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Abstract
Consider the following communication problem. Alice holds
a graph GA = (P,Q,EA) and Bob holds a graph GB =
(P,Q,EB), where |P | = |Q| = n. Alice is allowed to
send Bob a message m that depends only on the graph
GA. Bob must then output a matching M ⊆ EA ∪
EB . What is the minimum message size of the message
m that Alice sends to Bob that allows Bob to recover
a matching of size at least (1 − ε) times the maximum
matching in GA ∪ GB? The minimum message length is
the one-round communication complexity of approximating
bipartite matching. It is easy to see that the one-round
communication complexity also gives a lower bound on the
space needed by a one-pass streaming algorithm to compute
a (1− ε)-approximate bipartite matching. The focus of this
work is to understand one-round communication complexity
and one-pass streaming complexity of maximum bipartite
matching. In particular, how well can one approximate these
problems with linear communication and space? Prior to
our work, only a 1

2
-approximation was known for both these

problems.
In order to study these questions, we introduce the

concept of an ε-matching cover of a bipartite graph G, which
is a sparse subgraph of the original graph that preserves the
size of maximum matching between every subset of vertices
to within an additive εn error. We give a polynomial time
construction of a 1

2
-matching cover of size O(n) with some

crucial additional properties, thereby showing that Alice
and Bob can achieve a 2

3
-approximation with a message

of size O(n). While we do not provide bounds on the
size of ε-matching covers for ε < 1/2, we prove that in
general, the size of the smallest ε-matching cover of a
graph G on n vertices is essentially equal to the size of
the largest so-called ε-Ruzsa Szemerédi graph on n vertices.
We use this connection to show that for any δ > 0, a
( 2

3
+δ)-approximation requires a communication complexity

of n1+Ω(1/ log log n).
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We also consider the natural restrictingon of the prob-
lem in which GA and GB are only allowed to share vertices
on one side of the bipartition, which is motivated by appli-
cations to one-pass streaming with vertex arrivals. We show
that a 3

4
-approximation can be achieved with a linear size

message in this case, and this result is best possible in that
super-linear space is needed to achieve any better approxi-
mation.

Finally, we build on our techniques for the restricted

version above to design one-pass streaming algorithm for the

case when vertices on one side are known in advance, and

the vertices on the other side arrive in a streaming manner

together with all their incident edges. This is precisely the

setting of the celebrated (1 − 1
e
)-competitive randomized

algorithm of Karp-Vazirani-Vazirani (KVV) for the online

bipartite matching problem [12]. We present here the

first deterministic one-pass streaming (1− 1
e
)-approximation

algorithm using O(n) space for this setting.

1 Introduction

We study the communication and streaming complex-
ity of the maximum bipartite matching problem. Con-
sider the following scenario. Alice holds a graph GA =
(P,Q,EA) and Bob holds a graph GB = (P,Q,EB),
where |P | = |Q| = n. Alice is allowed to send Bob a
message m that depends only on the graph GA. Bob
must then output a matching M ⊆ EA ∪ EB . What is
the minimum size of the message m that Alice sends to
Bob that allows Bob to recover a matching of size at
least 1− ε of the maximum matching in GA ∪GB? The
minimum message length is the one-round communi-
cation complexity of approximating bipartite matching,
and is denoted by CC(ε, n). It is easy to see that the
quantity CC(ε, n) also gives a lower bound on the space
needed by a one-pass streaming algorithm to compute
a (1 − ε)-approximate bipartite matching. To see this,
consider the graph GA ∪ GB revealed in a streaming
manner with edge set EA revealed first (in some arbi-
trary order), followed by the edge set EB . It is clear that
any non-trivial approximation to the bipartite matching
problem requires Ω(n) communication and Ω(n) space,
respectively, for the one–round communication and one-



pass streaming problems described above. The central
question considered in this work is how well can we ap-
proximate the bipartite matching problem when only
Õ(n) communication/space is allowed.

Matching Covers: We show that a study of these
questions is intimately connected to existence of sparse
“matching covers” for bipartite graphs. An ε-matching
cover or simply an ε-cover, of a graph G(P,Q,E) is
a subgraph G′(P,Q,E′) such that for any pairs of
sets A ⊆ P and B ⊆ Q, the graph G′ preserves
the size of the largest A to B matching to within
an additive error of εn. The notion of matching
sparsifiers may be viewed as a natural analog of the
notion of cut-preserving sparsifiers which have played
a very important role in the study of network design
and connectivity problems [11, 4]. It is easy to see
that if there exists an ε-cover of size f(ε, n) for some
function f , then Alice can just send a message of
size f(ε, n) to allow Bob to compute an additive εn
error approximation to bipartite matching (and (1− ε)-
approximation whenever GA ∪ GB contains a perfect
matching). However, we show that the question of
constructing efficient ε-covers is essentially equivalent to
resolving a long-standing problem on a family of graphs
known as the Ruzsa-Szemerédi graphs. A bipartite
graph G(P,Q,E) is an ε-Ruzsa-Szemerédi graph if E
can be partitioned into a collection of induced matchings
of size at least εn each. Ruzsa-Szemerédi graphs
have been extensively studied as they arise naturally
in property testing, PCP constructions and additive
combinatorics [7, 10, 17]. A major open problem is
to determine the maximum number of edges possible
in an ε-Ruzsa-Szemerédi graph. In particular, do there
exist dense graphs with large locally sparse regions (i.e.
large induced subgraphs are perfect matchings)? We
establish the following somewhat surprising relationship
between matching covers and Ruzsa-Szemerédi graphs:
for any ε > 0 the smallest possible size of an ε-matching
cover is essentially equal to the largest possible number
of edges in an ε-Ruzsa-Szemerédi graph.

Constructing dense ε-Ruzsa-Szemerédi graphs for
general ε and proving upper bounds on their size ap-
pears to be a difficult problem [9]. To our knowl-
edge, there are two known constructions in the liter-
ature. The original construction due to Ruzsa and
Szemerédi yields a collection of n/3 induced matchings

of size n/2O(
√

logn) using Behrend’s construction of a
large subset of {1, . . . , n} without three-term arithmetic
progressions [3, 17]. Constructions of a collection of
nc/ log logn induced matchings of size n/3 − o(n) were
given in [7, 15]. We use the ideas of [7, 15] to construct
( 1

2 − δ)-Ruzsa-Szemerédi graphs with n1+Ωδ(1/ log logn)

edges and a more general construction for the vertex ar-

rival case. To the best of our knowledge, the only known
upper bound on the size of ε-Ruzsa-Szemerédi graphs
for constant ε < 1

2 is O(n2/ log∗ n) that follows from
the bound used in an elementary proof of Roth’s theo-
rem [17].

One-round Communication: We show that in fact
CC(ε, n) ≤ 2n − 1 for all ε ≥ 1

3 , i.e. a message
of linear size suffices to get a 2

3 -approximation to the
maximum matching in GA ∪ GB . We establish this
result by constructing an O(n) size 1

2 -cover of the input
graph that satisfies certain additional properties which
allows Bob to recover a 2

3 -approximation1. We refer
to this particular 1

2 -cover as a matching skeleton of
the input graph, and give a polynomial time algorithm
for constructing it. Next, building on the above-
mentioned connection between matching covers and
Ruzsa-Szemerédi graphs, we show the following two
results: (a) our construction of 1

2 -cover implies that
for any δ > 0, there do not exist ( 1

2 + δ)-Ruzsa-
Szemerédi graph with more than O(n/δ) edges, and
(b) our 2

3 -approximation result is best possible when
only linear amount of communication is allowed. In
particular, Alice needs to send n1+Ω(1/ log logn) bits to
achieve a ( 2

3 +δ)-approximation, for any constant δ > 0,
even when randomization is allowed.

We then study the one round communication com-
plexity CCv(ε, n) of (1 − ε)-approximate maximum
matching in the restricted model when the graphs GA
and GB are only allowed to share vertices on one side of
the bipartition. This model is motivated by application
to one-pass streaming computations when the vertices
of the graph arrive together with all incident edges. We
obtain a stronger approximation result in this model,
namely, using the preceding 1

2 -cover construction we
show that CCv(ε, n) ≤ 2n − 1 for ε ≥ 1/4. Thus a
3
4 -approximation can be obtained with linear communi-
cation complexity, and as before, we show that obtain-
ing a better approximation requires a communication
complexity of n1+Ω(1/ log logn) bits.

One-pass Streaming: We build on our techniques for
one-round communication to design a one-pass stream-
ing algorithm for the case when vertices on one side
are known in advance, and the vertices on the other
side arrive in a streaming manner together with all
their incident edges. This is precisely the setting of
the celebrated (1 − 1

e )-competitive randomized algo-
rithm of Karp-Vazirani-Vazirani (KVV) for the online
bipartite matching problem [12]. We give a determin-
istic one-pass streaming algorithm that matches the
(1 − 1

e )-approximation guarantee of KVV using only

1We note here that a maximum matching in a graph is only a
2
3
-cover.



O(n) space. Prior to our work, the only known deter-
ministic algorithm for matching in one-pass streaming
model, even under the assumption that vertices arrive
together with all their edges, is the trivial algorithm
that keeps a maximal matching, achieving a factor of
1
2 . We note that in the online setting, randomization is
crucial as no deterministic online algorithm can achieve
a competitive ratio better than 1

2 .

Related work: The streaming complexity of maxi-
mum bipartite matching has received significant atten-
tion recently. Space-efficient algorithms for approximat-
ing maximum matchings to factor (1−ε) in a number of
passes that only depends on 1/ε have been developed.
The work of [14] gave the first space-efficient algorithm
for finding matchings in general (non-bipartite) graphs
that required a number of passes dependent only on
1/ε, although the dependence was exponential. This
dependence was improved to polynomial in [5], where
(1− ε)-approximation was obtain in O(1/ε8) passes. In
a recent work, [2] obtained a significant improvement,
achieving (1 − ε)-approximation in O(log log(1/ε)/ε2)
passes (their techniques also yield improvements for the
weighted version of the problem). Further improve-
ments for the non-bipartite version of the problem have
been obtained in [1]. Despite the large body of work
on the problem, the only known algorithm for one pass
is the trivial algorithm that keeps a maximal matching.
No non-trivial lower bounds on the space complexity of
obtaining constant factor approximation to maximum
bipartite matching in one pass were known prior to our
work (for exact computation, an Ω(n2) lower bound was
shown in [6]).

Organization: We start by introducing relevant defi-
nitions in section 2. In section 3 we give the construc-
tion of the matching skeleton, which we use later in
section 4 to prove that CC(1/3, n) = O(n), as well as
show that the matching skeleton forms a 1/2-cover. In
section 5 we deduce using the matching skeleton that
CCv(1/4, n) = O(n). In section 6 we use these tech-
niques to obtain a deterministic one-pass (1− 1/e) ap-
proximation to maximum matching in O(n) space in
the vertex arrival model. We extend the construction of
Ruzsa-Szemerédi graphs from [7, 15] in section 7. We
use these extensions in section 8 to show that our upper
bounds on CC(ε, n) and CCv(ε, n) are best possible, as
well as to prove lower bounds on the space complexity
of one-pass algorithms for approximating maximum bi-
partite matching. Finally, in section 9 we prove the cor-
respondence between the size of the smallest ε-matching
cover of a graph on n nodes and the size of the largest
ε-Ruzsa-Szemerédi graph on n nodes.

2 Preliminaries

We start by defining bipartite matching covers, which
are matchings-preserving graph sparsifiers.

Definition 2.1. Given an undirected bipartite graph
G = (P,Q,E), and sets A ⊆ P,B ⊆ Q, and H ⊆ E, let
MH(A,B) denote the size of the largest matching in the
graph G′ = (A,B, (A×B) ∩H).

Given an undirected bipartite graph G = (P,Q,E)
with |P | = |Q| = n, a set of edges H ⊆ E is said to be
an ε-matching-cover of G if for all A ⊆ P,B ⊆ Q, we
have MH(A,B) ≥ME(A,B)− εn.

Definition 2.2. Define LC(ε, n) to be the smallest
number m′ such that any undirected bipartite graph
G = (P,Q,E) with P = Q = n has an ε-matching-cover
of size at most m′.

We next define induced matchings and Ruzsa-
Szemerédi graphs.

Definition 2.3. Given an undirected bipartite graph
G = (P,Q,E) and a set of edges F ⊆ E, let P (F ) ⊆ P
denote the set of vertices in P which are incident on at
least one edge in F , and analogously, let Q(F ) denote
the set of vertices in Q which are incident on at least
one edge in F . Let E(F ), called the set of edges induced
by F , denote the set of edges E ∩ (P (F )×Q(F )). Note
that E(F ) may be much larger than F in general.

Given an undirected bipartite graph G = (P,Q,E),
a set of edges F ⊆ E is said to be an induced matching
if no two edges in F share an endpoint, and E(F ) = F .
Given an undirected bipartite graph G = (P,Q,E)
and a partition F of E, the partition is said to be an
induced partition of G if every set F ∈ F is an induced
matching. An undirected bipartite graph G = (P,Q,E)
with P = Q = n is said to have an ε-induced partition
if there exists an induced partition of G such every set
in the partition is of size at least εn. Following [7], we
refer to graphs that have an ε-induced partition as ε-
Ruzsa-Szemerédi graphs.

Definition 2.4. Let UI(ε, n) denote the largest number
m such that there exists an undirected bipartite graph
G = (P,Q,E) with |E| = m, |P | = |Q| = n, and with
an ε-induced partition.

Note that for any 0 < ε1 < ε2 < 1, any ε2-induced
partition of a graph is also an ε1-induced partition,
and hence, UI(ε, n) is a non-increasing function of
ε. Analogously, any ε1-matching-cover is also an ε2-
matching cover, and hence, LC(ε, n) is also a non-
increasing function of ε.



3 Matching Skeletons

Let G = (P,Q,E) be a bipartite graph. We now define
a subgraph G′ = (P,Q,E′) of G that contains at most
(|P | + |Q| − 1) edges, and encodes useful information
about matchings in G. We refer to this subgraph G′

as a matching skeleton of G, and this construction will
serve as a building block for our algorithms. Among
other things, we will show later that G′ is a 1

2 -cover of
G.

We present the construction of G′ in two steps. We
first consider the case when P is hypermatchable, that
is, for every vertex v ∈ Q there exists a perfect matching
of the P side that does not include v. We then extend
the construction to the general case using the Edmonds-
Gallai decomposition [16].

3.1 P is hypermatchable in G We note that since
P is hypermatchable, by Hall’s theorem [16], we have
that |Γ(A)| > |A| for all A ⊆ P . For a parameter
α ∈ (0, 1], let RG(α) = {A ⊆ P : |ΓG(A)| ≤ (1/α)|A|}.
Note that as the parameter α decreases, the expansion
requirement in the definition above increases. We will
omit the subscript G when G is fixed, as in the next
lemma.

Lemma 3.1. Let α ∈ (0, 1] be such that R(α+ε) = ∅ for
any ε > 0, i.e. G supports an 1

α+ε -matching of the P -
side for any ε > 0. Then for any two A1 ∈ R(α), A2 ∈
R(α) one has A1 ∪A2 ∈ R(α).

Proof. Let B1 = Γ(A1) and B2 = Γ(A2). First, since
(A1× (Q\B1))∩E = ∅ and (A2× (Q\B2))∩E = ∅, we
have that (A1∩A2)×(Q\(B1∩B2)) = ∅. Furthermore,
since R(α+ ε) = ∅, one has |B1 ∩B2| ≥ (1/α)|A1 ∩A2|.
Also, we have |Bi| ≤ |Ai|/α, i = 1, 2. Hence,

|B1 ∪B2| = |B1|+ |B2| − |B1 ∩B2|
≤ (1/α)(|A1|+ |A2| − |A1 ∩A2|) = (1/α)|A1 ∪A2|,

and thus (A1 ∪A2) ∈ R(α) as required.

We now define a collection of sets (Sj , Tj), j =
1, . . . ,+∞, where Sj ⊆ P, Tj ⊆ Q,Si ∩ Sj = ∅, i 6= j.

1. Set j := 1, G0 := G,α0 := 1. We have RG0
(α0) =

∅.

2. Let β < αj−1 be the largest real such that
RGj−1

(β) 6= ∅.

3. Let Sβ =
⋃
A∈R(β)A, and Tβ = Γ(Sβ). We have

Sβ ∈ RRj−1
(β) by Lemma 3.1.

4. Let Gj := Gj−1 \ (Sβ ∪ Tβ). We refer to the
value of α at which a pair (Sα, Tα) gets removed

from the graph as the expansion of the pair. Set
Sj := Sβ , Tj := Tβ , αj := β. If Gj 6= ∅, let j := j+1
and go to (2).

The following lemma is an easy consequence of the
above construction.

Lemma 3.2. 1. For each U ⊆ Sj one has |ΓGj (U)| ≥
(1/αj)|U |.

2. For every k > 0,⋃
j≤k

Sj

×
Q \ ⋃

j≤k

Tj

 ∩ E = ∅.

Proof. We prove (1) by contradiction. When j = 1, (1)
follows immediately since we are choosing the largest
β such that R(β) 6= ∅. Otherwise suppose that there
exists U ⊆ PGj such that |ΓGj (U)| < (1/αj)|U |. Then
first observe that |ΓGj (U)| > (1/αj−1)|U |. If not then

|ΓGj−1
(Sj−1 ∪ U)| = |Tj−1|+ |ΓGj (U)|

≤ 1

αj−1
(|Sj−1|+ |U |) ≤

1

αj−1
(|Sj−1 ∪ U |),

since Sj−1 ∩ PGj = ∅ by construction. Now as
αj < αj−1 is chosen to be the largest real for which
there exists some subset U ′ ⊆ PGj with |ΓGj (U ′)| ≤
(1/αj)|U ′|, it follows that for every U ⊆ PGj , we must
have |ΓGj (U)| ≥ (1/αj)|U |.

(2) follows by construction.

To complete the definition of the matching skeleton,
we now identify the set of edges of G that our algorithm
keeps. For a parameter γ ≥ 1 and subsets S ⊆ P ,
T ⊆ Q we refer to a (fractional) matching M that
saturates each vertex in S exactly γ times (fractionally)
and each vertex in T at most once as a γ-matching of
S in (S, T, (S × T ) ∩ E). By Lemma 3.2 there exists
a (fractional) (1/αj)-matching of Sj in (Sj , Tj , (Sj ×
Tj) ∩ E). Moreover, one can ensure that the matching
is supported on the edges of a forest by rerouting flow
along cycles. Let Mj be a fractional (1/αj)-matching in
(Sj , Tj) that is a forest.

Interestingly, the fractional matching corresponding
to the matching skeleton is identical to a 1-majorized
fractional allocation of unit-sized jobs to (1 −∞) ma-
chines [13, 8]; as a result, the fractional matchings
xe simultaneously minimize all convex functions of the
xe’s subject to the constraint that every node in P is
matched exactly once.



3.2 General bipartite graphs We now extend the
construction to general bipartite graphs using the
Edmonds-Gallai decomposition of G(P,Q,E), which es-
sentially allows us to partition the vertices of G into sets
AP (G), DP (G), CP (G), AQ(G), DQ(G), and CQ(G)
such that AP (G) is hypermatchable toDQ(G), AQ(G) is
hypermatchable to DP (G), and there is a perfect match-
ing between CP (G) and CQ(G).

The Edmonds-Gallai decomposition theorem is as
follows.

Theorem 3.1. (Edmonds-Gallai decomposition, [16])
Let G = (V,E) be a graph. Then V can be partitioned
into the union of sets D(G), A(G), C(G) such that

D(G) = {v ∈ V |∃ a maximum matching missing v}
A(G) = Γ(D(G))

C(G) = V \ (D(G) ∪A(G)).

Moreover, every maximum matching contains a perfect
matching inside C(G).

Applying Edmonds-Gallai decomposition to bipar-
tite graphs, we get

Corollary 3.1. Let G = (P,Q,E) be a graph.
Then V can be partitioned into the union of sets
DP (G), DQ(G), AP (G), AQ(G), CP (G), CQ(G) such
that

DP (G) = {v ∈ P |∃ a maximum matching missing v}
DQ(G) = {v ∈ Q|∃ a maximum matching missing v}
AP (G) = Γ(DQ(G))

AQ(G) = Γ(DP (G))

CP (G) = P \ (DP (G) ∪AP (G))

CQ(G) = Q \ (DQ(G) ∪AQ(G)).

Moreover,

1. there exists a perfect matching between CP (G) and
CQ(G)

2. for every U ⊆ AP (G) one has |Γ(U)∩DQ(G)| > |U |

3. for every U ⊆ AQ(G) one has |Γ(U) ∩ DP (G)| >
|U |.

Proof. (1) is part of the statement of Theorem 3.1. To
show (2), note that by definition of DQ(G) for each
vertex v ∈ DQ(G) there exists a maximum matching
that misses v. Thus, |Γ(U) ∩ DQ(G)| > |U | for every
set U .

Using the above partition, we can now define a
matching skeleton of G. Let S0 = CP (G), T0 =

CQ(G), and let M0 be a perfect matching between S0

and T0. Let (S1, T1), . . ., (Sj , Tj) be the expanding
pairs obtained by the construction in the previous
section on the graph induced by AP (G) ∪ DQ(G).
Let (S−j , T−j), . . ., (S−1, T−1) be the expanding pairs
obtained by the construction in the previous section
from the Q side on the graph induced by AQ(G) ∪
DP (G).

Definition 3.1. For a bipartite graph G = (P,Q,E)
we define the matching skeleton G′ of G as the union
of pairs (Sj , Tj), j = −∞, . . . ,+∞, with corresponding
(fractional) matchings Mj. Note that G′ contains at
most |P |+ |Q| − 1 edges.

As before, we can show the following:

Lemma 3.3. 1. For each U ⊆ Sj, one has |Tj ∩
ΓG′(U)| ≥ (1/αj)|U |.

2. For every k > 0,
((
P \

⋃
j≥k Sj

)
×
(⋃

j≥k Tj

))
∩

E = ∅, and
((
Q \

⋃
j≤−k Sj

)
×
(⋃

j≤−k Tj

))
∩

E = ∅.

Proof. Follows by construction of G′.

We note that the formulation of property (2) in
Lemma 3.3 is slightly different from property (2) in
Lemma 3.2. However, one can see that these formu-
lations are equivalent when there are no (Sj , Tj) pairs
for negative j, as is the case in Lemma 3.2.

4 O(n) communication protocol for CC( 1
3 , n)

In this section, we prove that for any two bipartite
graphs G1, G2, the maximum matching in the graph
G′1 ∪ G2 is at least 2/3 of the maximum matching in
G1 ∪ G2, where G′1 is the matching skeleton of G1.
Thus, CC(ε, n) = O(n) for all ε ≥ 1/3; Alice sends the
matching skeleton G′A of her graph, and Bob computes
a maximum matching in the graph G′A ∪GB .

Before proceeding, we establish some notation used
for the next several sections. Denote by (Sj , Tj), j =
−∞, . . . ,+∞ the set of pairs from the definition of G′.
Recall that Sj ⊆ P when j ≥ 0 and Sj ⊆ Q when j < 0.
Also, given a maximum matchingM in a bipartite graph
G = (P,Q,E), a saturating cut corresponding to M
is a pair of disjoint sets (A1 ∪ B1, A2 ∪ B2) such that
A1 ∪ A2 = P,B1 ∪ B2 = Q, all vertices in A2 ∪ B1 are
matched by M , there are no matching edges between
A2 and B1, and no edges at all between A1 and B2.
The existence of a saturating cut follows from the max-
flow min-cut theorem. Let ALG denote the size of the
maximum matching in G′1∪G2 and let OPT denote the
size of the maximum matching in G1 ∪G2.
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Figure 1: Distribution of (Sj , Tj) pairs across the cut

Consider a maximum matching M in (G′1 ∪ G2)
and a corresponding saturating cut (A1 ∪B1, A2 ∪B2);
note that ALG = |B1| + |A2|. Let M∗ be a maximum
matching in E1∩ (A1×B2). Note that we have OPT ≤
|B1|+ |A2|+ |M∗|.

We start by describing the intuition behind the
proof. Suppose for simplicity that the matching skeleton
G′1 of G1 consists of only one (Sj , Tj) pair for some
j ≥ 0, such that |Tj | = (1/αj)|Sj |. We first note
that since the matching M∗ is not part of the matching
skeleton, it must be that edges of M∗ go from Sj to Tj .
We will abuse notation slightly by writing M∗ ∩ X to
denote, for X ⊆ P ∪ Q, the subset of nodes of X that
are matched by M∗. Since all edges of M∗ go from Sj to
Tj , we have M∗∩A1 ⊆ Sj ∩A1 and M∗∩B2 ⊆ Tj ∩B2.
This allows us to obtain a lower bound on |B1| and |A2|
in terms of |M∗| if we lower bound |B1| and |A2| in
terms of |Sj ∩ A1| and |Tj ∩ B2| respectively. First, we
have that |B1| ≥ |ΓG′1(Sj ∩ A1)| ≥ (1/αj)|Sj ∩ A1| ≥
(1/αj)|M∗|, where we used the fact that the saturating
cut is empty in G′1 ∪ G2 and Lemma 3.3 . Next, we
prove that |ΓG′1(Sj ∩ A2) ∩ B2| ≤ (1/αj)|Sj ∩ A2| (this
is proved in Lemma 4.2 below). This, together with the
fact that M∗ ∩ B2 ⊆ Tj ∩ B2 = ΓG′1(Sj ∩ A2) ∩ B2,
implies that |A2| ≥ αj |M∗|. Thus, we always have
|A2| + |B1| ≥ (αj + 1/αj)|M∗|, and hence the worst
case happens at αj = 1, i.e. when the matching skeleton
G′1 of G1 consists of only the (S0, T0) pair, yielding a
2/3 approximation. The proof sketch that we just gave
applies when the matching skeleton only contains one
pair (Sj , Tj). In the general case, we use Lemma 3.3 to
control the distribution of M∗ among different (Sj , Tj)
pairs. More precisely, we use the fact that edges of M∗

may go from Sj ∩ A1 to Ti ∩ B2 only if i ≤ j. Another
aspect that adds complications to the formal proof is
the presence of (Sj , Tj) pairs for negative j.
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Figure 2: Matching of the (S0, T0) pair

We will use the notation

Zj ⊆
{
Sj ∩A1, j > 0
Sj ∩B2, j < 0.

and

Wj ⊆
{
Tj ∩B2, j > 0
Tj ∩A1, j < 0

for the vertices in P and Q that are matched by M∗

(see Fig. 1). Further, let Z∗ denote the set of vertices
in S0 ∩A1 that are matched by M∗ to B2 ∩ T0, and let
W ∗ = M∗(Z∗) ⊆ B2 ∩ T0. Let W 1

0 ⊆ S0 ∩ A1 denote
the vertices in S0 ∩A1 that are matched by M∗ outside
of T0. Similarly, let W 2

0 ⊆ T0 ∩ B2 denote the vertices
in T0 ∩ B2 that are matched by M∗ outside of S0 (see
Fig. 2). Let

B′1 := B1∩ΓG′1(Z∗) ∪ ΓG′1(W 1
0 ) ∪

⋃
j>0

(
ΓG′1(Zj) ∪ S−j

)
A′2 := A2∩ΓG′1(W ∗) ∪ ΓG′1(W 2

0 ) ∪
⋃
j<0

(
ΓG′1(Zj) ∪ S−j

) .

Then since

OPT ≤ |B′1|+ |A′2|+ |M∗|+ (|B1 \B′1|+ |A2 \A′2|)
ALG = |B′1|+ |A′2|+ (|B1 \B′1|+ |A2 \A′2|),

it is sufficient to prove that (|B′1|+ |A′2|) ≥ (2/3)(|B′1|+
|A′2|+|M∗|). LetOPT ′ = |B′1|+|A′2|+|M∗| andALG′ =
|B′1|+ |A′2|. Define ∆′ = (OPT ′ −ALG′)/OPT ′.

We will now define variables to represent the sizes



of the sets used in defining B′1, A′2:

w1
0 = |W 1

0 |, w2
0 = |W 2

0 |,
z∗ = |Z∗|, w∗ = |W ∗|, (Note that z∗ = w∗)

zj = |Zj |, wj = |Wj |, rj = |ΓG′1(Zj)|,

sj =

{
|Sj ∩A2| j > 0
|Sj ∩B1| j < 0

Lemma 4.1 expresses the size of B′1 and A′2 in terms
of the new variables defined above.

Lemma 4.1. ALG′ =
∑
j 6=0(sj+rj)+(z∗+w1

0)+(w∗+

w2
0), and OPT ′ ≤ z∗+(z∗+w1

0)+(w∗+w2
0)+

∑
j 6=0(sj+

zj + rj).

Proof. The main idea is that most of the sets in the
definitions of B′1 and A′2 are disjoint, allowing us to
represent sizes of unions of these sets by sums of sizes
of individual sets.

For ALG′, recall that ΓG′1(Sj) = Tj and hence,
the sets ΓG′1(Sj) are all disjoint. Further, the sets Sj
are all disjoint, by construction, and disjoint with all
the Tj ’s. Thus, |A′1| + |B′2| = |ΓG′1(W ∗) ∪ ΓG′1(W 2

0 )| +
|ΓG′1(Z∗) ∪ ΓG′1(W 1

0 )| +
∑
j 6=0(sj + rj). The sets W ∗

and W 2
0 are disjoint. Further, they are subsets of T0

(corresponding to α = 1), and hence nodes in these
sets have a single unique neighbor in G′1; consequently
|ΓG′1(W ∗)∪ΓG′1(W 2

0 )| = w∗+w2
0. Similarly, |ΓG′1(Z∗)∪

ΓG′1(W 1
0 )| = z∗ + w1

0. This completes the proof of the
lemma for ALG′.

We have OPT ′ = ALG′+ |M∗|. Consider any edge
(u, v) ∈M∗. This edge is not in G′1 and hence must go
from an Sj to a Tj′ where 0 ≤ j′ ≤ j or 0 ≥ j′ ≥ j.
The number of edges in M∗ that go from S0 to T0

is precisely z∗ by definition; the number of remaining
edges is precisely

∑
j 6=0 zj .

We now derive linear constraints on the size vari-
ables, leading to a simple linear program. We have by
Lemma 3.3 that for all k > 0P \ ⋃

j≥k

Zj

×
⋃
j≥k

Wj

 ∩ E1 = ∅,

Q \ ⋃
j≤−k

Zj

×
 ⋃
j≤−k

Wj

 ∩ E1 = ∅.

(4.1)

The existence of M∗ together with (4.1)yields

+∞∑
j=k

zj ≥
+∞∑
j=k

wj ,∀k > 0,

−k∑
j=−∞

zj ≥
−k∑

j=−∞
wj ,∀k > 0.

(4.2)

Furthermore, we have by definition of W 1
0 together

with (4.1)that

w1
0 ≤

∑
j<0

zj −
∑
j<0

wj

w2
0 ≤

∑
j>0

zj −
∑
j>0

wj .
(4.3)

Also, we have∑
j<0

zj = w1
0 +

∑
j<0

wj∑
j>0

zj = w2
0 +

∑
j>0

wj .
(4.4)

Next, by Lemma 3.3, we have rj ≥ (1/αj)zj . We
also need

Lemma 4.2. (1) |ΓG′1(Sj ∩A2)∩B2| ≤ (1/αj)|Sj ∩A2|
for all j > 0, and (2) |ΓG′1(Sj ∩B1)∩A1| ≤ (1/αj)|Sj ∩
B1| for all j < 0.

Proof. We prove (1). The proof of (2) is analogous.
Suppose that |ΓG′1(Sj ∩ A2) ∩ B2| > (1/αj)|Sj ∩ A2|.
Then using the assumption that (A1×B2)∩E′ = ∅, we
get

|Tj | = |Tj ∩B2|+ |Tj ∩B1|
≥ |ΓG′1(Sj ∩A2) ∩B2|+ |ΓG′1(Sj ∩A1)|
> (1/αj)|Sj ∩A2|+ (1/αj)|Sj ∩A1| > (1/αj)|Sj |,

a contradiction to the definition of the matching skele-
ton.

We will now bound ∆′ = (OPT ′ − ALG′)/OPT ′

using a sequence of linear programs, described in fig-
ure 3. We will overload notation to use P ∗1 , P

∗
2 , P

∗
3 , re-

spectively, to refer to these linear programs as well as
their optimum objective function value. By Lemma 4.2
one has for all j 6= 0 that (1/αj)sj ≥ wj . We combine
this with equations 4.2, 4.3, and 4.4 to obtain the first
of our linear programs, P ∗1 , in figure 3. Bounding ∆′ is
equivalent to bounding this LP (i.e. ∆′ ≤ P ∗1 ). Note
that we have implicitly rescaled the variables so that
OPT ′ ≤ 1.

We now symmetrize the LP P ∗1 by collecting the
variables for cases when j is positive, negative, and 0 to
obtain LP P ∗2 in figure 3. Finally, we relax LP P ∗2 by
combining the second and third constraints, and then
establish that the remaining constraints are all tight.
This gives us the LP P ∗3 in figure 3. Details of the
construction are embedded in the proof of the following
lemma.

Lemma 4.3. P ∗1 ≤ P ∗2 ≤ P ∗3 .



P ∗1 = max z∗ +
∑
j 6=0

zj

s.t.

z∗ + (z∗ + w1
0)

+(w∗ + w2
0) +

∑
j 6=0

sj + zj + rj ≤ 1

∀k > 0,

+∞∑
j=k

zj ≥
+∞∑
j=k

wj ,

∀k > 0,

−k∑
j=−∞

zj ≥
−k∑

j=−∞
wj

∀j 6= 0, (1/αj)sj ≥ wj
∀j 6= 0, rj ≥ (1/αj)zj∑

j<0

zj = w1
0 +

∑
j<0

wj∑
j>0

zj = w2
0 +

∑
j>0

wj

z∗ = w∗

s, z, w, r, z∗, w∗, w1
0, w

2
0 ≥ 0

P ∗2 = max

+∞∑
j=0

zj

s.t.

+∞∑
j=0

sj + zj + rj ≤ 1

∀k ≥ 0,

k∑
j=0

wj ≥
k∑
j=0

zj

(1/αj)sj ≥ wj , j ≥ 0

rj ≥ (1/αj)zj , j ≥ 0

x, z, w, r ≥ 0

P ∗3 = max

∞∑
j=0

zj

s.t.∑
j

(αj + 1 + 1/αj)zj ≤ 1

z ≥ 0

Figure 3: The linear programs for lower bounding
ALG/OPT .

From P ∗1 to P ∗2 We will show that the optimum of the
LP P ∗2 in figure 3 is an upper bound for the optimum
of P ∗1 in figure 3. First increase the set {αj}∞j=−∞
to ensure that αj = α−j(this can only improve the
objective function). Now, we define

s′j = sj + s−j , j > 0,

r′j = rj + r−j , j > 0,

z′j = zj + z−j , j > 0,

w′j = wj + w−j , j > 0,

w′0 = w∗ + w1
0 + w2

0,

s′0 = w∗ + w1
0 + w2

0,

z′0 = z∗,

r′0 = z∗.

(4.5)

We will show that if s, r, z, w, z∗, w∗, w1
0, w

2
0 are

feasible for P ∗1 , then s′, r′, z′, w′ are feasible for P ∗2 with
the same objective function value.

First, the objective function is exactly the same by
inspection. Constraints 3 and 4 of P ∗2 for j > 0 are
linear in the respective variables and are hence satisfied.
Furthermore, one has

(1/α0)s′0 = w∗ + w1
0 + w2

0 = w′0

and
r′0 = z∗ = z′0.

Hence, constraints 3 and 4 are satisfied for all j ≥ 0.
To verify that constraint 1 is satisfied, we calculate

+∞∑
j=0

s′j + z′j + r′j = s′0 + z′0 + r′0 +

+∞∑
j=1

(s′j + z′j + r′j)

= (w∗ + w1
0 + w2

0) + z∗ + z∗ +
∑
j 6=0

(sj + zj + rj)

= z∗ + (z∗ + w1
0) + (z∗ + w2

0) +
∑
j 6=0

(sj + zj + rj) ≤ 1.

We now verify that constraint 2 of P ∗2 is satisfied.
First, for k = 0 one has

w′0 = w∗ + w1
0 + w2

0 ≥ w∗ = z∗ = z′0.

Next, note that by adding constraints 2,3 of P ∗1 we get∑
|j|≥k

zj ≥
∑
|j|≥k

wj(4.6)

for all k > 0. Adding constraints 6 and 7 of P ∗1 , we get∑
j 6=0

zj = w1
0 + w2

0 +
∑
j 6=0

wj .(4.7)



Subtracting (4.7) from (4.6), we get

k∑
|j|=1

zj ≤ w1
0 + w2

0 +

k∑
|j|=1

wj .(4.8)

Adding z∗ to both sides and using the fact that z′0 = z∗

and w′0 = z∗ + w1
0 + w2

0, we get

k∑
j=0

zj ≤
k∑
j=0

wj .(4.9)

This completes the proof of the first half of lemma 4.3.

From P ∗2 to P ∗3 We now bound P ∗2 . First we relax the
constraints by adding constraint 3 of over j from 0 to k
and adding to constraint 2:

max

∞∑
j=0

zj

s.t.
∞∑
j=0

sj + zj + rj ≤ 1

k∑
j=0

(1/αj)sj ≥
k∑
j=0

zj ,∀k ≥ 0

rj ≥ (1/αj)zj ,∀j ≥ 0

x, z, w, r ≥ 0

(4.10)

Note that the first constraint is necessarily tight at
the optimum. Otherwise scaling all variables to make
the constraint tight increases the objective function. We
now show that all of the constraints in the second line
of (4.10) are necessarily tight at the optimum. Indeed,

let k∗ ≥ 0 be the smallest such that
∑k∗

j=0(1/αj)sj >∑k∗

j=0 zj . Note that one necessarily has sk∗ > 0. Let

s′ = s− δek∗ + (αk∗+1/αk∗)δek∗+1,

r′ = r, z′ = z,

where ej denotes the vector of all zeros with 1 in position
j. Then

k∑
j=0

(1/αj)s
′
j ≥

k∑
j=0

z′j

for all k and
∞∑
j=0

(s′j + z′j + r′j) = 1− δ(1− αk∗+1/αk∗).

So for sufficiently small positive δ > 0 one has that

s′′ = s′/(1− δ(1− αk∗+1/αk∗))

r′′ = r′/(1− δ(1− αk∗+1/αk∗))

z′′ = z′/(1− δ(1− αk∗+1/αk∗))

form a feasible solution with a better objective function
value.

Thus, one has
∑k
j=0(1/αj)sj =

∑k
j=0 zj for all

k ≥ 0 and hence (1/αj)sj = zj for all j.
Additionally, one necessarily has rj = (1/αj)zj

for all j at optimum. Indeed, otherwise decreasing rj
does not violate any constraint and makes constraint 1
slack. Then rescaling variables to restore tightness of
constraint 1 improves the objective function. Thus, we
need to solve

P ∗3 = max

∞∑
j=0

zj

s.t.∑
j

(αj + 1 + 1/αj)zj ≤ 1

z ≥ 0

(4.11)

But P ∗3 is easy to analyze: there exists an optimum
solution that sets all zj to zero except for a j that
minimizes (αj + 1 + 1/αj). For all non-negative x,
f(x) = 1 + x + 1/x is minimized when x = 1, and
f(1) = 3. This gives P ∗3 ≤ 1/3, and hence ∆′ ≤ 1/3, or
ALG′ ≥ (2/3)OPT ′. Thus, we have proved

Theorem 4.1. For any bipartite graph G1 = (P,Q,E1)
there exists a subforest G′1 of G such that for any graph
G2 = (P,Q,E2) the maximum matching in G′1 ∪ G2

is a 2/3-approximation of the maximum matching in
G1 ∪ G2; further, it suffices to choose G′1 to be the
matching skeleton of G1.

Corollary 4.1. CC( 1
3 , n) = O(n).

Theorem 4.1 also implies that the matching skeleton
gives a linear size 1/2-cover of G.

Corollary 4.2. For any bipartite graph G =
(P,Q,E), the matching skeleton G′ is a 1

2 -cover of G.

Proof. We need to show that for any A ⊆ P,B ⊆
Q, |A|, |B| > n/2 such that there exists a perfect
matching between A and B in G one has E′∩(A×B) 6=
∅. Let G2 = (P ∪P ′, Q∪Q′,MP ∪MQ) be a graph that
consists of a perfect matching from a new set of vertices
P ′ to Q \ B and a matching from a new set of vertices
Q′ to P \A. Then the maximum matching in G∪G2 is
of size (3/2)n.

By the max-flow min-cut theorem, the size of the
matching in G′∪G2 is no larger than |P \A|+ |Q\B|+
|E′∩(A×B)|. By Theorem 4.1 the approximation ratio
is at least 2/3, and |P \A|+ |Q \B| < n, so it must be
that |E′ ∩ (A×B)| > 0.



5 O(n) communication protocol for CCv(
1
4 , n)

In this section we prove that CCv(ε, n) = O(n) for all
ε < 1/4. In particular, we show that given a bipartite
graph G1 = (P1, Q,E1), there exists a forest F ⊆ E1

such that for any G2 = (P2, Q,E) that may share nodes
on the Q side with G1 but not on the P side, the
maximum matching in G′1 ∪G2 is a 3/4-approximation
of the maximum matching inG1∪G2. The broad outline
of the proof is similar to the previous section, but we
can now assume a special optimal matching using the
assumption that G2 may only share nodes with G1 on
the Q side. The proof uses the simple lemma below; we
state it here since it is also needed in section 6.

Lemma 5.1. Let G = (P,Q,E) be a bipartite graph and
let S ⊆ P be such that |Γ(U)| ≥ |U | for all U ⊆ S. Then
there exists a maximum matching in G that matches all
vertices of S.

The proof is quite simple: start with an arbitrary
maximum matching and repeatedly find and apply even
length augmenting paths originating from unmatched
nodes in S and going to matched nodes in P \ S, to
reduce the number of unmatched nodes in S. These
paths exist by our condition on S. The details are
deferred to the full version of the paper.

We now state the main theorem of this section. The
proof is deferred to the full version of the paper.

Theorem 5.1. Let G1 = (P1, Q,E1), G2 = (P2, Q,E2)
be bipartite graphs that share the vertex set on one
side. Let G′1 be the matching skeleton of G1. Then the
maximum matching in G′1 ∪G2 is a 3/4-approximation
of the maximum matching in G1 ∪G2.

6 One-pass streaming with vertex arrivals

Let Gi = (Pi, Q,Ei) be a sequence of bipartite graphs,
where Pi∩Pj = ∅ for i 6= j. For a graph G, we denote by
SPARSIFY∗(G) the matching skeleton of G modified as
follows: for each pair (Sj , Tj), j < 0 keep an arbitrary
matching of Sj to a subset of Tj , discarding all other
edges, and collect all these matchings into the (S0, T0)
pair. Note that we have Sj ⊆ P , where P is the side of
the graph that arrives in the stream. We have

Lemma 6.1. Let G = (P,Q,E) be a bipartite graph. Let
G′ = SPARSIFY ∗(G). Let (Sj , Tj), j = 0, . . . ,+∞
denote the set of expanding pairs. Then E∩(Si×Tj) = ∅
for all i < j.

Let

G′1 = SPARSIFY∗(G1)

and

G′i = SPARSIFY∗(G′i−1 ∪Gi), i > 1

(6.12)

We will show that for each τ > 0 the maximum
matching in G′τ is at least a 1 − 1/e fraction of the
maximum matching in

⋃τ
i=1Gi. We will slightly abuse

notation by denoting the set of expanding pairs in G′τ
by (Sα(τ), Tα(τ)). Recall that we have α ∈ (0, 1], and
|Sα(τ)| = α|Tα(τ)|. We need the following

Definition 6.1. For a vertex u ∈ P define its level
after time τ , denoted by αu(τ), as the value of α such
that u ∈ Sα(τ). Similarly, for a vertex v ∈ Q define its
level after time τ , denoted by αv(τ), as the value of α
such that u ∈ Tα(τ). Note that for a vertex u is at level
α = αu(τ) the expansion of the pair (Sα(τ), Tα(τ)) that
it belongs to is 1/α.

Before describing the formal proof, we give an
outline of the main ideas. In our analysis, we track the
structure of the matching skeleton maintained by the
algorithm over time. For the purposes of our analysis,
at each time τ , every vertex is characterized by two
numbers: its initial level β when it first appeared in the
stream and its current level α at time τ (we denote the
set of such vertices at time τ by Sα,β(τ)). Informally, we
first deduce that the matching edges that our algorithm
misses may only connect a vertex in Sα,β(τ) to a vertex
in Tβ′(τ) for β′ ≥ β, and hence we are interested in
the distribution of vertices among the sets Sα,β(τ). We
show that vertices that initially appeared at lower levels
and then migrated to higher levels are essentially the
most detrimental to the approximation ratio. However,
we prove that for every λ ∈ (0, 1], which can be thought
of as a ‘barrier’, the number of vertices that initially
appeared at level β < λ but migrated to a level α ≥ λ

can never be larger than λ
∣∣∣⋃γ∈[λ,1] Tγ(τ)

∣∣∣ at any time

τ . This leads to a linear program whose optimum lower
bounds the approximation ratio, and yields the (1−1/e)
approximation guarantee.

Lemma 6.2. For all u ∈ P and for all τ , αu(τ + 1) ≥
αu(τ). Similarly for v ∈ Q, αv(τ + 1) ≥ αv(τ).

Proof. We prove the statement by contradiction. Let
τ be the smallest such that ∃α ∈ (0, 1] such that
R := {u ∈ P : u ∈ Sα(τ), αu(τ + 1) < αu(τ)} 6= ∅. Let
α∗ = minu∈R αu(τ+1) (we have α∗ < α by assumption).
Let R∗ = R ∩ Sα∗(τ + 1). Note that R∗ ⊆ Sα(τ). We
have
(6.13)
|ΓG′τ (R∗)| ≥ |ΓG′τ+1

(R∗)| ≥ (1/α∗)|R∗| > (1/α)|R∗|.

Since |ΓG′τ (Sα(τ))| = (1/α)|Sα(τ)|, (6.13) implies that
Sα(τ) \ R∗ 6= ∅. However, since |ΓG′τ (Sα(τ) \ R∗)| ≥
(1/α)|Sα(τ) \R∗|, one has

ΓG′τ (Sα(τ) \R∗) ∩ ΓG′τ (R∗) 6= ∅.



This, however, contradicts the assumption that (Sα(τ)\
R∗) ∩ Sα∗(τ + 1) = ∅ and the fact that G′τ+1 =
SPARSIFY∗(G′τ , Gτ+1).

The same argument also proves the monotonicity of
levels for v ∈ Q.

Let Sα,β(τ) denote the set of vertices in u ∈ P such
that

1. u ∈ Sβ(τ ′), where τ ′ is the time when u arrived
(i.e. u ∈ Pτ ′), and

2. u ∈ Sα(τ).

Note that one necessarily has α ≥ β by Lemma 6.2 for
all nonempty Sα,β .

We will need the following

Lemma 6.3. For all τ one has for all λ ∈ (0, 1](Q \
⋃

α∈[λ,1]

Tα(τ))×
⋃

β∈[λ,1]

Sα,β(τ)

 ∩ τ⋃
t=1

Et = ∅.

Proof. A vertex u ∈ Sα,β(τ) with β ≥ λ that arrived
at time τu could only have edges to v ∈ Tλ′(τu) for
λ′ ≥ λ. By Lemma 6.2, such vertices v can only belong
to Tλ′′(τ) for some λ′′ ≥ λ′ ≥ β ≥ λ, and the conclusion
follows with the help of Lemma 6.1.

Let tα(τ) = |Tα(τ)|, sα,β(τ) = |Sα,β(τ)|. The
quantities tα(τ), sα,β(τ) are defined for α, β ∈ D =
{∆k : 0 < k ≤ 1/∆}, where 1/∆ is a sufficiently
large integer (note that all relevant values of α, β
are rational with denominators bounded by n). In
what follows all summations over levels are assumed to
be over the set D. Then

Lemma 6.4. For all τ and for all α ∈ (0, 1], the
quantities tα(τ), sα,β(τ) satisfy

(6.14)
∑

β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ) ≤ (α−∆)
∑

β∈[α,1]

tβ(τ).

Proof. The proof is by induction on τ .

Base: τ = 0 At τ = 0 the lhs is zero, so the relation is
satisfied.

Inductive step: τ → τ + 1 Fix α ∈ (0, 1). For all
γ ∈ (0, α−∆] let

Rγ(τ) = Sγ(τ) ∩

 ⋃
β∈[α,1]

Sβ(τ + 1)

 .

We have |ΓG′τ (Rγ(τ))| ≥ (1/γ)|Rγ(τ)| and
ΓG′τ (Rγ(τ)) ⊆

⋃
β∈[α,1] Tβ(τ + 1).

Also, we have by Lemma 6.2 that ⋃
β∈[α,1]

Tβ(τ)

 ∪
 ⋃
γ∈(0,α−∆]

ΓG′τ (Rγ(τ))


⊆

⋃
β∈[α,1]

Tβ(τ + 1).

Moreover, since ΓG′τ (Rγ(τ)) are disjoint for differ-
ent γ and disjoint from Tβ(τ), β ∈ [α, 1], letting
rγ(τ) = |Rγ(τ)|, we have

∑
β∈[α,1]

tβ(τ + 1) ≥
∑

β∈[α,1]

tβ(τ) +
∑

γ∈(0,α−∆]

1

γ
rγ(τ)

≥
∑

β∈[α,1]

tβ(τ) +
1

α−∆

∑
γ∈(0,α−∆]

rγ(τ).

(6.15)

Furthermore, by Lemma 6.2

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ + 1)

=
∑

β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ) +
∑

γ∈(0,α−∆]

rγ(τ)

(6.16)

Since by inductive hypothesis
(6.17)∑

β∈[α,1]

tβ(τ) ≥ 1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ).

we have by combining (6.15), (6.16) and (6.17)

∑
β∈[α,1]

tβ(τ + 1)

≥
∑

β∈[α,1]

tβ(τ) +
1

α−∆

∑
γ∈(0,α−∆]

rγ(τ)

≥ 1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ)

+
1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

(sβ,δ(τ + 1)− sβ,δ(τ))

=
1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ + 1).

In what follows we only consider sets Sα,β(τ), Tα(τ)
for fixed τ , and omit τ for brevity. Let S =

⋃
α,β Sα,β .

Choose a maximum matching M in Gτ that matches
all of S, as guaranteed by Lemma 5.1. Let γ denote



the number of vertices in T1 that are matched outside
of S by M (note that no vertices of Tα, α ∈ (0, 1) are
matched outside of S by lemma 6.3). For each α ∈ (0, 1]
let rα ≤ tα denote the number of vertices in Tα that are
not matched by M . Then the following is immediate
from lemma 6.3.

Lemma 6.5. For all λ ≤ 1

(6.18)
∑

α∈[λ,1]

tα ≥
∑

α∈[λ,1],β∈[λ,1]

sα,β +
∑

α∈[λ,1]

rα + γ.

Proof. Follows from Lemma 6.3.

We also have

(6.19)
∑

β∈[α,1]

∑
δ∈(0,1]

sβ,δ =
∑

β∈[α,1]

βtβ

for all α ∈ (0, 1]. By Lemma 6.4 and Lemma 6.5, we get

ALG =
∑

α∈(0,1)

(tα − rα) + (t1 − r1 − γ)

OPT = ALG+ γ

t1 ≥ γ + r1.

Thus, we need to minimize ALG/OPT subject to t1 ≥
r1 + γ, tα, sα,β ≥ 0 and

∀α ∈ (0, 1] :
∑

β∈[α,1]

tβ ≥ γ +
∑

β∈[α,1]

rβ +
∑

δ∈[α,1]

sβ,δ


∀α ∈ (0, 1] :

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ ≤ (α−∆)
∑

β∈[α,1]

tβ

∀α ∈ (0, 1]
∑

β∈[α,1]

∑
δ∈(0,1]

sβ,δ =
∑

β∈[α,1]

βtβ .

(6.20)

We start by simplifying (6.20). First note that
we can assume without loss of generality that r1 =
0. Indeed, if r1 > 0, we can decrease r1 to 0 and
increase γ to keep ALG constant, without violating
any constraints, only increasing OPT . Furthermore, we
have wlog that t1 > 0 since otherwise ALG/OPT = 1.
Finally, note that setting t1 = γ only makes the ratio
ALG/OPT smaller, so it is sufficient to lower bound∑
α∈(0,1)(tα − rα) in terms of γ, and for this purpose

we can set γ = 1 since this only fixes the scaling of
all variables. Thus, it is sufficient to lower bound the

optimum of (6.21), obtaining a lower bound of
P∗1
P∗1 +1 on

the ratio ALG/OPT .
Combining constraints 2 and 3 of (6.21), we get

1∑
β=α

(1 + α−∆)tβ ≥ γ +

1∑
β=α

βtβ .

P ∗1 = min
∑

α∈(0,1)

(tα − rα)

s.t.

∀α ∈ (0, 1] :
∑

β∈[α,1]

tβ ≥ 1 +
∑

β∈[α,1]

rβ +
∑

δ∈[α,1]

sβ,δ


∀α ∈ (0, 1] :

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ ≤ (α−∆)
∑

β∈[α,1]

tβ

∀α ∈ (0, 1]
∑

β∈[α,1]

∑
δ∈(0,1]

sβ,δ =
∑

β∈[α,1]

βtβ

tα, sα,β ≥ 0.

(6.21)

Thus, it is sufficient to lower bound the optimum of

P ∗2 = min
∑

α∈(0,1)

(tα − rα)

s.t.

∀α ∈ (0, 1] :
∑
β≥α

(1− β + α−∆)tβ ≥ 1 +
∑

β∈[α,1)

rα.

tα ≥ 0.

(6.22)

We first show that one has rα = 0 for all α ∈ [0, 1)
at the optimum. Indeed, suppose that rα∗ > 0 for
some α∗ ∈ (0, 1). Then since the coefficient of tα∗ is
(1 − α∗ + α − ∆) ≤ 1 − ∆ < 1, β = α∗ ≥ α, we
can decrease r∗α by some δ > 0 and also decrease tα∗ by
δ

1−∆ < δ, keeping all constraints satisfied and improving
the value of the objective function.

Thus, we arrive at the final LP, whose optimum we
need to lower bound:

P ∗3 = min
∑

α∈(0,1)

tα

s.t.

∀α ∈ (0, 1] :
∑
β≥α

(1− β + α−∆)tβ ≥ 1.

tα ≥ 0.

(6.23)

We now show that all constraints are necessarily
tight at the optimum. Let α∗ ∈ [0, 1] be the largest such
that constraint 1 is not tight. Note that one necessarily



has tα∗ > 0. Let t′ = t− δeα∗ + δ
1+∆eα∗−∆.

We now verify that all constrains are satisfied. For
α > α∗ all constraints are satisfied since we did not
change t. For α = α∗, the constraint is satisfied since it
was slack for t and δ is sufficiently small.

For α < α∗, i.e. α ≤ α∗−∆ since we are considering
only α ∈ D, we have∑

β≥α

(1− β + α−∆)t′β =
∑
β≥α

(1− β + α−∆)tβ

+δ

(
1− (α∗ −∆) + α−∆

1 + ∆
− (1− α∗ + α−∆)

)
=
∑
β≥α

(1− β + α−∆)tβ +
δ∆(α∗ − α−∆)

1 + ∆

≥
∑
β≥α

(1− β + α−∆)tβ ≥ 1.

Thus, at the optimum we have

(6.24)
∑
β≥α

(1 + (α− β −∆))tβ = 1,∀α ∈ [0, 1].

Subtracting (6.24) for α+ ∆ from (6.24) for α, we get∑
β≥α

(1 + (α− β −∆))tβ

−
∑

β≥α+∆

(1 + (α+ ∆− β −∆)tβ

= tα −∆
∑
β≥α

tβ = 0.

(6.25)

In other words,

(6.26) tα = ∆
∑
β≥α

tβ , t1 ≥ 1.

Let δ = ∆
1−∆ . We now prove by induction that

t1−k∆ = δ(1 + δ)k−1 for all k > 0.

Base: k = 1 t1−∆ = ∆
1−∆ = δ.

Inductive step: k → k + 1

t1−(k+1)∆ = ∆

t1−(k+1)∆ + 1 + δ

k∑
j=1

(1 + δ)j−1


Thus,

t1−(k+1)∆ = δ

1 + δ

k∑
j=1

(1 + δ)j−1


= δ

(
1 + δ

1− (1 + δ)k

1− (1 + δ)

)
= δ(1 + δ)k.

Hence, one has

∑
α∈[0,1)

tα ≥ δ
1/∆∑
j=1

(1 + δ)j−1 = δ
1− (1 + δ)1/∆

1− (1 + δ)

= (1 + δ)1/∆ − 1 =

(
1 +

∆

1−∆

)1/∆

− 1

= (1−∆)−1/∆ − 1

Now, the size of the matching M is bounded by

OPT ≤
∑

α∈[0,1)

tα + 1.

On the other hand,

ALG ≥
∑

α∈[0,1)

tα.

Thus, we get

ALG

OPT
=

P ∗1
P ∗1 + 1

= 1− 1

P ∗1 + 1
≥ 1− 1

P ∗3 + 1

≥ 1− (1−∆)1/∆ ≥ 1− 1/e

since (1−∆)1/∆ ≤ 1/e for all ∆ ≥ 0. We now prove

Theorem 6.1. There exists a deterministic O(n) space
1-pass streaming algorithm for approximating the max-
imum matching in bipartite graphs to factor 1− 1/e in
the vertex arrival model.

Proof. Run the algorithm given in (6.12), letting |Pi| =
1, i.e. sparsifying as soon as a new vertex comes in. The
algorithm only keeps a sparsifier G′i in memory, which
takes space O(n).

7 Constructions of Ruzsa-Szemerédi graphs

In this section we give two extensions of constructions of
Ruzsa-Szemerédi graphs from [7]. The first construction
shows that for any constant ε > 0 there exist (1/2− ε)-
Ruzsa-Szemerédi graphs with superlinear number of
edges. We use this construction in section 8 to prove
that our bound on CC(ε, n), ε < 1/3 is tight. The
second construction that we present is a generalization
to lop-sided graphs, which we use in section 8 to
prove that our bound on CCv(ε, n), ε < 1/4 is tight.
Specifically, we show the following results:

Lemma 7.1. For any constant ε > 0 there exists a
family of bipartite (1/2 − ε)-Ruzsa-Szemerédi graphs
with n1+Ω(1/ log logn) edges.

Lemma 7.2. For any constant δ > 0 there exists a fam-
ily of bipartite Ruzsa-Szemerédi graphs G = (X,Y,E)



with |X| = n, |Y | = 2n such that (1) the edge set
E is a union of nΩδ(1/ log logn) induced 2-matchings
M1, . . . ,Mk of size at least (1/2 − O(δ))|X|, and (2)
for any j ∈ [1 : k] the graph G contains a matching M∗j
of size at least (1−O(δ))|X| that avoids Y \ (Mj ∩ Y ).

The proofs of these results are based on an adap-
tation of Theorem 16 in [7] (see also [15]), which con-
structs bipartite 1/3-Ruzsa-Szemerédi graphs with su-
perlinear number of edges. The main idea of the con-
struction, use of a large family of nearly orthogonal
vectors derived from known families of error correcting
codes, is the same. A technical step is required to go
from matchings of size 1/3 to matchings of size 1/2− ε
for any ε > 0. Since the result does not follow directly
from [7], we give a complete proof in the full version.

8 Lower bounds on communication and
one-pass streaming complexity

We show here that lower bounds on the size of Ruzsa-
Szemerédi graphs yield lower bounds on the (random-
ized) communication complexity, and hence for one-pass
streaming complexity.

In the edge model, we show that

CC
(

2(1−ε)
2−ε − δ, (2− ε)n

)
= Ω(UI(ε, n)) for all

ε, δ > 0. In particular, combined with the con-
structions of (1/2 + δ0)-Ruzsa-Szemerédi graphs for
any constant δ0 > 0 (Lemma 7.1) this proves that
CC(ε, n) = n1+Ω(1/ log logn) for ε < 1/3. Thus our
O(n) upper bound on CC( 1

3 , n) in section 4 is optimal
in the sense that any better approximation requires
super-linear communication. As a corollary, we also get
that super-linear space is necessary to achieve better
than 2/3-approximation in the one-pass streaming
model.

In the vertex model, using the construction of
Ruzsa-Szemerédi graphs from Lemma 7.2, we show
that CCv(ε, n) = n1+Ω(1/ log logn) for all ε < 1/4.
This proves optimality of our construction in section 5,
and also shows that super-linear space is necessary to
achieve better than 3/4-approximation in the one-pass
streaming model even in the vertex arrival setting.

We note that our lower bounds for both the edge
and vertex arrival case apply to randomized algorithms.
The proofs of these results appear in the full version.

8.1 Edge arrivals

Lemma 8.1. For any ε > 0 and δ > 0,

CC
(

2(1−ε)
2−ε − δ, (2− ε)n

)
= Ω(UI(ε, n)).

Proof. For any δ > 0, we will construct a distribution
over bipartite graphs with (2 − ε)n vertices on each

side such that each graph in the distribution contains
a matching of size at least (2 − ε)n − δn. On the
other hand, we will define a partition of the edge set
E of the graph into E = E1 ∪ E2 and show that any
for deterministic communication protocol using message
size s = o(UI(ε, n)), the expected size of the matching
computed is bounded by 2(1 − ε)n + o(n). Using
Yao’s minmax principle, we get the desired performance
bound for any protocol with o(UI(ε, n)) communication.

Let G = (P,Q,E) be an ε-RS graph with n vertices
on each side and UI(ε, n) edges. By definition, E can be
partitioned into k induced matchings M1, ...,Mk, where
|Mi| = εn for 1 ≤ i ≤ k, and k = UI(ε, n)/(εn). We
generate a random bipartite graph G′ = (P1 ∪ P2, Q1 ∪
Q2, E1 ∪ E2) with (2 − ε)n vertices on each side, as
follows:

1. We set P1 = P and Q1 = Q. Also, let P2 and Q2

be a set of (1 − ε)n vertices each that are disjoint
from P and Q.

2. For each Mi, i = 1, ..., k, let M ′i be a uniformly at
random chosen subset of Mi of size (1 − δ)n. We
set E1 = ∪ki=1M

′
i .

3. Choose a uniformly random r ∈ [1 : k]. Let M∗1
be an arbitrary perfect matching between P2 and
Q \ Q1(Mr), and let M∗2 be an arbitrary perfect
matching between Q2 and P \ P1(Mr). We set
E2 = M∗1 ∪M∗2 .

The instance G′ is partitioned between Alice
and Bob as follows: Alice is given all edges in
G1(P1, Q1, E1) (first phase), and Bob is given all edges
in G2(P2, Q2, E2) (second phase). Clearly, any optimal
matching in G′ has size at least (2− ε)n− δn; consider,
for instance, the matching M ′r ∪M∗1 ∪M∗2 .

We now show that for any deterministic commu-
nication protocol using communication at most s =
o(UI(ε, n)), with probability at least (1 − o(1)), num-
ber of edges in M ′r retained by the algorithm at the end
of the first phase is o(n). Assuming this claim, we get
that with probability at least (1− o(1)), the size of the
matching output by Bob is bounded by 2(1−ε)n+o(n).
Hence the expected size of the matching output by Bob
is bounded by 2(1 − ε)n + o(n). We now establish the
preceding claim.

We start by observing that the number of distinct
first phase graphs is at least (assume δ < ε/2)(

εn

δn

)k
=

(
εn

δn

)UI (ε,n)

εn

= 2γUI(ε,n),

for some positive γ bounded away from 0. Let G
denote the set of all possible first phase graphs, and let



φ : G → {0, 1}s be the mapping used by Alice to map
graphs in G to a message of size s = o(UI(ε, n)). For
any graph H ∈ G, let Γ(H) = {H ′ | φ(H ′) = φ(H)}.
Then note that for any graph H ∈ G, Bob can output
an edge e in the solution iff e occurs in every graph
H ′ ∈ Γ(H). For any subset F of G, let GF denote the
unique graph obtained by intersection of all graphs in
F (i.e. the graph GF contains an edge e iff e is present
in every graph in the family F ).

Claim 8.1. For any 0 < ε′ < ε
2 and any subset F of

G, let I ⊆ {1, 2, ..., k} be the set of indices such that GF
contains at least ε′n edges from Mi for each i ∈ I. Then
if |F | ≥ 2(γ−o(1))UI(ε,n), |I| = o(k).

The details of the proof are deferred to the full version
of the paper.

To conclude the proof, we note that a simple count-
ing argument shows that for a uniformly at random cho-
sen graph H ∈ G, with probability at least 1 − o(1),
we have |Γ(H)| ≥ 2(γ−o(1))UI(ε,n). Conditioned on this
event, it follows from claim 8.1 that for a randomly cho-
sen index r ∈ [1..k], with probability at least 1 − o(1),
the graph GΓ(H) contains at most ε′n edges from Mr.

In particular, we get

Corollary 8.1. For any δ > 0, CC(2/3 + δ, n) =
n1+Ωδ(1/ log logn).

Proof. Follows by putting together Lemma 7.1 and
Lemma 8.1.

Lower bounds on communication complexity trans-
late directly into bounds on one-pass streaming com-
plexity:

Corollary 8.2. For any constant δ > 0 any (possibly
randomized) one-pass streaming algorithm that achieves

approximation factor 2(1−ε)
2−ε + δ must use Ω(UI(ε, n))

space. In particular, any one-pass streaming algorithm
that achieves approximation factor 2/3 + δ must use
n1+Ωδ(1/ log logn) space.

Proof. Follows by Lemma 7.1 and Lemma 8.1.

8.2 Vertex arrivals We now prove a lower bound
on the communication complexity in the vertex ar-
rival model using the construction of lop-sided Ruzsa-
Szemerédi graphs from Lemma 7.2. The bound implies
that our upper bound from section 5 is tight. Moreover,
the bound yields the first lower bound on the streaming
complexity in the vertex arrival model.

Lemma 8.2. For any constant δ > 0, CC1
v (3/4+δ, n) =

n1+Ωδ(1/ log logn).

Proof. For sufficiently small δ > 0, we will construct a
distribution over bipartite graphs with (2 + δ)n vertices
on each side such that each graph in the distribution
contains a matching of size at least (2 − O(δ))n. On
the other hand, we will show that for any deterministic
protocol using space s = n1+o(1/ log logn), the expected
size of the matching computed is bounded by (3/2 +
O(δ))n + o(n). Using Yao’s minmax principle we get
the desired performance bound for any n1+o(1/ log logn)-
space randomized protocol.

Let G = (P,Q,E) be an (1/2 − δ)-RS graph
with |P | = n, |Q| = 2n and n1+Ω(1/ log logn) edges,
as guaranteed by Lemma 7.2. By definition, E can
be partitioned into k induced 2-matchings M1, ...,Mk,
where |Mi| ≥ (1/2 − δ′)n for 1 ≤ i ≤ k, and k =
nΩ(1/ log logn) and some δ′ = O(δ). We generate a
random bipartite graph G′ = (P1 ∪P2, Q,E1 ∪E2) with
(2 + δ′)n vertices on each side, as follows:

1. We set P1 = P and let P2 be a set of (1 + δ′)n
vertices that are disjoint from P .

2. For each Mi, i = 1, ..., k, let M ′i be a uniformly at
random chosen subset of Mi of size (1/2 − 2δ′)n.
We set E1 = ∪ki=1M

′
i .

3. Choose a uniformly random r ∈ [1 : k]. Let M∗

be an arbitrary perfect matching between P2 and
Q \Q(Mr). We set E2 = M∗.

Let Alice hold the graph GA(P1, Q1, E1) and let
Bob hold the graph G2 = (P2, Q,E2). By Lemma 7.2,
there exists a matching M∗r that matches at least a
(1 − δ′) fraction of X and avoids Q \ Q(Mr). Thus,
any optimal matching in GA ∪GB has size at least (2−
O(δ))n; consider, for instance, the matching M∗r ∪M∗.

However, no deterministic space protocol can out-
put more than a δ′′ = O(δ′) fraction of the edges in M ′r
if it uses n1+oδ′′ (1/ log logn) space by the same argument
as in 8.1. Hence, the size of the matching output by the
protocol is bounded above by (1/2 +O(δ))|P1|+ |P2| =
(3/2 +O(δ))n.

We immediately get

Corollary 8.3. For any constant δ > 0 any (possibly
randomized) one-pass streaming algorithm that achieves
approximation factor 3/4 + δ must use n1+Ωδ(1/ log logn)

space.

9 Matching covers & Ruzsa-Szemerédi graphs

In this section we prove that the size of the smallest
possible matching cover is essentially the same as the
number of edges in the largest Ruzsa-Szemerédi graph
with appropriate parameters.



We are now ready to state the two theorems that
use induced matchings to bound the size of matching
covers. The lower bound is easy, and is proved first.
The upper bound is more intricate, and is presented in
section 9.1.

Theorem 9.1. [Lower bound] For any δ > 0,

LC(ε, n) ≥ UI ((1 + δ)ε, n) ·
(

δ
1+δ

)
.

Proof. Let c = 1 + δ. By definition, there exists an
undirected bipartite graph G = (P,Q,E) with |E| =
UI(εc, n), |P | = |Q| = n, and an induced partition F
of G such that every set in the partition is of size at
least εcn. Consider the smallest ε-matching-cover H of
G, and any set F ∈ F . Recall that by the definition
of an induced matching, the edges in F are the only
edges between P (F ) and Q(F ). Since F is a matching
between P (F ) and Q(F ), and the size of F is at least
εcn, the intersection of H and F must be of size at least
|F | − εn, which is at least |F | ·

(
c−1
c

)
. Summing over all

sets F in the partition F , we get that |H| ≥ |E| ·
(
c−1
c

)
,

which proves the theorem.

In particular, choosing δ = 1, we get LC(ε, n) ≥
UI(2ε, n)/2. The upper bound is more complicated; we
first state a simplified version (Theorem 9.2), and then
the full version (Theorem 9.3). The simple version is a
corollary of the full version; the full version is proved in
section 9.1.

Theorem 9.2. [Simplified upper bound] Assume
0 < ε < 2/3, 0 < δ < 1, and εn ≥ 3. Then,

LC(n, ε) ≤ UI((1− δ)ε, n) ·O
(

log(1/ε)
δ(1−δ)

)
.

Theorem 9.3. [Upper bound] Assume εn ≥ 3, and
0 < δ < 1. Then,

LC(n, ε) ≤ UI((1− δ)ε, n) ·
(

8εn

εn− 1

)
·

·
(

1 + log(1/ε) +
log(εn)

8εn

)
·
(

1

δ(1− δ)

)
.

We state the full expression in the above theorem as op-
posed to using asymptotic notation since the constants
are simple, and it is conceivable that one may choose
to apply it in regimes where ε is arbitrarily close to 1.
Choosing δ = 1/2 in Theorem 9.2, we get the interesting
special case, LC(n, ε) = O(UI(ε/2, n) log(1/ε)).

9.1 Proof of the Upper Bound We will now prove
Theorem 9.3. Assume we are given an arbitrary undi-
rected bipartite graph G = (P,Q,E) with |P | = |Q| =
n. Assume that εn is an integer. Also assume that εn
is at least 3 (of course the most interesting case is when

ε > 0 is some constant). Before proceeding, we need
another definition:

Definition 9.1. A pair (A,B), where A ⊆ P and B ⊆
Q, is said to be “critical” if |A| = |B| = ME(A,B) =
εn, i.e. A,B are both of size εn and there is a perfect
matching between them. Let C denote the set of all
critical pairs in G.

We will now consider a primal-dual pair of Linear
Programs. By strong duality, the optimum objective
value for both LPs is the same; denote this value as
Z∗. We label the constraints in the primal with the
corresponding variable in the dual, and vice versa, for
clarity.

PRIMAL: Z∗ = min
∑
e∈E

xe

s.t.:
∀(A,B) ∈ C :

∑
e∈E∩(A×B)

xe ≥ 1 [λA,B ]

x ≥ 0

DUAL: Z∗ = max
∑

(A,B)∈C
λA,B

s.t.:
∀(e) ∈ E :

∑
(A,B)∈C:

e∈E∩(A×B)

λ(A,B) ≤ 1 [xe]

λ ≥ 0

We will relate the size of an ε-matching-cover of G
to the primal and the size of an ε-induced partition of G
to the dual. In particular, in the next two subsections,
we will prove the following two lemmas:

Lemma 9.1. The graph G has an ε-matching-cover of
size at most(

εn

εn− 1

)
· (2εn(1 + log(1/ε)) + log(εn)) · Z∗.

Lemma 9.2. There exists a graph G′ = (P,Q,E′) with
E′ ⊆ E such that |E′| ≥ Z∗δ(1 − δ)εn/4 edges, and G′

has a (1−δ)ε-induced partition. Hence, UI(n, (1−δ)ε) ≥
Z∗δ(1− δ)εn/4.

Theorem 9.3 is immediate from these two lemmas.

9.1.1 Proof of Lemma 9.1 A set of edges F ⊆ E
is said to satisfy a pair (A,B) if |F ∩ (A×B)| > 0. We
will further break down the proof of Lemma 9.1 in two
parts.



Lemma 9.3. If F satisfies all critical pairs, then F is
an ε-matching-cover.

Proof. The proof is by contradiction. Suppose F satis-
fies all critical pairs, but there exists a pair (A,B) such
that A ⊆ P , B ⊆ Q, and MF (A,B) < ME(A,B) − εn.
Consider an arbitrary maximum matching in the graph
(A,B,E ∩ (A × B)), say H. Discard all vertices from
A and B that are not incident on an edge in H,
to obtain A′ ⊆ A, B′ ⊆ B. It is still true that
MF (A′, B′) < ME(A′, B′) − εn, but now we also know
that ME(A′, B′) = |H| = |A′| = |B′|. Consider the
graph G′ = (A′, B′, F ). By Hall’s theorem, there exists
a set A′′ ⊆ A′ and another set B′′ ⊆ B′ such that (a)
|A′′| > |B′′| + εn, and (b) |F ∩ (A′′ × (B′ \ B′′))| = 0.
Since H is perfect matching in the graph (A′, B′, E),
there must exist at least εn edges of H that go from A′′

to B′ \B′′; let H ′ denote an arbitrary set of εn edges of
H that go from A′′ to B′ \ B′′. Let C denote the end-
points of these edges in P and D denote the endpoints
of these edges in Q. Then, |C| = |D| = εn and there is
a perfect matching between C and D in E, i.e., the pair
(C,D) is critical. But there is no edge between C and
D in F (by construction), and hence F does not satisfy
all critical pairs, which contradicts our assumption.

Lemma 9.4. There exists a set F of size at most(
εn

εn− 1

)
· (2εn(1 + log(1/ε)) + log(εn)) · Z∗

that satisfies all critical pairs.

Proof. First note that the number of critical pairs is at

most
(
n
εn

)2
<
(
en
εn

)2εn
= e2εn(1+log(1/ε)).

We will now define a simple randomized rounding
procedure for the solution x of the primal LP. For con-
venience, let γ denote the quantity (2εn(1 + log(1/ε)) +
log(εn)). For each edge e, let x̃e denote a Bernoulli ran-
dom variable which takes the value 1 with probability
pe = min{1, γxe}, and let all x̃e’s be independent. Let
F denote the set of edges e for which x̃e = 1.

We will now define two bad events: Let ξ1 denote

the event that |F | > γZ∗
(

εn
εn−1

)
. Let ξ2 denote the

event that F does not satisfy all critical sets.
By construction, E[|F |] = E[

∑
e x̃e] ≤ γ

∑
e xe =

γZ∗. Hence, by Markov’s inequality, Pr[ξ1] < εn−1
εn =

1− 1/(εn).
Fix an arbitrary critical set (A,B). If there exists

an edge e ∈ E ∩ (A × B) such that pe = 1 then (A,B)
is deterministically satisfied by F . Else, it must be that
pe = γxe for every edge e ∈ E ∩ (A × B), and the

probability that F does not satisfy (A,B) is at most∏
e∈E∩(A×B)

(1− γxe)

≤ e−γ
∑
e∈E∩(A×B) xe

≤ e−γ ,

where the third line follows from the second from
feasibility of the fractional solution. Using the union
bound over all critical pairs, we get Pr[ξ2] < e− log(εn) =
1/(εn). Using the union bound over the two bad
events, we get Pr[ξ1 ∪ ξ2] < 1. Hence, (using the
probabilistic method), there must exist a set of edges
F that satisfies all critical pairs and has size at most(

εn
εn−1

)
· (2εn(1 + log(1/ε)) + log(εn)) · Z∗.

This concludes the proof of Lemma 9.1.

9.1.2 Proof of Lemma 9.2 This proof is also via
randomized rounding, this time applied to the optimum
solution of the dual LP. For every relevant pair (A,B),
choose λ̃A,B to be one with probability δλA,B/2 and 0

otherwise; further choose the values of different λ̃A,B ’s

independently. If λ̃A,B = 1 then we say that the pair
(A,B) has been selected. Initialize H to be E; we will
remove edges from H till the graph (P,Q,H) has an
ε-induced partition.

Step 1: Getting an induced partition. First,
fix an arbitrary perfect matching (in E) between each
selected pair, and (a) remove all edges from H that do
not belong to any of these perfect matchings. Then, (b)
remove all edges that belong to more than one of the
graphs induced by the selected pairs. Let the new set
of edges be called H1.

Step 2: Pruning small induced sets. At this
point, the collection of sets of edges {(A × B) ∩ H1 :
λ̃A,B = 1} forms an induced partition of the graph
(P,Q,H1). The only problem is that some of the sets in
this partition may be too small. We will count a selected
pair (A,B) as “good” if it induces at least (1−δ)εn edges
in H1, and “bad” otherwise. Remove all edges from H1

that are induced by a bad selected pair to obtain the
set H2. The set (P,Q,H2) now has a ((1− δ)ε)-induced
partition. Let k denote the number of good selected
pairs; then |H2| (and hence UI(n, (1 − δ)ε)) is at least
k(1− δ)εn.

We will now show that Pr[k > δZ∗/4] > 0.
Consider a relevant pair (A,B) with λA,B > 0. Now,

Pr[λ̃A,B = 1] = δλA,B/2. Consider the perfect
matching F chosen between this pair (arbitrarily) in
step 1 and consider any edge e in this matching. This
edge will not be pruned away in step 1(a). By the



feasibility constraint in the dual,∑
(A′,B′)∈C:(A,B) 6=(A′,B′),e∈E∩(A′×B′)

λA′,B′ < 1.

Hence, the probability that this edge will belong to a
selected pair other than (A,B) is less than δ/2. Thus,
the expected number of edges in H1 ∩ (A× B) is more
than (1 − δ/2)εn. The maximum number of edges in
H1 ∩ (A × B) is εn. Applying Markov’s inequality to
the random variable εn− |H1 ∩ (A×B)|, we get:

Pr[|H1 ∩ (A×B)| ≥ (1− δ)εn | λ̃A,B = 1] > 1/2.

Multiplying with the probability that λ̃A,B = 1, we
obtain:

Pr[A relevant pair (A,B) is both selected and good]

> δλA,B/4.

Summing over all relevant pairs (A,B), we get E[k] >
δZ∗/4, and hence (using the probabilistic method
again), there must exist a set of choices for λ̃A,B which
make k > δZ∗/4. For this choice, we know that H2

(and hence UI(n, (1− δ)ε)) is at least Z∗δ(1− δ)εn/4.
This concludes the proof of Lemma 9.2.
Finally, we note that an upper bound on the

size of ε-covers directly yields an upper bound on the
communication complexity of achieving an additive εn
error approximation to bipartite matching, denoted by
CC+(ε, n).

Lemma 9.5. CC+(ε, n) ≤ LC(ε, n).

Proof. Let G1 = (P1, Q1, E1) denote the bipartite graph
with |P | = |Q| = n that Alice holds and let G2 =
(P2, Q2, E2) be the graph that Bob holds. Let G′1 be a
ε-matching cover of G1. Consider an empty cut (A1 ∪
B1, A2∪B2) corresponding to a maximum matching M ′

in (G′1 ∪G2), i.e. such that |M ′| = |B1|+ |A2|. Let M∗

denote a maximum matching in (A1 × B2) ∩ E1. Since
G′1 is an ε-matching cover, we have that |M∗| < εn.

Thus, since the maximum matching M in G1 ∪G2

is bounded by |B1|+ |A2|+ |M∗| we have

|M | − |M ′| ≤ (|B1|+ |A2|+ |M∗|)− (|B1|+ |A2|) ≤ εn.
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