
node u is above d

1

. In order to understand the
growth of `i+1

in (3.1), we rewrite it in the form

di+1

`i+1

= m+ `
1

d
1

+ `
2

d
2

+ . . .+ `i�1

di�1

+ `idi.

Thus, we have di+1

`i+1

= 2im for i = 0, . . . , k � 1,
suggesting that one cannot get a Õ(1) approxima-
tion via this recursion, since it precludes choos-
ing k = ⇥(log n/ log log n) which is necessary for
obtaining a poly-logarithmic approximation 1. To
remedy this, we modify the algorithm to ensure that
its sampling complexity follows a recursion with a
milder growth, allowing us to obtain a Õ(1) approx-
imation. For a parameter � > 0 that will be chosen
to be O(1/poly(k)), we will ensure that the sam-
pling complexity of the Vi+1

-Test satisfies
(3.2)

`i+1

=
m

di+1

+ � (`
1

(d
1

/di+1

) + . . .+ `i(di/di+1

)) ,

which implies that di+1

`i+1

 (1 + �)im, i =
0, . . . , k � 2. Thus

(3.3) `i+1

 (1 + �)im/di+1

 2m/di+1

 m

whenever � < 1/k and dk�1

is larger than a con-
stant, suggesting that a random stream of m edges
should be su�cient. We will later show that the
recursion specified by (3.2) can indeed be achieved
by adding an extra condition for membership in Vi

for i � 2. In particular, we insist that only nodes
u that satisfy degV

i�1
(u) �di are included. This

condition dampens the growth of `i, allowing us to
achieve a poly-logarithmic approximation.

(B) Comparing |Ei| to ⌧i. We take the
following natural approach for comparing the size of
Ei to the threshold ⌧i. Choose a uniformly random
set of edges E⇤ ✓ E of size about m/⌧i. For each
edge e = (u, v) 2 E⇤, run a Vi-Test(u) and a Vi-

Test(v), and count the number of edges in this
sample for which both endpoints passed the Vi-

Test (since we can only use poly-logarithmic space,
we only sample a new edge from the stream once

1We note, however, that this analysis can already be used
to obtain an no(1) approximation.

our current test finishes). If this count is positive,
we conclude that |Ei| � ⌧i and accept (in our
implementation, we take a sample of size ⇥(m logn

⌧
i

)
to get concentration).

The main question that needs to be resolved
for this approach to be feasible is the number
of samples that the invocations of Vi-Test will
consume – we need it to be bounded by m, the
length of the stream. A direct bound using (3.3)
gives

|E⇤| · `i ⇡ |E⇤| ·
✓
m

di

◆
=

✓
m

⌧i

◆
·
✓
m

di

◆

=

✓
2

3

g

Udi
m

◆
·
✓
m

di

◆
,

where the last equality uses the value of the
parameter ⌧i from Algorithm 1. Note that to obtain
a poly-logarithmic approximation, we need the gap
parameter g as well as the smallest allowed degree
di to be bounded by a poly-logarithmic function.
Thus the bound above behaves as ⌦̃(m2/U) which
is much larger than m in general. However, the
following observation makes the approach feasible:
since the Vi-Tests take longer as i gets larger,
for each edge (u, v) 2 E⇤ we first run a V

1

-Test

on its endpoints, then proceed to V
2

-Test only if
both endpoints pass etc. In other words, we start
with the lowest level tests and keep running them
on both endpoints as long as both of them pass
previous tests, hoping that most edges will fail the
shorter lower-level tests. Then for an edge e 2
Ej , j < k� 1 we will run all tests up to Vj+1

-Test,
observe that one of the end-points of e fails the
Vj+1

-Test, and declare the edge e to be in Ej (for
an edge e 2 Ek�1

it would be natural to end with
the Vk�1

-Test since there is no Vk-Test to run;
however, in our actual implementation we will stop
at Ek�2

, see section 4). Thus the number of samples
needed to test edges in E⇤ can be bounded by

i�1X

j=0

|E⇤ \ Ej | · `j+1

+ `i,

where the first term accounts for edges in E⇤ that
fail after running a Vj+1

-Test, and the second term
accounts for a possibly successful Vi-Test. This is
already much better than the previous bound but
still does not quite get the job done. Our final
observation is that we can first run our tests for E

1

,
only proceed to E

2

if we discover that |E
1

| ⌧
1

(since we can already accept otherwise), and then
only proceed to E

3

if |E
2

| ⌧
2

etc. Thus, when
running the tests for Ei, we can assume that |Ej |
⌧j for j 2 [0 : i � 1]. Since E⇤ is a sample of m/⌧i
edges of E, we expect to have |E⇤ \ Ej | ⌧j/⌧i in
this case. Assume for concreteness that ⌧i ⇡ U ·di/g
as in Algorithm 1. Then the number of samples
taken by our tests is bounded by

i�1X

j=0

(⌧j/⌧i) · `j+1

+ `i ⇡
i�1X

j=0

(⌧j/⌧i) ·m/dj+1

+m/di

=
i�1X

j=0

m(dj/di) ·
1

dj+1

+m/di

 i · max
j2[0:i�1]

(dj/dj+1

) ·m/di +m/di

By choosing the ratio dj/dj+1

to be at most

logO(1) n, and terminating the process once di be-
comes poly-logarithmic, the expression above can
be bounded by m. This is exactly what our al-
gorithm will do: we only test whether sets Ej ,
j < k � 1 are su�ciently large, slightly trading o↵
the quality of approximation for the e�ciency of
the testing process. In the next section we give full
details of our algorithm.

4 The Streaming Algorithm

In this section, we present in detail our streaming
algorithm for solving the Gap-Matching problem.
As explained earlier, the main idea behind our al-
gorithm is to mirror the behavior of Algorithm 1.
Recall that Algorithm 1 defines k near-regular in-
duced subgraphs Gi = (Vi, Ei), i = 0, . . . , k � 1, via
an adaptive exploration process. It outputs YES if
at least one of these subgraphs is su�ciently dense,
and NO otherwise. In particular, Algorithm 1 out-
puts YES i↵ one has |Ei| � ⌧i for at least one
i 2 [0 : k�1], where ⌧i’s are suitably chosen thresh-
olds.

For each L = 0, . . . , k � 2, our algorithm sam-
ples (C log n)m/⌧L uniformly random edges of G,
and for every sampled edge e = (u, v) runs a Vj-
Test on each endpoint of e, which is a randomized
equivalent of a test for membership in the sets Vj

from Algorithm 1. The algorithm counts the num-
ber of edges in this sample whose both endpoints
pass the Vj-Test. It then outputs NO if the num-
ber of such edges exceeds C log n and YES oth-
erwise (see Algorithm 2 below). Since our algo-
rithm cannot use more than polylogarithmic space,

a new edge is taken from the stream for testing only
once testing of the previous edge finishes. The Vj-
Test itself is a recursive procedure similar to Al-
gorithm 1. V

1

-Test(u) samples a fixed number of
edges in the stream, runs Vj�1

-Test on the neigh-
bors of u found in this way, and outputsYES if and
only if the number of neighbors that pass the Vj�1

-
Test is smaller than a threshold. The pseudocode
of Vj-Test is given in Algorithm 4. Since Vj-Test

takes more time for large j, we introduce an ad-
ditional primitive GetLevel(u, j) (Algorithm 3),
which runs Vj-Test for increasing j starting with
j = 0 while it gets YES answers, crucially reducing
the sample complexity.

4.1 The algorithm We now give the pseu-
docode for the main algorithm and various auxil-
iary subroutines invoked by it. We assume that the
algorithm knows m and n. This assumption is not
restrictive, since running copies of the algorithm for
a geometrically increasing sequence of m and n only
increases the space requirement by a poly(log n) fac-
tor.

Algorithm 2 A streaming implementation of the
Gap-Matching algorithm

1: procedure GapMatching(U, g)
2: ↵j 0 for all j = 0, . . . , k � 2
3: . Counters for number of successful exper-

iments for ⌫j(E)
4: for L = 1 to k � 2 do
5: . Run the loop iterations in parallel
6: QL (C log n)m/⌧L
7: for t = 0 to QL do
8: (u, v) next edge in the stream
9: for s = 1 to L do

10: If Vs-Test(u)==0 then break
11: If Vs-Test(v)==0 then break
12: end for
13: If s = L then ↵s ↵s + 1
14: end for
15: If ↵L > (9/10)C log n return YES
16: end for
17: return NO
18: end procedure

The Vj-tests are recursive, with V
1

-test being
a simple degree test, and Vj-test calling Vj�1

-tests
recursively. The function GetLevel(u, r) given
below runs Vj-tests starting from the lowest values
of j and keeps running these tests while it gets

positive answers. The motivation for this is to
determine the largest j such that Vi-Test(u), i =
0, . . . , j return 1 while using few samples.

Algorithm 3 Determining if sampled level of a
vertex u is at least r
1: procedure GetLevel(u, r) . r � 0
2: if r � 2 then
3: L GetLevel(u, r � 1)
4: If L < r � 1 then return L
5: end if
6: If Vr-Test(u)==0 then return r � 1
7: else return r
8: end procedure

Algorithm 4 Vj-Test(u), j � 2

1: procedure Vj-Test(u)
2: ↵ 0
3: Rj m/dj
4: for i = 1 to Rj do
5: e = (u,w) next edge in the stream
6: If e 62 �(u) continue
7: L GetLevel(v, j � 2)
8: If L == j � 2 then ↵ ↵+ 1
9: If ↵ > C log n then return 0

10: end for
11: return 1
12: end procedure

Algorithm 5 V
1

-Test(u)

1: procedure V
1

-Test(u)
2: ↵ 0
3: R

1

 m/d
1

4: for i = 1 to R
1

do
5: e next edge in the stream
6: If e 62 �(u) continue
7: w other endpoint of e
8: L GetLevel(w, 0)
9: If L == j � 1 then ↵ ↵+ 1

10: If ↵ > C log n then return 0
11: end for
12: return 1
13: end procedure

Algorithm 6 V
0

-Test(u)

1: procedure V
0

-Test(u)
2: return 1
3: end procedure

We now note that GapMatching(U, g) can
be implemented using O(poly(log n)) space as
long as k = O(log n). Indeed, first ob-
serve that GetLevel can be implemented to
use O(poly(log n)) space. This is because
GetLevel(u, r) only calls GetLevel(w, j) for
j < r and Vj-Test(w) for j r for various
vertices w. Thus, the depth of the call stack
can not exceed O(k). At the same time, each
call to GetLevel(w, j) and Vj-Test(w) only uses
O(log n) space for local variables (since both func-
tions use at most one counter). These two facts
together imply that O(poly(log n)) space is su�-
cient. Finally, note that GapMatching(U, g) runs
at most L = O(k) = O(log n) loops in parallel,
which completes the argument.

5 Analysis for the IID Model

In this section, we prove that the stream-
ing algorithm presented in Section 4 solves
the Gap-Matching in poly(log n) space using
O(m/ log2 n) i.i.d. samples. Specifically, we show
the following result:

Theorem 5.1. Algorithm 2 solves
Gap-MatchingU,g with high probability in poly(log n)

space using O(m/ log2 n) i.i.d. samples of edges of
G when U, g � poly(log n).

At a high level, our proof relies on defin-
ing a sequence of probability distributions, namely
{⌫j}k�1

j=0

, where ⌫j(u) 2 [0, 1] for each u 2 V , such
that the weight ⌫j(E) will serve as a proxy for the
set Ej used in Algorithm 1. We will refer to these
functions as level distributions (see definitions be-
low). We then show that Algorithm 2 correctly
estimates the value ⌫j(E) using only O(m/ log2 n)
edge samples. The remainder of this section is or-
ganized as follows. Section 5.1 summarizes vari-
ous parameters used in our analysis; Sections 5.2
and 5.3, formally define the notion of level distribu-
tions, and establish a tight connection between level
distributions and the size of the maximum match-
ing. In Section 5.4 we show that our streaming
algorithm distinguishes between the Yes and No in-
stances with high probability, without bounding the

number of samples used, and then finally in Sec-
tions 5.5, 5.6, and 5.7, we complete the analysis by
bounding the number of i.i.d. samples used to be
O(m/ log2 n).

5.1 Parameters We start with a glossary of
parameters that are used in the algorithm and
analysis, and list them here for reference:

• U, g – upper bound and gap for
Gap-MatchingU,g

• n = d
0

� d
1

� . . . � dk�1

� dk = 1 –
degree thresholds for the algorithm. We will
use a geometric sequence of degree thresholds
di = n1�1/k, where n1/k will be chosen to be
polylogarithmic in n.

• C > 0 – constant such that sum of Bernoulli
random variables with expectation at least
(1/2)C log n deviates from expectation by more
than a 1± 1/100 factor is bounded by n�100;

• ⌧j – thresholds such that ⌫j(E) � ⌧j implies
that we are in the YES case. These parame-
ters will be defined precisely in the parameter
setting lemma (Lemma 5.16). We will set

⌧j ⇡ (C log n)Udj+2

/k

for j 2 [0 : k � 3], and let ⌧k�2

⇡ U .

• Rj – the number of edges sampled for testing
in Vj-Test, which we choose as Rj = m/dj ;

• QL – the number of edges sampled for testing
whether ⌫L(E) � ⌧L by GapMatching. We
use QL = (C log n)m/⌧L.

Setting parameters to the proper values is a
technical task that we do at the end of this section
in Lemma 5.16. All lemmas in this section will
assume that the following relations p1-p5 hold for
our choice of parameters. We list them here for
reference:

p1 dj = (dk�1

)k�j for j 2 [0 : k � 2], and dk�1

�
C 0 log4 n for a su�ciently large constant C 0 >
0.

p2 � C 00 log�4 n for a su�ciently large constant
C 0 > 0. The parameter � does not appear in
our algorithm, but will be useful for analyzing
the sampling complexity of our subroutines in
section 5.5. It is analogous to the parameter �
in section 3.

p3 ⌧j/((C 0 log4 n)dj) � C log n for all j 2 [0 : k�2]
and a su�ciently large constant C 0 > 0.

p4 1

6

⌧j/dmax
j � U/g for all j 2 [0 : k � 2].

p5 �dj�1

/dj = C log n for all j 2 [1 : k � 1].

We note that here and below the constant C > 0 is
the constant defined above that ensures good con-
centration for sums of Bernoulli rv’s with expecta-
tion at least C log n.

5.2 Level distributions We now define a col-
lection of distributions associated with nodes of G
that captures the behavior of Vj-Tests. We refer to
these distributions as level distributions, where we
think of a node u for which the Vj-test accepts as
a j-level node. This will be useful for analyzing the
approximation guarantees provided by Algorithm 2.

We first define Bernoulli 0/1 random variables
Ai(u) for each node u 2 V such that the set of
nodes for which

Qj
i=0

Ai(u) = 1 resembles the set
Vj in Algorithm 1.2 We will later show how these
distributions can be used to approximate matching
size in G.

Distributions Aj(u). Fix u 2 V . First, define
A

0

(u) ⌘ 1. The distributions Aj(u), j = 1, . . . , k�1
are defined as follows. Let e

1

, . . . , eR
j

denote i.i.d.
samples of edges of G, where

(5.4) Rj = m/dj .

Let Wu
j :=

S
e
r

=(u,w),r2[1:R
j

]

{w} denote the set of

neighbors w of u such that (u,w) appeared in the
sample (note that Wu

j is in general a multiset). Let
(5.5)

A
1

(u) :=

⇢
0, if

P
w2Wu

1
A

0

(w) > C log n

1 o.w.,

and for j = 2, . . . , k � 1
(5.6)

Aj(u) :=

(
0, if

P
w2Wu

j

Qj�2

i=0

Ai(w) > C log n

1 o.w.,

where Ai(w) in (5.6) are independent random
variables and C > 0 is a su�ciently large constant.
Note that in order to sample Aj(u), one needs to

2It should be noted that we do not prove a formal
correspondence between these random variables and the

actual sets V
i

in Algorithm 1, but instead prove directly
that observing a su�ciently large number of such random
variables is enough to approximate matching size.

sample Ai(w), i = 0, . . . , j � 1 for w 2 N(u). We
will write A ⇠ A to indicate that random variable
A is sampled from distribution A. We denote the
distribution of Aj(u) by Aj(u) for j = 0, . . . , k � 1
and u 2 V . It will be convenient to have the
following notation for the marginals of

Qj
i=0

Ai(u).
For each u 2 V let

(5.7) ⌫j(u) := Pr

"
jY

i=0

Ai(u) = 1

#
.

We extend the definition of ⌫j to edges e 2 E
by letting ⌫j(e) := ⌫j(u)⌫j(v). For a function
f : U ! R, where U = V or U = E, and a set
S ✓ U we write f(S) :=

P
x2S f(u).

We have

Claim 5.1. For all u 2 V, j 2 [0 : k � 1]

⌫j(u) = Pr[GetLevel(u, j) == j]

Proof. The claim follows by noting that the sam-
pling process defined above exactly corresponds to
the execution of GetLevel (in particular, we chose
all cuto↵s to match those in algorithms in the pre-
vious section exactly).

In what follows we will repeatedly use the fol-
lowing sampling process to reason about the distri-
butions ⌫j . For each node u 2 V sample random
variables Ai(u), i = 0, . . . , k � 1 independently. For
j = 0, . . . , k � 1 let V̂j contain nodes u such thatQj

i=0

Ai(u) = 1. Let Êj := E \ (V̂j ⇥ V̂j).
We start by proving bounds on the mass as-

signed to N(u) by ⌫i, i = 0, . . . , j � 1 as a function
of the sets V̂j that u belongs to. These bounds will
be crucial for relating level distributions ⌫j to the
size of the matching in the graph below.

Lemma 5.2. Suppose that �di�1

/di � C log n for
a su�ciently large constant C > 0 and all i =
1, . . . , k � 1 (p5), as guaranteed by Lemma 5.16.
Let Ai(u) ⇠ Ai(u), i = 0, . . . , k � 1 for u 2 V ,
and let V̂j , j 2 [0 : k � 1] be defined as above. Then
the following assertions hold with probability at least
1� n�10:

(Upper bounds)

U1 ⌫
0

(N(u)) 2(C log n)d
1

for all u 2 V̂
1

;

U2 ⌫i�1

(N(u)) 2(C log n)di+1

for all
u 2 V̂j , j � 2 and all i = 1, . . . , j � 1.

(Lower bounds)

L1 ⌫
0

(N(u)) � 1

2

(C log n)d
1

for all u 2 V̂
0

\V̂
1

.

L2 ⌫j�1

(N(u)) � 1

2

(C log n)dj+1

for u 2 V̂j \
V̂j+1

, for all j 2 [1 : k � 2].

Remark 5.3. Estimates from Lemma 5.2 will be
useful in three distinct lemmas in what follows.
Upper bounds U1 and U2 instantiated for i = j�1
will be used in Lemma 5.4 and subsequently in
Lemma 5.6 to exhibit a large fractional matching
in G in terms of ⌫j’s. Lower bounds L1-L2 will
be used to prove the converse, i.e. conclude that
existence of a large matching implies that at least
one of the ⌫j’s is large (see Lemma 5.7). Finally,
upper bounds U2 for all i 2 [0 : j � 1] will be used
to bound sampling complexity of our algorithm in
Lemma 5.12.

Proof of Lemma 5.2:
U1 and L1 follow from the definition (5.5) of

A
1

(u), as we now show. Recall that by (5.6) we
have for a node u 2 V̂

0

that u 2 V̂
1

i↵ A
1

(u) = 1,
i.e. i↵

(5.8)
X

w2Wu

1

A
0

(w) C log n.

We denote the multiplicity of w 2 N(u) in Wu
1

by
�w. Since

E

2

4
X

w2Wu

1

A
0

(w)

3

5 = E

2

4
X

w2N(u)

�wA0

(w)

3

5

=
X

w2N(u)

E [�w] ⌫0(w)

=
R

1

m
· ⌫

0

(N(u)) = ⌫
0

(N(u))/d
1

,

where we used the fact that A(w) is sampled
independently of �w. Since ⌫

0

(w) = A
0

(w) ⌘ 1 for
all w, U1 and L1 now follow by Cherno↵ bounds.

U2 and L2 follow from the definition (5.6) of
Aj(u), j � 2, as we now show. For a node u 2 V̂j�1

one has that u 2 V̂j i↵ Aj(u) = 1, i.e. i↵

(5.9)
X

w2N(u)

�w ·
j�2Y

i=0

Ai(w) C log n.

We have that �w are independent of Ai(w) and
satisfy

(5.10) E[�w] = Rj/m

for each w 2 N(V). Taking the expectation of (5.9)
with respect to the choice of Wu

j and using (5.10)
yields

E

2

4
X

w2N(u)

�w ·
j�2Y

i=0

Ai(w)

3

5

= (Rj/m) ·
X

w2N(u)

E

"
j�2Y

i=0

Ai(w)

#

= (Rj/m)⌫j�2

(N(u)) = ⌫j�2

(N(u))/dj

(5.11)

Now suppose for contradiction that u 2 V̂j and
⌫j�2

(N(u)) � 2(C log n)dj . Then by the choice of
the constant C we have using Cherno↵ bounds thatP

w2N(u)

Qj�2

i=0

Ai(w) > C log n with probability at

least 1� n�10. Conditioned on this event, we have
u 62 V̂j , leading to a contradiction. This yields
U2 for i = j � 1. The claim for other values of
i follows since the sets V̂i are nested. Reversing the
inequalities (with appropriately smaller constants
on the rhs) yields L2 instantiated for u 2 V̂j�1

.
In what follows we will need

Lemma 5.4. (Maximum degree of nodes in Êj)

Consider j 2 [0 : k� 1]. Let V̂j contain each u 2 V
independently with probability ⌫j(u). Then whp for

each u 2 V̂j one has

deg
ˆV
j

(u) dmax
j ,

where dmax
0

= d
0

, dmax
j = 4(C log n)dj for j 2 [1 :

k � 1].

Proof. Apply Cherno↵ bounds to U1-U2 from
Lemma 5.2. Note that we are only using the setting
i = j � 1 for U2 here.

5.3 Level distributions and matching size
We now derive a connection between the distribu-
tions ⌫j , j = 0, . . . , k � 1 and the size of the maxi-
mum matching in G (recall that ⌫j are defined by
(5.7)).

Our proof proceeds as follows. We first sample
a sequence of nested sets V̂j , j = 0, . . . , k � 1 using
the distributions ⌫j defined in the previous section.
In particular, each node u 2 V samples Ai(u)
independently for i = 0, . . . , k � 1. A node u is
then added to all sets V̂j such that

Qj
i=0

Ai(u) = 1.
Thus, for each u 2 V, j 2 [0 : k � 1] we have
Pr[u 2 V̂j] = ⌫j . Let Êj = E \ (V̂j ⇥ V̂j). We

first show that the size of Êj is tightly concentrated
around ⌫j(E).

We will need the following simple

Lemma 5.5. Assume (p3), as guaranteed by
Lemma 5.16. For all j = 0, . . . , k� 1 if ⌫j(E) � ⌧j,

then |Êj | 2 (1± 1/4)⌫j(E) with probability at least
1� n�7.

The proof uses

Theorem 5.2. (Theorem 7.8.1 in [3])

Consider the polynomial

Y =
X

e2E

Y

i2e

ti,

where we have
Q

i2e ti = 1 when e = ;. For
a set A ✓ V let YA denote the derivative of Y
with respect to the variables in A. Let Ej :=
maxA✓V,|A|�j E[YA]. Let ti 2 {0, 1} be indepen-
dent random variables. Then there exist constants
a
2

, b
2

> 0.

Pr[|Y �E[Y]| > a
2

�2

p
E

0

E
1

] < b
2

e��/4+logn

Proof of Lemma 5.5: Recall that by Lemma 5.2
one has

⌫j(u) O(log n)dj

as long as ⌫j(u) > n�10. Let V ⇤ = {u 2 V :
⌫j(u) > n�10}, and let E denote the event that none
of u 2 V \V ⇤ are sampled. One has Pr[E] � 1�n�8

by the union bound.
Let tu, u 2 V ⇤ denote independent Bernoulli

0/1 variables with E[tu] = ⌫j(u). Let

Y =
X

e=(u,v)2E\V ⇤⇥V ⇤

tutv.

Note that Y = |Êj | and E[Y] = ⌫j(E), and we
would like to prove that Y is tightly concentrated
around its mean. We verify the conditions of
Theorem 5.2. For a set A ✓ V ⇤ let YA denote
the derivative of Y with respect to the variables
in A. Note that we can restrict our attention to
singleton sets A since YA = 0 for |A| > 2 and
YA 1 when |A| = 2. It is easily seen that when
A = {u}, we have YA =

P
v2N(u) ⌫j(v), so that

E[YA] = ⌫j(N(u)) = O(log n)dj . Thus, in terms
of the parameters of Theorem 5.2 we have E

1

=
O(log d)dj and E

0

� ⌧j , so E
1

 (c2 log�4 n)E
0

for

a su�ciently small constant c > 0 by p3, so we havep
E

0

E
1

 c log�2 n⌫j(E). Finally, we have

Pr[||Êj |� ⌫j(E)| > (1/4)⌫j(E)]

 Pr[||Êj |� ⌫j(E)| > a
2

�2

p
E

0

E
1

]

 Pr[||Êj |� ⌫j(E)| > a
2

�2c log�2 n⌫j(E)]

< b
2

e��/4+logn n�8,

where we set � = c0 log n with a su�ciently large
constant c0 > 0. A union bound now gives the
result.

Lemma 5.6. Assume p4, as guaranteed by
Lemma 5.16. If ⌫j(E) � (2/3)⌧j for some
j 2 [0 : k�1], then OPT(G) � U/g with probability
at least 1� n�10.

Proof. Let j be such that ⌫j(E) � (2/3)⌧j . To
prove the statement of the lemma, we exhibit a
matching of size at least

(1/2)|Êi|/dmax
i � (1/4)⌫i(E)/dmax

i

� (1/6)⌧i(E)/dmax
i � U/g

in G, where we used Lemma 5.5 for the first
inequality and property p4 for the last inequality.

We exhibit a fractional matching of size at least
|Êi|/dmax

i by placing weight 1

dmax

i

on edges of Êi.

We need to verify feasibility. For bipartite graphs it
is su�cient to check that the total weight incident
on every node is at most 1. For u 2 V̂i we have
deg

ˆV
i

(u) dmax
i by Lemma 5.4 whp, so the total

weight incident on a node is at most 1. This verifies
feasibility for bipartite graphs. For non-bipartite
graphs, it is su�cient to consider the restriction
of the fractional matching we constructed to the
edges going across a uniformly random bipartition
of G. Such a matching will be of size at least
(1/2)|Êi|/dmax

i in expectation over the bipartition.
Thus, there exists at least one bipartition that
yields a matching of size at least (1/2)|Êi|/dmax

i ,
completing the proof.

Lemma 5.7. Let parameters be set as in
Lemma 5.16. Suppose that G = (V,E) con-
tains a matching of size at least U . Then either

[A] there exists i = 0, . . . , k�3 such that ⌫i(E) � ⌧i
or

[B] ⌫k�2

(E) � ⌧k�2

.

Proof. Sample random sets V̂j as described above.
By Lemma 5.2 one has whp

1. ⌫
0

(N(u)) � d
1

for u 2 V̂
0

\ V̂
1

by Lemma 5.2,
L1

2. ⌫i�1

(N(u)) � 1

2

(C log n)di+1

for u 2 V̂i \ V̂i+1

for i = 1, . . . , k � 2 by Lemma 5.2, L2;

Recall that by definition of V̂i one has E[deg
ˆV
i

(u)] =
⌫i(N(u)) for all u 2 V and i 2 [0 : k � 2]. We
now have whp by Cherno↵ bounds (1) deg

ˆV0
(u) �

d
1

/2 � 1

4

(C log n)d
2

for u 2 V̂
0

\ V̂
1

(since

d
1

� (log4 n)d
2

by (p1)) and (2) deg
ˆV
i�1

(u) �
1

4

(C log n)di+1

for u 2 V̂i \ V̂i+1

for i 2 [1 : k � 2].
Thus,

|Êi�1

| � 1

4
(C log n)di+1

· |V̂i \ V̂i+1

|(5.12)

for i 2 [1 : k � 2] whp. Now if

(5.13)
k�2X

i=0

|V̂i \ V̂i+1

| = |V |� |V̂k�1

| � U/2,

we get using (5.12) that

|Êi| �
U/2

k

1

4
(C log n)di+2

� ⌧i

for some i 2 [0 : k�3], where we used the definition
of ⌧i (see Lemma 5.16).

Now suppose that (5.13) does not hold. Then
since G has a matching of size at least U by
assumption, removing at most U/2 nodes with all
incident edges leaves at least U/2 edges in Êk�1

,
yielding |Êk�2

| � |Êk�1

| � ⌧k�2

by the choice of
⌧k�2

(see Lemma 5.16), as required.

5.4 Correctness of GapMatching with ac-
cess to unlimited samples We assume for the
purposes of this section that Algorithm 2 has ac-
cess to a stream of i.i.d. samples of edges of
G of unlimited length. We will show later in
sections 5.5 and 5.6 that Algorithm 2 consumes
O(m/ log2 n) samples whp. We first show that if
Algorithm 2 outputs YES , then we are not in the
NO case with high probability. We then show that
if the answer is YES , then the algorithm outputs
YES whp (Lemma 5.10) The following claim will
be useful:

Claim 5.8. If ↵L � (9/10)C log n, then ↵L · m
Q

L

2
(1± 1/10)⌫L(E) with probability at least 1� n�10.

Proof. This follows by the choice of C and Cherno↵
bounds.

We now have

Lemma 5.9. Assuming p1-p5, if Algorithm 2 out-
puts YES , then whp OPT(G) � U/g.

Proof. Recall that we have QL = (C log n)m/⌧L.
Algorithm 2 only outputs YES if ↵L >
(9/10)C log n. By Claim 5.8 we have ↵L ·m/QL
(10/9)⌫L(E) whp, which implies that

⌫L(E) � (9/10)(↵L/(C log n))·⌧L � (9/10)2⌧L � (2/3)⌧L.

We then have OPT(G) � U/g by Lemma 5.6,
completing the proof.

It remains to show that if there exists a match-
ing of size at least U , then Algorithm 2 outputs
YES .

Lemma 5.10. Suppose that G = (V,E) contains a
matching of size at least U . Then with probability
at least 1 � n�10 one has at the end of execution
of Algorithm 2 that ↵L � (9/10)C log n, so the
algorithm outputs YES .

Proof. Let L 2 [0 : k � 2] be such that ⌫L(E) � ⌧L
(existence of such L is guaranteed by Lemma 5.7).
Consider the parallel execution of the for loop in
Algorithm 2 that has L = j. Let E⇤ denote the
set of edges that is tested in this parallel execution.
For j = 0, . . . , L let Ẽj ✓ E⇤ denote the number of
edges e = (u, v) 2 E⇤ that are determined to be at
level at least j. Since each such edge e is uniformly
random edge of G, one has

(5.14) E[|Ẽj |] =
1

m
⌫j(E) ·Q.

Using this in (5.14), we get

E[|ẼL|] �
1

m
·Q · ⌫L(E) � 1

m
·Q · ⌧L = C log n.

(5.15)

Thus, with probability 1 � n�10 one has that
↵L � (9/10)(C log n) at the end of the run of the
algorithm, and hence the algorithm outputs YES.

Lemma 5.11. Assuming p1-p5, as guaranteed by
Lemma 5.16. Then Algorithm 2 solves the
Gap-MatchingU,g problem whp, assuming access to
an unlimited number of samples, for any U, g
greater than a poly(log n).

Proof. Lemma 5.9 shows that the algorithm out-
puts YES in the NO case only with polynomially
small probability. Lemma 5.10 shows that the al-
gorithm outputs YES in the YES case whp.

5.5 Sampling complexity of GetLevel In
this section we analyze the sampling complexity of
GetLevel. Recall that GetLevel(u, r) runs Vj-
tests on u for j r � 2 and stops as soon as at
least one test fails. Thus, the number of samples
used by the call depends on the answer returned as
well as the parameter r passed. To this end, we
let `j denote the number of edges of G sampled by
GetLevel(u, r) for r � j if no Vj0-Test is run
during the execution for any j0 > j. Note that this
happens, for example, whenever the returned an-
swer is at most j � 1 (and, of course, when r j).
We will exhibit functions Tj , fj , j = 1, . . . , k�1 such
that

Pr[`j > Tj] < fj .

In what follows we show that any Tj , fj that
satisfy

T
1

� m/d
1

f
1

� 0

Tj � m/dj +
j�1X

i=1

(4�di/dj + 1) · Ti,

j 2 [2 : k � 1]

fj � O(n�10) +
j�1X

i=1

(4�di/dj + 1) · fi,

j 2 [2 : k � 1]

(5.16)

give a valid bound.

Lemma 5.12. Suppose that �dj�1

/dj = C log n,
j 2 [1 : k � 1] (p5), as guaranteed by Lemma 5.16.
Let `j be defined as above, and let Tj , fj satisfy
(5.16). Then Pr[`j > Tj] < fj.

Proof. The proof is by induction on j.

Base:j = 1 The test is non-recursive and examines
exactly R

1

= m/d
1

edges.

Inductive step:j � 1! j We will bound Tj in
terms of T

1

, . . . , Tj�1

and f
1

, . . . , fj�1

. Note
that we have j � 2 here.

Recall (see Algorithm 3) that a call
to GetLevel(u, j) starts by calling

GetLevel(u, j � 1). Suppose that this
invocation returned j � 1. Then Algorithm 3
calls the function Vj0-Test(u) for j0 = j but
not for any larger j0. The latter function
samples Rj edges in the stream and invokes
GetLevel(w, j � 2) on the other endpoints
of edges in this sample that are incident on
u. We will bound the sampling complexity
of Vj-Test in terms of Tj0 , j0 < j. This
will in turn allow us to bound the sampling
complexity of GetLevel(u, j). The crux of
the proof is bounding the number of calls to
GetLevel(w, j � 2) from a call to Vj-Test

that return j0 for j0 j � 2. Here we use two
bounds: for j0 < j � 2 the number of such
calls is bounded using Lemma 5.2, and for
j0 = j � 2 the number of such calls is bounded
by C log n by the definition of the test. We
start with the first bound.

By Lemma 5.2, U2 and the assumption
�ds�1

/ds = C log n, s 2 [1 : k � 1] one has

⌫i�1

(N(u)) 2(C log n)di+1

= 2�di

for all i = 1, . . . , j � 2 with probability at least
1�n�10 over the randomness in the invocation
ofGetLevel (note that this is only non-trivial
for j � 3). For each j0 2 [0 : j�1] let qj0 denote
the number of neighbors of u whose invocation
of GetLevel returned at least j0 � 1 (i.e.
involved a call to Vj0-Test). For w 2 N(u)
let �w denote the number of times w appears
in the set of nodes tested in Vj-Test(u, r).

For each i = 1, . . . , j � 2 one has

E[qi] = Rj ·E

2

4
X

w2N(u)

�w · ⌫i�1

(w)

3

5

 1

m
Rj · 2�di = 2�di/dj

(5.17)

where we used the definition of Rj in (5.4).
We have that ⌫j�1

(w) 2 [0, 1] for all w 2 V
by definition, and the rhs of (5.17) is at least
C log n, so Cherno↵ bounds imply that for
i = 1, . . . , j � 2

(5.18) qi 4�di/dj

with probability at least 1 � n�10. Further-
more, recall that the algorithm terminates and
outputs 0 if more than C log n = �dj�1

/dj

nodes w that have been tested are placed at
level at least j � 2, so the number of calls
to GetLevel(w, j � 1) that return j � 2 is
bounded by �dj�1

/dj . Combining this with
(5.18), we get by the inductive hypothesis
that the number of edges used by Vj-Test is
bounded by

Rj +
j�2X

i=1

qi · Ti + (�dj�1

/dj)|Tj�1

|

 Rj +
j�1X

i=1

(4�di/dj) · Ti

with probability at least

1�

O(n�10) +

j�1X

i=1

(4�di/dj) · fi

!
.

where the probability is taken over the random-
ness used in recursive calls. Further, note that
the call to GetLevel(u, j � 1) takes at most
Tj�1

time since no Vj0-Test, j0 � j is run.
Taking this into account, we conclude that the
sampling complexity is bounded by

Tj�1

+

Rj +

j�1X

i=1

(4�di/dj) · Ti

!

 m/dj +
j�1X

i=1

(4�di/dj + 1) · Ti.

with probability at least

1�

O(n�10) +

j�1X

i=1

(4�di/dj + 1) · fi

!
,

as required.

Finally, we show

Lemma 5.13. Suppose that �dj�1

/dj � C log n
for all j 2 [1 : k � 1] (p5), as guaranteed by
Lemma 5.16. Then djTj = m · (1 + 8k�)j�1 and
djfj = (1+ 8k�)j�1d

0

n�10 yield a valid solution to
(5.16) for any di as long as k = O(log n).

Proof. This follows directly from (5.16). Indeed,
multiplying both sides by dj and replacing inequal-

ities with equalities, we get

djTj = m+
j�1X

i=1

(4�di + dj) · Ti

djfj = djn
�10 +

j�1X

i=1

(4�di + dj) · fi

T
1

= m/d
1

, f
1

� 0

(5.19)

We now upper bound the growth of the solution to
(5.19). In particular, we get

djTj m+
j�1X

i=1

(4�di + dj) · Ti

 m+
j�1X

i=1

8�diTi,

where we used �dj�1

/dj � C log n to upper bound
dj with 4�dj�1

. Substituting djTj = m·(1+8k�)j�1

into the rhs yields

m+m
j�1X

i=1

8�(1 + 8k�)i�1

m+m8k�(1 + 8k�)j�2

m(1 + 8k�)j�1

as required. A similar calculation yields the bound
on fj .

Remark 5.14. Lemma 5.13 suggests that sampling
complexity can be reduced by increasing dj, at the
expense of a loss in the approximation factor.

5.6 Sampling complexity of GapMatching

Lemma 5.15. Assume p1, p2, as guaranteed by
Lemma 5.16. Let L 2 [0 : k � 2] be such that for
each j 2 [0 : L] one has ⌫j(E) ⌧j. Then the total
number of edges sampled by Vj-tests run in loop L
in Algorithm 2 is O(m/ log2 n).

Proof. Consider any parallel loop in Algorithm 2.
Let E⇤ denote the set of edges that is tested in
such a parallel loop. For j = 0, . . . , L let Ẽj ✓ E⇤

denote the set of edges e = (u, v) 2 E⇤ such that
are determined to be at level at least j.

First note that for each of u, v the algorithm
runs Vi-tests starting with i = 1 until one of
the tests fails or until i = L. Let j be the
largest such that a Vj-test is run on either u or

v. Note that the sequence of calls to Vj-Test

corresponds exactly to a call to GetLevel(u, L)
(resp. GetLevel(v, L)) conditioned on outputting
a level no larger than j. By Lemma 5.12 the
number of samples that GetLevel(u, L) consumes
conditioned on outputting a level no larger than j
is bounded by Tj+1

with probability 1�fj+1

, where
Tj , fj are given in Lemma 5.13. Thus, the number
of samples it takes to test an edge in |Ẽj \ Ẽj+1

| is
bounded by 2Tj+1

, for all j 2 [1 : k � 1]. We now
upper bound the number of samples used.

First suppose that L < k � 2. Then ⌧j =
U/2
k

1

4

�dj+1

for all j 2 [0 : L]. Note that |Ẽj | =
O(⌧jQL/m) with probability at least 1� 1/poly(n)
by Cherno↵ bounds, so we get

LX

j=0

|Ẽj |(2Tj+1

) =
LX

j=0

O(⌧jQL/m)Tj+1

= (C log n)
LX

j=0

(⌧j/⌧L)Tj+1

= (C log n)
LX

j=0

(dj+1

/dL+1

)
m

dj+1

= (C log n)Lm/dL+1

,

(5.20)

except with probability at mostPL
j=0

|Ẽj |(2fj+1

) = 1/poly(n). Furthermore,

one has (C log n)Lm/dL+1

= O(m/ log2 n) by p1,
giving the desired result for L < k � 2.

Now suppose that L = k � 2. Then ⌧L = U/2,
and we have

LX

j=0

|Ẽj |(2Tj+1

) =
LX

j=0

O(⌧jQL/m)Tj+1

= (C log n)
LX

j=0

(⌧j/⌧L)Tj+1

= (C log n)
LX

j=0

(4�dj+1

)(m/dj+1

)

= �(C log n)Lm,

(5.21)

which is O(m/ log2 n) by p2. The upper bound on
failure probability in this case is analogous to the
above.

5.7 Putting It Together We now argue that
whp Algorithm 2 correctly solves Gap-Matching and
consumes only O(m/ log2 n) i.i.d. edge samples.
Our first step towards this goal is to exhibit a
setting of parameters that satisfies p1-p5:

Lemma 5.16. Let U � logc n for a su�ciently

large constant c > 0, and let g � logc
0
n constant

c0 > 0. Then there exists a setting of parameters
that satisfies p1-p5.

Proof. First, let d
0

= U , let dk�1

= logA n, and
let di = (dk�1

)k�i, i = k � 2, . . . , 1, where k =
blog

log

A n Uc. We also have �dj�1

/dj = C log n for

all j 2 [2 : k � 1] when � = C/ logA�1 n.
This allows us to derive a convenient expression

for dmax
j . Recall that by Lemma 5.4 one has dmax

0

=
d
0

= n, dmax
j = 4(C log n)dj for j 2 [1 : k � 1]. We

also let

⌧j =
U/2

k

1

4
�dj+1

=
U/2

k

1

4
(C log n)dj+2

for j 2 [0 : k � 3], and let ⌧k�2

= U/2.
We now prove that the setting of parameters

above satisfies p1-p5. We have

p1 dk�1

� C 0 log4 n for a su�ciently large constant
C 0 > 0 by choice of dk�1

above.

p2 � C 00 log�4 n for a su�ciently large constant
C 0 > 0 by choice of � above.

p3 ⌧j/(C 0dj log
4 n) � C log n for all j 2 [0 : k � 2]

is satisfied since

⌧j/(C
0dj log

4 n) = (U/(8k))�dj+1

/(C 0dj log
4 n))

� C log n

as long as U � 8k(�dj+1

/(C 0dj log
4 n))�1 =

⌦(poly(log n))

p4 1

6

⌧j/dmax
j � U/g is satisfied for all j 2 [0 : k�2]

since

1

6
⌧j/d

max
j = ⌦(U�dj+1

/(4�dj�1

)) � U/g

as long as g is greater than a poly(log n).

p5 �dj�1

/dj = C log n for all j 2 [1 : k � 1] by our
choice of �.

We are now ready to complete the proof of the
main result of this section.

Proof of Theorem 5.1: We assume p1-p5, as
guaranteed by Lemma 5.16. If ⌫j(E) ⌧j for all j 2
[0 : k � 2], then by Lemma 5.15 each parallel loop
in Algorithm 2 consumes O(m/ log2 n) samples. In
this case correctness follows by Lemma 5.11.

Now suppose that ⌫L(E) � ⌧L. Let L be the
smallest index with this property. Consider the L-
th parallel loop in Algorithm 2. Then the number
of samples consumed by tests run on Êj , j L�1 is
bounded by O(m/ log2 n) by Lemma 5.15. On the
other hand, we get by the same Lemma 5.15 that
O(m/ log2 n) samples are su�cient to determine
that ⌫j(E) � ⌧j , so the algorithm outputs YES .

6 Analysis for the Random Permutation
Model

We now show that Algorithm 2 correctly solves the
Gap-MatchingU,g problem with access to a random
stream of the edges of graph G, for g = poly(log n).
We show this by establishing the following theorem
which asserts a coupling between the behavior of
Algorithm 2 in the i.i.d. case and the random
permutation case.

Theorem 6.1. Let ALGIID(G) denote the answer
output by Algorithm 2 when run on an stream of m
i.i.d. samples of edges of G. Let ALG⇡(G) denote
the answer output by Algorithm 2 when run on a
stream of randomly permuted edges of G. Then

Pr[ALGIID(G) 6= ALG⇡(G)] 1/poly(log n),

where n is the number of vertices in G.

We defer the proof of the above theorem to the full
version of the paper.

We can now wrap up the proof of the main
result of our paper:
Proof of Theorem 1.1: Recall that the problem
of approximating the maximum matching size to
within a poly-logarithmic factor can be solved by
O(log n) instances of Gap-Matching for geometri-
cally decreasing values of U (see Section 2).

Combining Theorem 6.1 with Theorem 5.1,
we get that Algorithm 2 correctly solves the
Gap-Matching with probability at least 1 �
1/poly(log n), in poly-logarithmic space, when
edges of the graph are presented in random order.
Since we needO(log n) invocations of Gap-Matching
we get the desired result by applying a union bound
over all invocations.

7 Concluding Remarks

Our algorithm relies crucially on the ability to sam-
ple the edges in a random order. An interesting di-
rection for future work is to explore if one can design
an algorithm with similar parameters (polylogarith-
mic space and approximation) when the edges are
presented in an arbitrary (adversarial) order.

In order to reduce the space complexity of esti-
mating the matching size to being below linear, we
were forced to weaken the approximation guarantee
from constant to polylogarithmic. It would be in-
teresting to see if one can derive a constant factor
approximation algorithm using polylogarithmic (or
even n✏) space.

Finally, the possibility of obtaining a better
than 1 � 1/e approximation in polylogarithmic
space in adversarially ordered streams is precluded
by lower bounds based on Ruzsa-Szemerédi graph
constructions [7, 10]. It is conceivable that
the adversarial setting also precludes achieving a
weaker guarantee of polylogarithmic approximation
in polylogarithmic space. However, existing tech-
niques do not seem to lend easily to answer this
question and it will be very useful (quite possibly
for other related problems) to develop tools needed
to make progress on this front.

8 Acknowledgements

We would like to thank Ryan O’Donnell and Rocco
Servedio for pointers to the literature on concentra-
tion of multi-variate polynomials.

References

[1] K. Ahn and S. Guha. Linear programming in
the semi-streaming model with application to the
maximum matching problem. ICALP, pages 526–
538, 2011.

[2] K. Ahn and S. Guha. Access to data and num-
ber of iterations: Dual primal algorithms for maxi-
mum matching under resource constraints. CoRR,
abs/1307.4359, 2013.

[3] N. Alon and J. Spencer. The probabilistic method.
Wiley, 2008.

[4] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and
Ning Xie. Space-e�cient local computation algo-
rithms. SODA, pages 1132–1139, 2012.

[5] Sebastian Eggert, Lasse Kliemann, and Anand
Srivastav. Bipartite graph matchings in the
semi-streaming model. In Amos Fiat and Peter
Sanders, editors, Algorithms - ESA 2009, volume

5757 of Lecture Notes in Computer Science, pages
492–503. Springer Berlin / Heidelberg, 2009.

[6] Joan Feigenbaum, Sampath Kannan, Andrew Mc-
Gregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theor.
Comput. Sci., 348:207–216, 2005.

[7] A. Goel, M. Kapralov, and S. Khanna. On
the communication and streaming complexity of
maximum bipartite matching. SODA, 2012.

[8] Venkatesan Guruswami and Krzysztof Onak. Su-
perlinear lower bounds for multipass graph pro-
cessing. CCC, 2012.

[9] Zengfeng Huang, Božidar Radunović, Milan Vo-
jnović, and Qin Zhang. Communication com-
plexity of approximate maximum matching in dis-
tributed graph data. MSR Technical Report, 2013.

[10] Michael Kapralov. Better bounds for matchings
in the streaming model. SODA, 2013.

[11] Chinmay Karande, Aranyak Mehta, and Pushkar
Tripathi. Online bipartite matching with un-
known distributions. STOC, pages 587–596, 2011.

[12] R. Karp, U. Vazirani, and V. Vazirani. An optimal
algorithm for online bipartite matching. STOC,
1990.

[13] Christian Konrad, Frédéric Magniez, and Claire
Mathieu. Maximum matching in semi-streaming
with few passes. APPROX-RANDOM, 2012.

[14] Mohammad Mahdian and Qiqi Yan. Online bipar-
tite matching with random arrivals: an approach
based on strongly factor-revealing lps. STOC,
pages 597–606, 2011.

[15] Yishay Mansour and Shai Vardi. A local compu-
tation approximation scheme to maximum match-
ing. CoRR, abs/1306.5003, 2013.

[16] A. McGregor. Finding graph matchings in data
streams. APPROX-RANDOM, pages 170–181,
2005.

[17] Huy N. Nguyen and Krzysztof Onak. Constant-
time approximation algorithms via local improve-
ments. FOCS, pages 327–336, 2008.

[18] Krzysztof Onak, Dana Ron, Michal Rosen, and
Ronitt Rubinfeld. A near-optimal sublinear-time
algorithm for approximating the minimum vertex
cover size. SODA, pages 1123–1131, 2012.

[19] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito.
An improved constant-time approximation algo-
rithm for maximum matchings. STOC, pages 225–
234, 2009.

	1 Introduction
	1.1 Techniques
	1.2 Related work
	1.3 Organization

	2 Estimating Matching Size via Local Explorations
	3 An Overview of the Streaming Algorithm
	4 The Streaming Algorithm
	4.1 The algorithm

	5 Analysis for the IID Model
	5.1 Parameters
	5.2 Level distributions
	5.3 Level distributions and matching size
	5.4 Correctness of GapMatching with access to unlimited samples
	5.5 Sampling complexity of GetLevel
	5.6 Sampling complexity of GapMatching
	5.7 Putting It Together

	6 Analysis for the Random Permutation Model
	7 Concluding Remarks
	8 Acknowledgements
	References

