
Quantiles and Equidepth Histograms over

Streams

Michael B. Greenwald1 and Sanjeev Khanna2

1 Arastra, Inc., 275 Middlefield Road, Menlo Park, CA 94025
greenwald@cis.upenn.edu

2 University of Pennsylvania, Dept. of Computer and Info. Science, 3330 Walnut
Street, Philadelphia, PA 19104 sanjeev@cis.upenn.edu

1 Introduction

A quantile query over a set S of size n, takes as input a quantile φ, 0 < φ ≤ 1,
and returns a value v ∈ S, whose rank in the sorted S is φn. Computing the
median, the 99-percentile, or the quartiles of a set are examples of quantile
queries. Many database optimization problems involve approximate quantile
computations over large data sets. Query optimizers use quantile estimates to
estimate the size of intermediate results and choose an efficient plan among a
set of competing plans. Load balancing in parallel databases can be done by
using quantile estimates. Above all, quantile estimates can give a meaningful
summary of a large data set using a very small memory footprint. For instance,
given any data set, one can create a data structure containing 50 observations,
that can answer any quantile query to within 1% precision in rank.

Based on the underlying application domain, a number of desirable prop-
erties can be identified for quantile computation. In this survey, we will focus
on the following three properties: (a) space used by the algorithm; (b) guar-
anteed accuracy to within a pre-specified precision; and (c) number of passes
made.

It is desirable to compute quantiles using the smallest memory footprint
possible. We can achieve this by dynamically storing, at any point in time,
only a summary of the data seen so far, and not the entire data set. The size
and form of such summaries are determined by our a priori knowledge of the
types of quantile queries we expect to be able to answer. We may know, in
advance, that the client intends to ask for a single, specific, quantile. Such a
single quantile summary, is parameterized in advance by the quantile, φ, and
a desired precision ǫ. For any 0 < φ ≤ 1, and 0 ≤ ǫ ≤ 1, an ǫ-approximate φ-
quantile on a data set of size n, is any value v whose rank, r∗(v), is guaranteed
to lie between n(φ−ǫ) and n(φ+ǫ). For example, a .01-approximate .5-quantile
is any value whose rank is within 1% of the median.

2 Michael B. Greenwald and Sanjeev Khanna

Alternatively, we may know that the client is interested in a range of
equally-spaced quantile queries. In such cases we summarize the data by an
equi-depth histogram. An equi-depth histogram is parameterized by a bucket
size, φ, and a precision, ǫ. The client may request any, or all, φ-quantiles, that
is, elements of ranks, φn, 2φn, ..., n. We say that H(φ, ǫ) is an ǫ-approximate
equi-depth histogram with bucket width φ if for any i = 1 to 1/φ, it returns a
value viφ for the iφ quantile, where n(iφ − ǫ) ≤ r∗(viφ) ≤ n(iφ + ǫ).

Finally, we may have no prior knowledge of the anticipated queries. Such ǫ-
approximate quantile summaries are parameterized only by a desired precision
ǫ. We say that a quantile summary Q(ǫ) is ǫ-approximate if it can be used to
answer any quantile query to within a precision of ǫn. There is a close relation
between equi-depth histograms and quantile summaries. Q(ǫ) can serve as an
equi-depth histogram H(φ, ǫ) for any 0 < φ ≤ 1. Conversely, an equi-depth
histogram H(φ, ǫ) is a φ-approximate quantile summary, provided only that
ǫ ≤ φ/2.

Organization: The rest of this chapter is organized as follows. In Section 2,
we formally introduce the notion of an approximate quantile summary, and
some simple operations that we will use to describe various algorithms for
maintaining quantile summaries. Section 3 describes deterministic algorithms
for exact selection and for computing approximate quantile summaries. These
algorithms give worst-case deterministic guarantees on the accuracy of the
quantile summary. In contrast, Section 4 describes algorithms with proba-
bilistic guarantees on the accuracy of the summary.

2 Preliminaries

We will assume throughout that the data is presented on a read-only tape
where the tape head moves to the right after each unit of time. Each move of
the tape head reveals the next observation (element) in the sequence stored
on the tape. For convenience, we will simply say that a new observation ar-
rives after each unit of time. We will use n to denote both the number of
observations (elements of the data sequence) that have been seen so far as
well as the current time. Almost all results presented here concern algorithms
that make a single pass on the data sequence. In a multi-pass algorithm, we
assume that at the beginning of each pass, the tape head is reset to the left-
most cell on the tape. We assume that our algorithms operate in a RAM
model of computation. The space s(n) used by an algorithm is measured in
terms of the maximum number of words used by an algorithm while process-
ing an input sequence of length n. This model assumes that a single word
can store max{n, |v∗|} where v∗ is the observation with largest absolute value
that appears in the data sequence.

The set-up as described above concerns an “insertion-only” model that
assumes that an observation once presented is not removed at a later time

Quantiles and Equidepth Histograms over Streams 3

from the data sequence. This is referred to as the cash register model in the
literature [7]. A more general setting is the turnstile model [17] that also allows
for deletion of observations. In Section 5 we will consider algorithms for this
more general setting as well. We note here that a simple modification of the
model above can be used to capture the turnstile case: the ith cell on the
read-only tape, contains both the ith element in the data sequence and an
additional bit that indicates whether the element is being inserted or deleted.

An order-statistic query over a data set S takes as input an integer r ∈
[1..|S|] and outputs an element of rank r in S. We say that the order-statistic
query is answered with ǫ-accuracy if the output element is guaranteed to
have rank within r+ǫn. For simplicity, we will assume throughout that ǫn
is an integer. If 1/ǫ is an integer, then this is easily enforced by batching
observations 1/ǫ at a time. If 1/ǫ is not an integer, then let i be an integer
such that 1/2i+1 < ǫ < 1/2i. We can then replace the ǫ-accuracy requirement
by ǫ′ = 1/2i+1 which is within a factor of two of the original requirement.

2.1 Quantile Summary

Following [10], we define a quantile summary for a set S to be an ordered set
Q = {q1, q2, ..., qℓ} along with two functions rminQ and rmaxQ such that

(i) q1 ≤ q2... ≤ qℓ and qi ∈ S for 1 ≤ i ≤ ℓ.
(ii) For 1 ≤ i ≤ ℓ, each qi has rank at least rminQ(qi), and at most rmaxQ(qi)

in S.
(iii)Finally, q1 and qℓ are the smallest and the largest elements, respectively,

in the set S, that is, rminQ(q1) = rmaxQ(q1) = 1, and rminQ(qℓ) =
rmaxQ(qℓ) = |S|.

We will say that Q is a relaxed quantile summary if satisfies properties (i)
and (ii) above, and the following relaxation of property (iii): rmaxQ(q1) ≤ ǫ|S|
and rminQ(qℓ) ≥ (1 − ǫ)|S|.

We say that a summary Q is an ǫ-approximate quantile summary for a set
S if it can be used to answer any order statistic query over S with ǫ-accuracy.
That is, it can be used to compute the desired order-statistic within a rank
error of at most ǫ|S|. The proposition below describes a sufficient condition
on the function rminQ and rmaxQ to ensure an ǫ-approximate summary.

Proposition 1 ([10]) Let Q be a relaxed quantile summary such that it
satisfies the condition max1≤i<ℓ(rmaxQ(qi+1) − rminQ(qi)) ≤ 2ǫ|S|. Then Q
is an ǫ-approximate summary.

Proof. Let r = ⌈φ|S|⌉. We will identify an index i such that r − ǫ|S| ≤
rminQ(qi) and rmaxQ(qi) ≤ r + ǫ|S|. Clearly, such a value qi approximates
the φ-quantile to within the claimed error bounds. We now argue that such
an index i must always exist.

4 Michael B. Greenwald and Sanjeev Khanna

Let e = maxi(rmaxQ(qi+1) − rminQ(qi))/2. Consider first the case r ≥
|S| − e. We have rminQ(qℓ) ≥ (1 − ǫ)|S|, and therefore i = ℓ has the desired
property. We now focus on the case r < |S| − e, and start by choosing the
smallest index j such that rmaxQ(qj) > r + e. If j = 1, then j is the desired
index since r + e < rmaxQ(q1) ≤ ǫ|S|. Otherwise, j ≥ 2, and it follows that
r−e ≤ rminQ(qj−1). If r−e > rminQ(qj−1) then rmaxQ(qj)−rminQ(qj−1) >
2e; a contradiction since e = maxi(rmaxQ(qi+1)−rminQ(qi))/2. By our choice
of j, we have rmaxQ(qj−1) ≤ r+e. Thus i = j−1 is an index i with the above
described property.

In what follows, whenever we refer to a (relaxed) quantile summary as
ǫ-approximate, we assume that it satisfies the conditions of Proposition 1.

2.2 Operations

We now describe two operations that produce new quantile summaries from
existing summaries, and compute bounds on the precision of the resulting
summaries.
The Combine Operation Let Q′ = {x1, x2, ..., xa} and Q

′′

= {y1, y2, ..., yb}
be two quantile summaries. The operation combine(Q′, Q

′′

) produces a new
quantile summary Q = {z1, z2, ..., za+b} by simply sorting the union of the
elements in two summaries, and defining new rank functions for each element
as follows. W.l.o.g. assume that zi corresponds to some element xr in Q′. Let
ys be the largest element in Q

′′

that is not larger than xr (ys is undefined if
no such element), and let yt be the smallest element in Q

′′

that is not smaller
than xr (yt is undefined if no such element). Then

rminQ(zi) =

{

rminQ′(xr) if ys undefined
rminQ′(xr) + rminQ′′(ys) otherwise

rmaxQ(zi) =

{

rmaxQ′(xr) + rmaxQ′′(ys) if yt undefined
rmaxQ′(xr) + rmaxQ′′(yt)− 1 otherwise

Lemma 1. Let Q′ be an ǫ
′

-approximate quantile summary for a multiset S′,
and let Q

′′

be an ǫ
′′

-approximate quantile summary for a multiset S
′′

. Then
combine(Q′, Q

′′

) produces an ǫ-approximate quantile summary Q for the mul-

tiset S = S′ ∪ S
′′

where ǫ = n′ǫ′+n
′′

ǫ
′′

n′+n′′ ≤ max{ǫ′, ǫ
′′

}. Moreover, the number

of elements in the combined summary is equal to the sum of the number of
elements in Q′ and Q

′′

.

Proof. Let n′ and n
′′

respectively denote the number of observations covered
by Q′ and Q

′′

. Consider any two consecutive elements zi, zi+1 in Q. By Propo-
sition 1, it suffices to show that rmaxQ(zi+1) − rminQ(zi) ≤ 2ǫ(n

′

+ n
′′

). We
analyze two cases. First, zi, zi+1 both come from a single summary, say ele-
ments xr, xr+1 in Q′. Let ys be the largest element in Q

′′

that is smaller than

Quantiles and Equidepth Histograms over Streams 5

xr and let yt be the smallest element in Q
′′

that is larger than xr+1. Observe
that if ys and yt are both defined, then they must be consecutive elements in
Q

′′

.

rmaxQ(zi+1)− rminQ(zi) ≤

[rmaxQ′(xr+1) + rmax
Q

′′ (yt)− 1]

−[rminQ′(xr) + rminQ′′(ys)]

≤ [rmaxQ′(xr+1)− rminQ′(xr)] +

[rmax
Q

′′ (yt)− rminQ′′(ys)− 1]

≤ 2(n
′

ǫ
′

+ n
′′

ǫ
′′

) = 2ǫ(n
′

+ n
′′

).

Otherwise, if only ys is defined, then it must be the largest element in Q
′′

; or
if only yt is defined, it must be the smallest element in Q

′′

. A similar analysis
can be applied for both these cases as well.

Next we consider the case when zi and zi+1 come from different summaries,
say, zi corresponds to xr in Q′ and zi+1 corresponds to yt in Q

′′

. Then observe
that xr is the largest element smaller than yt in Q′ and that yt is the smallest
element larger than xr in Q

′′

. Moreover, xr+1 is the smallest element in Q′

that is larger than yt, and yt−1 is the largest element in Q
′′

that is smaller
than xr. Using these observations, we get

rmaxQ(zi+1)− rminQ(zi) ≤

[rmax
Q

′′ (yt) + rmax
Q

′ (xr+1)− 1]

−[rminQ′(xr) + rmin
Q

′′ (yt−1)]

≤ [rmax
Q

′′ (yt)− rmin
Q

′′ (yt−1)] +

[rmax
Q

′ (xr+1)− rmin
Q

′ (xr)− 1]

≤ 2(n
′

ǫ
′

+ n
′′

ǫ
′′

) = 2ǫ(n
′

+ n
′′

).

Corollary 1 Let Q be a quantile summary produced by repeatedly applying
the combine operation to an initial set of summaries {Q1, Q2, ..., Qq} such
that Qi is an ǫi-approximate summary. Then regardless of the sequence in
which combine operations are applied, the resulting summary Q is guaranteed
to be (maxq

i=1 ǫi)-approximate.

Proof. By induction on q. The base case of q = 2 follows from Lemma 1.
Otherwise, q > 2, and we can partition the set of indices I = {1, 2, ..., q} into
two disjoint sets I1 and I2 such that Q is a result of the combine operation
applied to summary Q′ resulting from a repeated application of combine to
{Qi|i ∈ I1}, and summary Q

′′

results from a repeated application of combine
to {Qi|i ∈ I2}. By induction hypothesis, Q′ is maxi∈I1

ǫi-approximate and
Q

′′

is maxi∈I2
ǫi-approximate. By Lemma 1, then Q must be maxi∈I1∪I2

ǫi =
maxi∈I ǫi-approximate.

6 Michael B. Greenwald and Sanjeev Khanna

The Prune Operation The prune operation takes as input an ǫ′-approximate
quantile summary Q′ and a parameter K, and returns a new summary Q of
size at most K + 1 such that Q is an (ǫ′ + (1/(2K)))-approximate quan-
tile summary for S. Thus prune trades off slightly on accuracy for po-
tentially much reduced space. We generate Q by querying Q′ for elements
of rank 1, |S|/K, 2|S|/K, ..., |S|, and for each element qi ∈ Q, we define
rminQ(qi) = rminQ′(qi), and rmaxQ(qi) = rmaxQ′(qi).

Lemma 2. Let Q′ be an ǫ′-approximate quantile summary for a multiset S.
Then prune(Q′,K) produces an (ǫ′ +1/(2K))-approximate quantile summary
Q for S containing at most K + 1 elements.

Proof. For any pair of consecutive elements qi, qi+1 in Q, rmaxQ(qi+1) −
rminQ(qi) ≤ (1

K + 2ǫ′)|S|. By Proposition 1, it follows that Q must be
(ǫ′ + 1/(2K))-approximate.

3 Deterministic Algorithms

In this section, we will develop a unified framework that captures many of
the known deterministic algorithms for computing approximate quantile sum-
maries. This framework appeared in the work of Manku, Rajagopalan, and
Lindsay [14], and we refer to it as the MRL framework. We show various earlier
approaches for computing approximate quantile summaries are all captured
by this framework, and the best-possible algorithm in this framework com-
putes an ǫ-approximate quantile summary using O(log2(ǫn)/ǫ) space. We then
present an algorithm due to Greenwald and Khanna [10] that deviates from
this framework and reduces the space needed to O(log(ǫn)/ǫ). This is the cur-
rent best known bound on the space needed for computing an ǫ-approximate
quantile summary. We start with some classical results on exact algorithms
for selection.

3.1 Exact Selection

In a natural but a restricted model of computation, Munro and Patterson [16]
established almost tight bounds on deterministic selection with bounded
space. In their model, the only operation that is allowed on the underlying el-
ements is a pairwise comparison. At any time, the summary stores a subset of
the elements in the data stream. They considered multi-pass algorithms and
showed that any comparison-based algorithm that solves the selection problem
in p passes requires Ω(n1/p) space. Moreover, there is a simple algorithm that
can solve the selection problem in p passes using only O(n1/p(log n)2−2/p)
space. We will sketch here the proofs of both these results. We start with the
lower bound result.

We focus on the problem of determining the median element using space
s. Fix any deterministic algorithm and let us consider the first pass made by

Quantiles and Equidepth Histograms over Streams 7

the algorithm. Without any loss of generality, we may assume that the first s
elements seen by the algorithm get stored in the summary Q. Now each time
an element x is brought into Q, some element y is evicted from the summary
Q. Let U(y) denote the set of elements that were evicted from Q to make
room for element y directly or indirectly. An element z is indirectly evicted
by an element y in Q if the element y′ evicted to make room for y directly
or indirectly evicted the element z. Clearly, x will never get compared to
any elements in U(y) or the element y. We set U(x) = U(y) ∪ {y}. The
adversary now ensures that x is indistinguishable from any element in U(x)
with respect to the elements seen so far. Let z1, z2, ..., zs be the elements in
Q after the first n/2 elements have been seen. Then

∑s
i=1 |U(zi)| = n/2 − s,

and by the pigeonhole principle, there exists an element zj ∈ Q such that
|zj ∪U(zj)| ≥ n/(2s). The adversary now adjusts the values of the remaining
n/2 elements so as to ensure that the median element for the entire sequence
is the median element of the set U(zj)∪{zj}. Thus after one pass, the problem
size reduces by a factor of 2s at most. For the algorithm to succeed in p passes,
we must have (2s)p ≥ n, that is, s = Ω(n1/p).

Theorem 1. [16] Any p-pass comparison-based algorithm to solve the selec-
tion problem on a stream of n elements requires Ω(n1/p) space.

Recently, Guha and McGregor [12], using techniques from communica-
tion complexity, have shown that any p-pass algorithm to solve the selection
problem on a stream of n elements requires Ω(n1/p/p6) bits of space.

The Munro and Patterson algorithm that almost achieves the space bound
given in Theorem 1 proceeds as follows. The algorithm maintains at all times
a left and a right “filter” such that the desired element is guaranteed to lie
between them. At the beginning, the left filter is assumed to be −∞ and the
right filter is assumed to be +∞. Starting with an initial bound of n candidate
elements contained between the left and the right filters, the algorithm in each
pass gradually tightens the gap between the filters until the final pass where
it is guaranteed to be less than s. The final pass is then used to determine the
exact rank of the filters and retain all candidates in between to output the
appropriate answer to the selection problem. The key property that is at the
core of their algorithm is as follows.

Lemma 3. If at the beginning of a pass, there are at most k elements that
can lie between the left and the right filters, then at the end of the pass, this
number reduces to O((k log2 k)/s).

Thus each pass of the algorithm may be viewed as an approximate selection
step, with each step refining the range of the approximation achieved by the
preceding step. We describe the precise algorithmic procedure to achieve this
in the next subsection. Assuming the lemma, it is easy to see that by choosing
s = Θ(n1/p(log n)2−2/p), we can ensure that after the ith pass, the number of

candidate elements between the filters reduces to at most n
p−i

p log
2i
p n. Setting

8 Michael B. Greenwald and Sanjeev Khanna

i = p− 1, ensures that the number of candidate elements in the pth pass is at
most n1/p(log n)2−2/p.

3.2 MRL Framework for ǫ-approximate Quantile Summaries

A natural way to construct quantile summaries of large quantities of data is by
merging several summaries of smaller quantities of data. Manku, Rajagopalan,
and Lindsay [14] noted that all one-pass approximate quantile algorithms prior
to their work (most notably, [16, 1]) fit this pattern. They defined a frame-
work, refered from here on as the MRL framework, in which all algorithms can
be expressed in terms of two basic operations on existing quantile summaries:
new and collapse. Each algorithm in the framework builds a quantile sum-
mary by applying these operations to members of a set of smaller, fixed sized,
quantile summaries. These fixed size summaries are referred to as buffers. A
buffer is a quantile summary of size k that summarizes a certain number of
observations. When a buffer summarizes k′ observations we define the weight
of the buffer to be ⌈k′

k ⌉.
new fills a buffer with k new observations from the input stream (we

assume that n is always an integral multiple of k). collapse takes a set of
buffers as input and returns a single buffer summarizing all the input buffers.

Each algorithm in the framework is parameterized by b, the total number of
buffers, and k, the number of entries per buffer, needed to summarize a sample
of size n to precision ǫ, as well as a policy that determines when to apply new

and collapse. Further, the authors of [14] proposed a new algorithm that
improved upon the space bk needed to summarize n observations to a given
precision ǫ. In light of more recent work, it is illuminating to recast the MRL
framework in terms of rminQ and rmaxQ for each entry in the buffer.

A buffer of weight w in the MRL framework is a quantile summary of kw
observations, where k is the number of (sorted) entries in the buffer. Each
entry in the buffer consists of a single value that represents w observations
in the original data stream. We associate a level, l, with each buffer. Buffers
created by new have a level of 0, and buffers created by collapse have a
level, l′, that is one greater than the maximum l of the constituent buffers.

new takes the next k observations from the input stream, sorts them in
ascending order, and stores them in a buffer, setting the weight of this new
buffer to 1. This buffer can reproduce the entire sequence of k observations
and therefore rmin and rmax of the ith element both equal i, and the buffer
has precision that can satisfy even ǫ = 0.

collapse summarizes a set of α buffers, B1, B2, . . . , Bα, with a single
buffer B, by first calling combine(B1, B2, . . . , Bα), and then3 prune(B, k−1).
The weight of this new buffer is

∑

j wj .

3 The prune phase of collapse in the MRL paper differs very slightly from our
prune.

Quantiles and Equidepth Histograms over Streams 9

Lemma 4. Let B be a buffer created by invoking collapse on a set of α
buffers, B1, B2, . . . , Bα, where each buffer Bi has weight wi and precision ǫi.
Then B has precision ≤ 1/(2k − 2) + maxi{ǫi}.

Proof. By Corollary 1, repeated application of combine creates a temporary
summary, Q, with precision maxi{ǫi} and αk entries. By Lemma 2, B =
prune(Q, k − 1) produces a summary with an ǫ that is 1/(2k − 2) more than
the precision of Q.

We can view the execution of an algorithm in this framework as a tree.
Each node represents the creation of a new buffer of size k: leaves represent
new operations and internal nodes represent collapse. Figure 1 represents
an example of such a tree. The number next to each node specifies the weight
of the resulting buffer. The level, l, of a buffer represents its height in this
tree.

Lemma 4 shows that each collapse operation adds at most 1/(2k) to the
precision of the buffer. It follows from repeated application of Lemma 4 that
a buffer of level l has a precision of l/2k. Similarly, we can relate the precision
of the final summary to the height of the tree.

Corollary 2 Let h(n) denote the maximum height of the algorithm tree on an
input stream of n elements. Then the final summary produced by the algorithm
is (h(n)/(2k))-approximate.

We now apply the lemmas to several different algorithms, in order to com-
pute the space requirements for a given precision and a given number of
observations we wish to summarize.

The Munro-Patterson Algorithm

The Munro-Patterson algorithm [16] initially allocates b empty buffers. After
k new observations arrive, if an empty buffer exists, then new is invoked. If
no empty buffer exists, then it creates an empty buffer by calling collapse

on two buffers of equal weight. Figure 1 represents the Munro-Patterson al-
gorithm for small values of b.

Let h = ⌈log(n/k)⌉. Since the algorithm merges at each step buffers of
equal weight, it follows that the resulting tree is a balanced binary tree of
height h where the leaves represent k observations each, and each internal
node corresponds to k2i observations for some integer 1 ≤ i ≤ h. The number
of available buffers b must satisfy the constraint b ≥ h since if n = k2h − 1,
the resulting summary requires h buffers with distinct weights of 1, 2, 4, ... etc.
By Corollary 2, the resulting summary is guaranteed to be h/2k-approximate.
Given a desired precision ǫ, we need to satisfy h/2k ≤ ǫ. It is easy to verify
that choosing k = ⌈(log(2ǫn))/(2ǫ)⌉ satisfies the precision requirement. Thus
the total space used by this algorithm is bk = O(log2(ǫn)/ǫ).

10 Michael B. Greenwald and Sanjeev Khanna

4

22

1

88

16

444

222222

4

22

1 111111111

N = 4k
e = 1/(k)

b = 3

111 111 11

N = 16k
e = 2/(k)

b = 5

1

Fig. 1. Tree representations of Munro-Patterson algorithm for b = 3, and 5. Note
that the final state of the algorithm under a root consists of the pair of buffers that
are the children of the root. The shape and height of a tree depends only on b, and is
independent of k, but the precision, ǫ, and the number of observations summarized,
n, are both functions of k.

The Alsabti-Ranka-Singh Algorithm

The Alsabti-Ranka-Singh Algorithm [1] allocates b buffers and divides them,
equally, into two classes. The first b/2 buffers are reserved for the leaves of the
tree. Each group of kb/2 observations are collected into b/2 buffers using new,
and then collapseed into a single buffer from the second class. This process
is repeated b/2 times, resulting in b/2 buffers with weight b/2 as children of
the root. After the last such operation, the b/2 leaf buffers are discarded.

The depth of the Alsabti-Ranka-Singh tree is always 2, so by Corollary 2,
k ≥ 1/ǫ. We need k ∗ (b/2)2 ≥ n to cover all the observations. Given that
b increases coverage quadratically and k only linearly, it is most efficient to
choose the largest b and smallest k that satisfy the above constraints if we
wish to minimize bk. The smallest k is 1/ǫ, hence (b/2)2 ≥ ǫn, so b ≥

√

ǫn/4,

and bk = O(
√

n/ǫ).

The Manku-Rajagopalan-Lindsay Algorithm

It is natural to try to devise the best algorithm possible within the MRL
framework. It is easy to see that, for a given b and k, the more leaves an algo-
rithm tree has, the more observations it summarizes. Also, from Corollary 2,
the shallower the tree, the more precise the summary is. Clearly, for a fixed
b it is best to construct the shallowest and widest tree possible, in order to
summarize the most observations with the finest precision.

However, both algorithms presented above are inefficient in this light. For
example, Alsabti-Ranka-Singh is not as wide as possible. After the algorithm
fills the first b/2 buffers, it invokes collapse, leaving all buffers empty except
for one buffer with precision 1/(2k) summarizing bk/2 observations. However,

Quantiles and Equidepth Histograms over Streams 11

N = 16k
e = 1/(k)

b = 8

111

b = 6

16

4444

1

9

33

11

3

1

N = 9k
e = 1/(k)

1111 11111 1111111 11

Fig. 2. Tree representation of Alsabti-Ranka-Singh algorithm. For any specific
choice of b1 and b2, for b1 6= b2, the tree for b = b1 is not a subtree of b = b2.
The precision, ǫ, and the number of observations summarized, n, are both functions
of k.

there is no need for it to call collapse at that point — there are b/2 empty
buffers remaining. If it deferred calling collapse until after filling all b buffers,
the results would again be all buffers empty except for one buffer with precision
1/(2k), but this time summarizing bk observations. Even worse, after b/2 calls
to collapse, Alsabti-Ranka-Singh discards the b/2 “leaf buffers”, although
if it kept those buffers, and continued collecting, it could keep on collecting,
roughly, a factor of b/2 times as many observations with no loss of precision.

The Munro-Patterson algorithm does use empty buffers greedily. However,
it is not as shallow as possible. Munro-Patterson requires a tree of height
log β to combine β buffers, because it only collapses pairs of buffers at a
time, instead of combining the entire set at once. Had Munro-Patterson called
collapse on the entire set in a single operation, it would end with a buffer
with log β/(2k) higher precision (there is a loss of precision of 1/(2k) for each
call to collapse).

The new Manku-Rajagopalan-Lindsay (MRL) algorithm [14] aims to use
the buffers as efficiently as possible - to build the shallowest, widest tree it can
for a fixed b. The MRL algorithm never discards buffers; it uses any buffers
that are available to record new observations. The basic approach taken by
MRL is to keep the algorithm tree as wide as possible. It achieves this by
labeling each buffer Bj with a level Lj , which denotes its height (see Figure 3).
Let l denote the smallest value of Lj for all existing, full, buffers. The MRL
policy is to allocate new buffers at level 0 until the buffer pool is exhausted,
and then to call collapse on all buffers of level l. More specifically MRL
considers two cases:

• Empty buffers exist. Call new on each and assign level 0 to them.
• No empty buffers exist. Call collapse on all buffers of level l and assign

the output buffer a level L of l + 1.

If level l contains only 2 buffers, then collapse frees only a single buffer
which new assigns level 0. When that buffer is filled, it is the only buffer
at level 0. Calling collapse on a single buffer merely increments the level

12 Michael B. Greenwald and Sanjeev Khanna

without modifying the buffer. This will continue until the buffer is promoted
to level l, where other buffers exist. Thus MRL treats a third case specially:

• Precisely one empty buffer exists. Call new on it and assign it level l.

b = 3
N = 15k

h = 4

1

3

1

4
1

e <= 3/(2k)

h = 3
b = 3
N = 10k

15e <= 2/k

1

1

6

2

1 1

3

2

1

10

1 1

1

3

2

1

10

1

20

1

3

1

3

1

4
1

10

2

e <= 1/k

h = 2

h = 3

e <= 3/(2k)
h = 4

N = 35k
e <= 2/k

b = 4
N = 10k

b = 4
N = 20k

b =4

3

1

4
1

35

1

1

11 1 1 1 1 111

1

6

1

3

2

1 1 1

1

3

1

2 2

6

1

1

11 1 1

e <= 1/k

b = 3
N = 6k

h = 2

1 1

2

11

3

1

11

2

Fig. 3. Tree representation of Manku-Rajagopalan-Lindsay algorithm.

Proposition 2 In the tree representing the collapses and news in an MRL
algorithm with b buffers, the number of leaves in a subtree of height h, L(b, h),

is

(

b + h − 2
h − 1

)

.

Proof. We will prove by induction on h that L(b, h) =

(

(b − 1) + (h − 1)
h − 1

)

.

For h = 1 the tree is a single node, a leaf. So, for all b, L(b, 1) = 1 =
(

b − 1
0

)

.

Assume that for all h′ < h, for all b, that L(b, h′) =

(

(b − 1) + (h′ − 1)
h′ − 1

)

.

L(b, h) is equal to
∑b

i=1 L(i, h−1). To see this, note that we build the hth
level by finishing a tree of (b, h − 1), then collapsing it all into 1 buffer. Now
we have b− 1 buffers left over to build another tree of height h− 1. When we
finish, we collapse that into a single buffer, and start over building a tree of
height h− 1 with b− 2 buffers, and so on, until we are left with only 1 buffer,
which we fill. At that point we have no free buffers left and so we collapse
all b buffers into the single buffer that is the root at height h. By the induc-

tion hypothesis we know that L(b, h − 1) =

(

(b − 1) + (h − 2)
h − 2

)

. Therefore

L(b, h) =
∑b

i=1

(

(i − 1) + (h − 2)
h − 2

)

, or L(b, h) =
∑b−1

i=0

(

(i + (h − 2)
h − 2

)

. But

Quantiles and Equidepth Histograms over Streams 13

by summation on the upper index, we have L(b, h) =
∑b−1

i=0

(

(i + (h − 2)
h − 2

)

=
(

(b − 1) + 1 + h − 2
h − 1

)

=

(

(b − 1) + (h − 1)
h − 1

)

.

The leaf buffers must include all n observations, so by Proposition 2, b, k,

and h must be chosen such that kL(b, h) = k

(

b + h − 2
h − 1

)

≥ n. The summary

must be ǫ-approximate, so by Corollary 2, h/(2k) ≥ ǫ′. We must choose b, k,
and h to satisfy these constraints while minimizing bk. Increasing h (up to the
point we would violate the precision requirement) increases space-efficiency
because larger h covers more observations without increasing the memory
footprint, bk. The largest h that bounds the precision of the summary to be
within ǫ, is h = 2ǫk.

Now that h can be computed as a function of k and ǫ, we can focus on
choosing the best values of b and k to minimize the space bk required. We
first show that if a pair b, k is space-efficient — meaning that no other pair
b′, k′ could cover more observations in the same space bk — then k = O(b/ǫ).

The number of observations covered by the MRL algorithm for a pair
b, k is kL(b, 2ǫk). L(b, h) is symmetric in b and h (e.g. L(b, h) = L(h, b)). The
symmetry of L implies that k ≥ b/(2ǫ) (else we could have used our space more
efficiently by swapping b and 2ǫk (b′ = 2ǫk, k′ = b/2ǫ) yielding the same values
of L(b′, 2ǫk′). b′k′ = bk implying that our space requirements were equivalent,
but the larger value of k′ would mean that we cover more observations (as
long as ǫ < .5). Consequently, we would never choose k < b/(2ǫ) if we were
trying to minimize space.)

On the other hand, if we choose k too large relative to b, we would again use
space inefficiently. Assume, for contradiction, that a space-efficient b, k existed,
such that k > 15b/ǫ. But, if so, we could more efficiently choose k′ = k/2
and b′ = 2b, using the same space but covering more observations. b′ and k′

would cover more observations because k/2

(

2b + ǫk
ǫk

)

> k

(

b + 2ǫk
2ǫk

)

, when

k > 15b/ǫ. It follows that if a pair b, k is space-efficient, then k is bounded by
b/(2ǫ) ≤ k ≤ 15b/ǫ.

If k = O(b/ǫ), then we need only find the minimum b such that

b
2ǫ

(

2b − 2
b − 1

)

≈ n. Roughly, b = O(log(2ǫn)), and k = O(1
2ǫ) log(2ǫn)), so

bk = O((1/(2ǫ)) log2(2ǫn)).

3.3 The GK Algorithm

The new MRL algorithm was designed to be the best possible algorithm within
the MRL framework. Nevertheless, it still suffers from some inefficiencies. For a
given memory requirement, bk, the precision is reduced (that is, ǫ is increased)
by three factors. First, each time collapse is called, combining the α buffers

14 Michael B. Greenwald and Sanjeev Khanna

together increases the gap between rmin and rmax of elements in that buffer
by the sum of the gaps between the individual rmin and rmax in all the buffers
— because algorithms do not maintain any information that can allow them
to recover how the deleted entries in each buffer may have been interleaved.
Second, each collapse invokes the prune operation, which increases ǫ by
1/(2k). Finally, as is true for all algorithms in the MRL framework, MRL
keeps no per-entry information about rmin and rmax for individual entries.
Rather, we must assume that every entry in a buffer has the worst rmax−rmin.

We next describe an algorithm due to Greenwald and Khanna [10] that
overcomes some of these drawbacks by not using combine and prune. It yields
an ǫ-approximate quantile summary using only O((log ǫn)/ǫ) space.

The GK Summary Data Structure

At any point in time n, GK maintains a summary data structure QGK(n) that
consists of an ordered sequence of tuples which correspond to a subset of the
observations seen thus far. For each observation v in QGK, we maintain implicit
bounds on the minimum and the maximum possible rank of the observation v
among the first n observations. Let rminGK(v) and rmaxGK(v) denote respec-
tively the lower and upper bounds on the rank of v among the observations
seen so far. Specifically, QGK consists of tuples t0, t1, ..., ts−1 where each tuple
ti = (vi, gi,∆i) consists of three components: (i) a value vi that corresponds
to one of the elements in the data sequence seen thus far, (ii) the value gi

equals rminGK(vi) − rminGK(vi−1) (for i = 0, gi = 0), and (iii) ∆i equals
rmaxGK(vi) − rminGK(vi). Note that v0 ≤ v1 ≤ ... ≤ vs−1. We ensure that, at
all times, the maximum and the minimum values are part of the summary. In
other words, v0 and vs−1 always correspond to the minimum and the maxi-
mum elements seen so far. It is easy to see that rminGK(vi) =

∑

j≤i gj and
rmaxGK(vi) =

∑

j≤i gj + ∆i. Thus gi + ∆i − 1 is an upper bound on the total
number of observations that may have fallen between vi−1 and vi. Finally,
observe that

∑

i gi equals n, the total number of observations seen so far.

Answering Quantile Queries: A summary of the above form can be used
in a straightforward manner to provide ǫ-approximate answers to quantile
queries. Proposition 1 forms the basis of our approach, and the following is
an immediate corollary.

Corollary 3 If at any time n, the summary QGK(n) satisfies the property that
maxi(gi + ∆i) ≤ 2ǫn, then we can answer any φ-quantile query to within an
ǫn precision.

Overview: At a high level, our algorithm for maintaining the quantile sum-
mary proceeds as follows. Whenever the algorithm sees a new observation,
it inserts in the summary a tuple corresponding to this observation. Period-
ically, the algorithm performs a sweep over the summary to “merge” some
of the tuples into their neighbors so as to free up space. The heart of the

Quantiles and Equidepth Histograms over Streams 15

algorithm is in this merge phase where we maintain several conditions that
allow us to bound the space used by QGK at any time. We next develop some
basic concepts that are needed to precisely describe these conditions.

Tuple Capacities: When a new tuple ti is added to the summary at time n,
we set its gi value to be 1 and its ∆i value4 to be ⌊2ǫn⌋−1. All summary oper-
ations maintain the property that the ∆i value never changes. By Corollary 3,
it suffices to ensure that at all times greater than 1/2ǫ, maxi(gi + ∆i) ≤ 2ǫn.
(For times earlier than 1/2ǫ the summary preserves every observation, the
error is always zero, and ∆i = 0 for all i.) Motivated by this consideration, we
define the capacity of a tuple ti at any time n′, denoted by cap(ti, n

′), to be
⌊2ǫn′⌋ − ∆i. Thus the capacity of a tuple increases over time. An individual
tuple is said to be full at time n′ if gi + ∆i = ⌊2ǫn′⌋. The capacity of an
individual tuple is, therefore, the maximum number of observations that can
be counted by gi before the tuple becomes full.

Bands: Tuples with higher capacity correspond to values whose ranks are
known with higher precision. Intuitively, high capacity tuples are more valu-
able than lower capacity tuples and our merge rules will favor elimination of
lower capacity tuples by merging them into larger capacity ones. However,
we will find it convenient to not differentiate among tuples whose capaci-
ties are within a small multiplicative factor of one another. We thus group
tuples into geometric classes referred to as bands where roughly speaking,
a tuple ti is in a band α if cap(ti, n) ≈ 2α. Since capacities increase over
time, the band of a tuple increases over time. We will find it convenient to
ensure the following stability property in assigning bands: if at some time
n, we have band(ti, n) = band(tj , n) then for all times n′ ≥ n, we have
band(ti, n

′) = band(tj , n
′). We thus use a slightly more technical definition

of bands. Let p = ⌊2ǫn⌋ and α̂ = ⌈log2 p⌉. Then we say band(ti, n) is α if

2α−1 + (p mod 2α−1) ≤ cap(ti, n) < 2α + (p mod 2α).

If the ∆ value of tuple ti is p, then we say band(ti, n) is 0. It follows
from the definition of band that at all times the first 1/(2ǫ) observations, with
∆ = 0, are alone in bandα̂.

We will denote by band(ti, n) the band of tuple ti at time n, and by
bandα(n) all tuples (or equivalently, the capacities associated with these tu-
ples) that have a band value of α. The terms (p mod 2α−1) and (p mod 2α)
above ensure the following stability property: once a pair of tuples is in the
same band, they stay together from there on even as band boundaries are
modified. At the same time, these terms do not change the underlying geo-

4 In practice , we set ∆ more tightly by inserting (v, 1, gi + ∆i − 1) as the tuple
immediately preceding ti+1. It is easy to see that if Corollary 3 is satisfied before
insertion, it remains true after insertion, and that ⌊2ǫn⌋−1 is an upper bound on
the value of ∆i. For the purpose of our analysis, we always assume the worst-case
insertion value of ∆i = ⌊2ǫn⌋ − 1.

16 Michael B. Greenwald and Sanjeev Khanna

metric grouping in any fundamental manner; bandα(n) contains either 2α−1

or 2α distinct capacity values.

Proposition 3 1. At any point in time n and for any α, α̂ > α ≥ 1, the
number of distinct capacity values that can belong to bandα(n) is either
2α−1 or 2α.

2. If at some time n, any two tuples ti, tj are in the same band, then for all
times n′ ≥ n, this holds true.

3. At any point in time, n, and for any α, α̂ ≥ α ≥ 0, the number of distinct
capacity values that can belong to bandα(n) is ≤ 2α.

Proof. To see (1), if p mod 2α < 2α−1, then p mod 2α = p mod 2α−1, and
bandα(n) contains 2α − 2α−1 = 2α−1 distinct values of capacity. If p mod
2α ≥ 2α−1, then p mod 2α = 2α−1 + (p mod 2α−1), and bandα(n) contains 2α

distinct capacity values.
To see (2), consider any bandα(n). Each time p increases by 1, if p mod 2α 6∈

{0, 2α−1}, then both p mod 2α−1 and p mod 2α increase by 1 and thus the
range of bandα(n) shifts by 1. At the same time, capacity of each tuple changes
by 1 and thus the set of tuples that belong to bandα(n) stays unchanged.

Now suppose when p increases by 1, p mod 2α = 2α−1. It is easy to verify
that for any value of p, there is at most one value of α that satisfies the
equation p mod 2α = 2α−1. Then the left boundary of the band α decreases
by 2α−1 − 1 while the right boundary increases by 1. The resulting band now
captures all tuples that belonged to old bands (α − 1) and α. Also, for all
bands β where 1 ≤ β < α (and hence p mod 2β = 0), the range of the band
changes from [2β − 1, 2β+1 − 1) to [2β−1, 2β). Thus all tuples in the old band
β now belong together to the new band β +1. Finally, all bands γ > α satisfy
p mod 2γ 6∈ {0, 2γ−1}, and hence continue to capture the same set of tuples
as observed above.

Thus once a pair of tuples is present in the same band, their bands never
diverge again.

(3) holds for both band0 and bandα̂ — they both contain precisely one
distinct capacity value. For all other values of α, (3) follows directly from (1).

A Tree Representation: In order to decide on how tuples are merged in
order to compress the summary, we create an ordered tree structure, referred
to as the quantile tree, whose nodes correspond to the tuples in the summary.
The tree structure creates a hierarchy based on tuple capacities and proximity.
Specifically, the quantile tree T(n) at time n is created from the summary
QGK(n) = 〈t0, t1, ..., ts−1〉 as follows. T(n) contains a node Vi for each ti along
with a special root node R. The parent of a node Vi is the node Vj such that j
is the least index greater than i with band(tj , n) > band(ti, n). If no such index
exists, then the node R is set to be the parent. The children of each node are
ordered as they appear in the summary. All children (and all descendants) of
a given node Vi correspond to tuples that have capacities smaller than that of

Quantiles and Equidepth Histograms over Streams 17

ǫ = .001, N = 7000, 2ǫN = 14

∆-range Capacity Band

0 14 3
1-8 6-13 2
9-12 2-5 1
13 1 0

GK 83,1,13 84,1,13 85,1,13 89,10,0 90,2,11 93,6,5 94,1,12

, giv
i ,∆i

(a)

0 0 2 1 1 1 0 3 0 1 2 3 1 2 0 1 1 30 3 1

(b)

3 3

22

1 1 1 1 1 1 1

2

0

3

1

0 0

3

00 0

R

(c)

Fig. 4. (a) Tuple representation. (b) Tuples labeled only with band numbers. (c)
Corresponding tree representation.

tuple ti. The relationship between QGK(n) and T(n) is represented pictorially
in Figure 4. We next highlight two useful properties of T(n).

Proposition 4 Each node Vi in a quantile tree T(n) satisfies the following
two properties:

1. The children of each node Vi in T(n) are always arranged in non-increasing
order of band in QGK(n).

2. The tuples corresponding to Vi and the set of all descendants of Vi in T(n)
form a contiguous segment in QGK(n).

18 Michael B. Greenwald and Sanjeev Khanna

Proof. To see property (1), consider any two children Vj and Vj′ of Vi with
j < j′. Then if band(tj′ , n) > band(tj , n), Vj′ and not Vi would be the parent
of node Vj in T(n).

We establish property (2) using proof by contradiction. Consider a node
Vi that violates the property. Let k be the largest integer such that Vk is a
descendant of Vi, and let j be the largest index less than k such that Vj is a
descendant of Vi while Vj+1 is not. Also, let j < ℓ < k be the largest integer
such that Vℓ is not a descendant of Vi. Clearly, Vi must be the parent of Vk,
and some node Vx where x > ℓ must be the parent of Vj .

If band(tℓ, n) < band(tk, n), then one of the nodes Vℓ+1, ..., Vk must be the
parent of Vℓ – a contradiction since each of these nodes is a descendant of
Vi by our choice of ℓ. Otherwise, we have band(tℓ, n) ≥ band(tk, n). Now if
band(tℓ, n) ≥ band(ti, n), then Vj ’s parent is some node Vx′ with x′ ≤ ℓ. So
it must be that band(tk, n) ≤ band(tℓ, n) < band(ti, n). Consider the node Vy

that is the parent of Vℓ in T(n). By our choice of Vℓ, we have k < y < i. Since
band(Vy, n) > band(Vℓ, n), it must be that Vy is the parent of Vk and not Vi.
A contradiction!

Operations

We now describe the various operations that we perform on our summary
data structure. We start with a description of external operations:

External Operations

QUANTILE(φ) To compute an ǫ-approximate φ-quantile from the summary
QGK(n) after n observations, compute the rank, r = ⌈φ(n − 1)⌉. Find i
such that both r − rminGK(vi) ≤ ǫn and rmaxGK(vi) − r ≤ ǫn and return
vi.

INSERT(v) Find the smallest i, such that vi−1 ≤ v < vi, and insert the tuple
(v, 1, ⌊2ǫn⌋−1), between ti−1 and ti. Increment s. As a special case, if v is
the new minimum or the maximum observation seen, then insert (v, 1, 0).

INSERT(v) maintains correct relationships between gi, ∆i, rminGK(vi) and
rmaxGK(vi). Consider that if v is inserted before vi, the value of rminGK(v)
may be as small as rminGK(vi−1) + 1, and hence gi = 1. Similarly, rmaxGK(v)
may be as large as the current rmaxGK(vi), which in turn is bounded to be
within ⌊2ǫn⌋ of rminGK(vi−1). Note that rminGK(vi) and rmaxGK(vi) increase
by 1 after insertion.

Internal Operations

COMPRESS() The operation COMPRESS repeatedly attempts to find a
suitable segment of adjacent tuples in the summary QGK(n) and merges
them into the neighboring tuple (i.e. the tuple that succeeds them in the
summary). We first describe how the summary is updated when for any

Quantiles and Equidepth Histograms over Streams 19

COMPRESS()
for i from s− 2 to 0 do

if ((band(ti, n) ≤ band(ti+1, n)) &&
(g∗

i + gi+1 + ∆i+1 < 2ǫn)) then

gi+1 = gi+1 + g∗

i ;
Remove ti and all its descendants;

end if

end for

end COMPRESS

Fig. 5. Pseudocode for COMPRESS

1 < x ≤ y, tuples tx, ..., ty are merged together into the neighboring tuple

ty+1. We replace gy+1 by
∑y+1

j=x gj and ∆y+1 remains unchanged. It is
easy to verify that this operation correctly maintains rminGK(ty+1) and
rmaxGK(ty+1) values for all the tuples in the summary. Deletion of tx, ..., ty
does not alter the rminGK() and rmaxGK() values for any of the remaining
tuples and the merge operation above precisely maintains this property.
COMPRESS chooses the segments to be merged in a specific manner,
namely, it considers only those segments that correspond to a tuple ti
and all its descendants in the tree T(n). By Lemma 4 we know that
ti and all its descendants corresponds to a segment of adjacent tuples
ti−a, ti−a+1, ..., ti in QGK(n). Let g∗i denote the sum of g-values of the tu-

ple ti and all its decendants in T(n), that is, g∗i =
∑i

j=i−a gj . To maintain
the ǫ-approximate guarantee for the summary, we ensure that a merge is
done only if g∗i +gi+1 +∆i+1 ≤ 2ǫn. Finally, COMPRESS ensures that we
always merge into tuples of comparable or better capacity. The operation
COMPRESS terminates if and only if there are no segments that satisfy
the conditions above. Figure 5 describes an efficient implementation of the
COMPRESS operation.

Note that since COMPRESS never alters the ∆ value of surviving tuples,
it follows that ∆i of any quantile entry remains unchanged once it has been
inserted.

COMPRESS inspects tuples from right (highest index) to left. Therefore, it
first combines children (and their entire subtree of descendants) into parents.
It combines siblings only when no more children can be combined into the
parent.

Analysis

The INSERT as well as COMPRESS operations always ensure that gi +∆i ≤
2ǫn. As n always increases, it is easy to see that the data structure above
maintains an ǫ-approximate quantile summary at each point in time. We will

20 Michael B. Greenwald and Sanjeev Khanna

Initial State

QGK ← ∅; s = 0; n = 0.
Algorithm

To add the (n + 1)st observation, v, to summary
QGK(n):

if (n ≡ 0 mod 1

2ǫ
) then

COMPRESS();
end if

INSERT(v);
n = n + 1;

Fig. 6. Pseudo-code for the algorithm

now establish that the total number of tuples in the summary QGK after n
observations have been seen is bounded by (11/2ǫ) log(2ǫn).

We start by defining a notion of coverage. We say that a tuple t in the
quantile summary QGK covers an observation v at any time n if either the tuple
for v has been directly merged into ti or a tuple t that covered v has been
merged into ti. Moreover, a tuple always covers itself. It is easy to see that
the total number of observations covered by ti is exactly given by gi = gi(n).
The lemmas below highlight some useful properties concerning coverage of
observations by various tuples.

Lemma 5. At no point in time, a tuple t with a band value of α covers a tuple
t′ which if it were alive, would have a band value strictly greater than α.

Proof. Note that the band of a tuple at any time n is completely determined
by its ∆ value. Since the ∆ value never changes once a tuple is created, the
notion of band value of a tuple is well-defined even if the tuple no longer exists
in the summary.

Now suppose at some time n, the event described in the lemma occurs. The
COMPRESS subroutine never merges a tuple ti into an adjacent tuple ti+1 if
the band of ti is greater than the band of ti+1. Thus the only way in which
this event can occur is if it at some earlier time m < n, we had band(ti,m) ≤
band(ti+1,m), and at the current time n, we have band(ti, n) > band(ti+1, n).
Consider first the case when band(ti,m) = band(ti+1,m). By Proposition 3,
it can not be the case that at some later time n, band(ti, n) 6= band(ti+1, n).
Now consider the case when band(ti,m) < band(ti+1,m). Then ∆i > ∆i+1,
and hence band(ti, n) ≤ band(ti+1, n) for all n.

Lemma 6. At any point in time n, and for any integer α, the total number
of observations covered cumulatively by all tuples with band values in [0..α] is
bounded by 2α/ǫ.

Quantiles and Equidepth Histograms over Streams 21

Proof. By Proposition 3, each bandβ(n) contains at most 2β distinct values
of ∆. There are no more than 1/2ǫ observations with any given ∆, so at
most 2β/2ǫ observations were inserted with ∆ ∈ bandβ . By Lemma 5, no
observations from bands > α will be covered by a node from α. Therefore the
nodes in question can cover, at most, the total number of observations from all
bands ≤ α. Summing over all β ≤ α yields an upper bound of 2α+1/2ǫ = 2α/ǫ.

The next lemma shows that for any given band value α, only a small
number of nodes can have a child with that band value.

Lemma 7. At any time n and for any given α, there are at most 3/2ǫ nodes
in T(n) that have a child with band value of α. In other words, there are at
most 3/2ǫ parents of nodes from bandα(n).

Proof. Let mmin and mmax, respectively denote the earliest and the latest
times at which an observation in bandα(n) could be seen. It is easy to verify
that

mmin =
2ǫn − 2α − (2ǫn mod 2α)

2ǫ
and mmax =

2ǫn − 2α−1 − (2ǫn mod 2α−1)

2ǫ
.

Thus, any parent of a node in bandα(n) must have ∆i < 2ǫmmin.
Fix a parent node Vi with at least one child in bandα(n) and let Vj be

the rightmost such child. Denote by mj the time at which the observation
corresponding to Vj was seen.

We will show that at least a (2ǫ/3)-fraction of all observations that arrived
after time mmin can be uniquely mapped to the pair(Vi, Vj). This in turn
implies that no more than 3/2ǫ such Vi’s can exist, thus establishing the
lemma. The main idea underlying our proof is that the fact that COMPRESS
did not merge Vj into Vi implies there must be a large number of observations
that can be associated with the parent-child pair (Vi, Vj).

We first claim that g∗j (n) +
∑i−1

k=j+1 gk(n) ≥ g∗i−1(n). If j = i − 1, it
is trivially true. Otherwise, the tuple ti−1 is distinct from tj , and since Vj

is a child of Vi (and not Vi−1), we know that band(ti−1, n) ≤ band(tj , n).
Thus no tuple among t1, t2, ..., tj could be a descendant of ti−1. Therefore,
∑i−1

k=j+1 gk(n) ≥ g∗i−1(n) and the claim follows.
Now since COMPRESS did not merge Vj into Vi, it must be the case

that g∗i−1(n) + gi(n) + ∆i > 2ǫn. Using the claim above, we can conclude

that g∗j (n) +
∑i−1

k=j+1 gk(n) + gi(n) + ∆i > 2ǫn. Also, at time mj , we had
gi(mj) + ∆i < 2ǫmj . Since mj is at most mmax, it must be that

g∗j (n) +

i−1
∑

k=j+1

gk(n) + (gi(n) − gi(mj)) > 2ǫ(n − mmax).

Finally observe that for any other such parent-child pair Vi′ and Vj′ , the
observations counted above by (Vj , Vi) and (Vj′ , Vi′) are distinct. Since there

22 Michael B. Greenwald and Sanjeev Khanna

are at most n−mmin total observations that arrived after mmin, we can bound
the total number of such pairs by

n − mmin

2ǫ(n − mmax)

which can be verified to be at most 3/2ǫ.

We say that adjacent tuples (ti−1, ti) constitute a full pair of tuples at time
n′, if gi−1 + gi +∆i > ⌊2ǫn′⌋. Given such a full pair of tuples, we say that the
tuple ti−1 is a left partner and ti is a right partner in this full pair.

Lemma 8. At any time n and for any given α, there are at most 4/ǫ tuples
from bandα(n) that are right partners in a full pair of tuples.

Proof. Let X be the set of tuples in bandα(n) that participate as a right part-
ner in some full pair. We first consider the case when tuples in X form a single
contiguous segment in QGK(n). Let ti, ..., ti+p−1 be a maximal contiguous seg-
ment of bandα(n) tuples in QGK(n). Since these tuples are alive in QGK(n), it
must be the case that

g∗j−1 + gj + ∆j > 2ǫn i ≤ j < i + p.

Adding over all j, we get

i+p−1
∑

j=i

g∗j−1 +

i+p−1
∑

j=i

gj +

i+p−1
∑

j=i

∆j > 2pǫn.

In particular, we can conclude that

2

i+p−1
∑

j=i−1

g∗j +

i+p−1
∑

j=i

∆j > 2pǫn.

The first term in the LHS of the above inequality counts twice the number
of observations covered by nodes in bandα(n) or by one of its descendants
in the tree T(n). Using Lemma 6, this sum can be bounded by 2(2α/ǫ). The
second term can be bounded by p(2ǫn − 2α−1) since the largest possible ∆
value for a tuple with a band value of α or less is (2ǫn − 2α−1). Substituting
these bounds, we get

2α+1

ǫ
+ p(2ǫn − 2α−1) > 2pǫn

Simplifying above, we get p < 4/ǫ as claimed by the lemma. Finally, the
same argument applies when nodes in X induce multiple segments in QGK(n);
we simply consider the above summation over all such segments.

Quantiles and Equidepth Histograms over Streams 23

Lemma 9. At any time n and for any given α, the maximum number of tuples
possible from each bandα(n) is 11/2ǫ.

Proof. By Lemma 8 we know that the number of bandα(n) nodes that are right
partners in some full pair can be bounded by 4/ǫ. Any other bandα(n) node
either does not participate in any full pair or occurs only as a left partner.
We first claim that each parent of a bandα(n) node can have at most one
such node in bandα(n). To see this, observe that if a pair of non-full adjacent
tuples ti, ti+1, where ti+1 ∈ bandα(n), is not merged then it must be because
band(ti, n) is greater than α. But Proposition 4 tells us that this event can
occur only once for any α, and therefore, Vi+1 must be the unique bandα(n)
child of its parent that does not participate in a full pair. It is also easy to
verify that for each parent node, at most one bandα(n) tuple can participate
only as a left partner in a full pair. Finally, observe that only one of the above
two events can occur for each parent node. By Lemma 7, there are at most
3/2ǫ parents of such nodes, and thus the total number of bandα(n) nodes can
be bounded by 11/2ǫ.

Theorem 2. At any time n, the total number of tuples stored in QGK(n) is at
most (11/2ǫ) log(2ǫn).

Proof. There are at most 1+ ⌊log 2ǫn⌋ bands at time n. There can be at most
3/2ǫ total tuples in QGK(n) from bands 0 and 1. For the remaining bands,
Lemma 9 bounds the maximum number of tuples in each band. The result
follows.

4 Randomized Algorithms

We present here two distinct approaches for using randomization to reduce
the space needed. The first approach essentially samples the input elements,
and presents the sample as input to a deterministic algorithm. The second
approach uses hashing to randomly cluster the input elements, thus reduc-
ing the number of distinct input elements seen by the quantile summary.
The sampling-based approaches presented here work only for the cash-register
model. The hashing-based approach, on the other hand, works in the more
general turnstile model that allows for deletion of elements. However, this
latter approach requires that we know the number of elements in the input
sequence in advance.

4.1 Sampling-based Approaches

Sampling of elements offers a simple and effective way to reduce the space
needed to create quantile summaries. In particular, the space needed can be
made independent of the size of the data stream, if we are willing to settle
for a probabilistic guarantee on the precision of the summary generated. The

24 Michael B. Greenwald and Sanjeev Khanna

idea is to draw a random sample from the input, and run a deterministic
algorithm on the sample to generate the quantile summary. The size of the
sample depends only on the probabilistic guarantee and the desired precision
for the summary. The following lemma from Manku et al [14] serves as a basis
for this approach.

Lemma 10 ([14]). Let ǫ, δ ∈ (0, 1), and let S be a set of n elements. There
exists an integer p = Θ

(

1
ǫ2 log

(

1
ǫδ

))

such that if we sample p elements from
S uniformly at random, and create an ǫ/2-approximate quantile summary Q
on the sample, then Q is an ǫ-approximate summary for S with probability at
least 1 − δ.

If the length of the input sequence is known in advance. we can easily
draw a sample of size p as required above, and maintain an ǫ/2-approximate
quantile summary Q on the sample. Total space used by this approach is
O(1

ǫ log(ǫp)), giving us the following theorem.

Theorem 3. For any ǫ, δ ∈ (0, 1), we can compute with probability at least
1− δ, an ǫ-approximate quantile summary for a sequence of n elements using
O

(

1
ǫ log(1

ǫ) + 1
ǫ log log

(

1
ǫδ

))

space, assuming the sequence size n is known in
advance.

When the length of the input sequence is not known apriori, one approach
is to use a technique called reservoir sampling (discussed in detail in another
chapter in this handbook) that maintains a uniform sample at all times. How-
ever, the elements in the sample are constantly being replaced as the length
of the input sequence increases, and thus the quantile summary cannot be
constructed incrementally. The sample must be stored explicitly and the ob-
servations can be fed to the deterministic algorithm only when we stop, and
are certain the elements in the sample will not be replaced. Since the sample
size dominates the space needed in this case, we get the following theorem.

Theorem 4. For any ǫ, δ ∈ (0, 1), we can compute with probability at least
1− δ, an ǫ-approximate quantile summary for a sequence of n elements using
O

(

1
ǫ2 log

(

1
ǫδ

))

space.

Manku et al [15], used a non-uniform sampling approach to get around the
large space requirements imposed by the reservoir sampling. We state their
main result below and refer the reader to the paper for more details.

Theorem 5 ([15]). For any ǫ, δ ∈ (0, 1), we can compute with probability at
least 1 − δ, an ǫ-approximate quantile summary for a sequence of n elements
using O

(

1
ǫ log2(1

ǫ) + 1
ǫ log2 log

(

1
ǫδ

))

space.

Quantiles and Equidepth Histograms over Streams 25

4.2 The Count-Min Algorithm

The Count-Min (CM) algorithm [4] is a randomized approach for maintaining
quantiles when the universe size is known in advance. Suppose all elements are
drawn from from a universe U = {1, 2, ...,M} of size M . The CM algorithm
uses O(1

ǫ (log2 M)(log(log M
ǫδ))) space to answer any quantile query with ǫ-

accuracy with probability at least 1−δ. This is in contrast to the O(1
ǫ log(ǫn))

space used by the deterministic GK algorithm. The two space bounds are
incomparable in the sense that their relative quality depends on the relation
between n and M . In addition to being quite simple, the main strength of the
CM algorithm is that it works in the more general turnstile model, provided
all element counts are non-negative throughout its execution. We start with a
description of the basic data structure maintained by the CM algorithm and
then describe how the data structure is adapted to handle quantile queries.
A key concept underlying the CM data structure is that of universal hash
families.

Universal Hash Families: For any positive integer m, a family H =
{h1, ..., hk} of hash functions where each hi : U → [1..m] is a universal hash
family if for any two distinct elements x, y ∈ U , we have

Prhi∈H[hi(x) = hi(y)] ≤ 1/m.

The set of all possible hash functions h : U → [1..m] is easily seen to be a
hash family but the number of hash functions in this family is exponentially
large. A beautiful result of Carter and Wegman [3] shows that there exist uni-
versal hash families with only O(M2) hash functions that can be constructed
in polynomial-time. Moreover, any function in the family can be described
completely using O(log M) bits.

We are now ready to describe the basic CM data structure.

Basic CM Data Structure: An (ǫ0, δ0) CM data structure consists of a p×q
table T where p = ⌈ln(1/δ0)⌉ and q = ⌈e/ǫ0⌉, and a universal hash family H
such that each h ∈ H is a function h : U → [1..q]. We associate with each
row i ∈ [1..p], a hash function hi chosen uniformly at random from the hash
family H. The table is initialized to all zeroes at the beginning. Whenever an
update (x, cx) arrives for some x ∈ U , we modify for each 1 ≤ i ≤ p :

T [i, hi(x)] = T [i, hi(x)] + cx.

At any point in time t, let C(t) = (C1, ..., CM) where Cx denotes the sum
{
∑

cx | (x, cx) arrived before time t}. When the time t is clear from context,
we will simply use C.

Given a query for Cx, the CM data structure outputs the estimate Ĉx =
min1≤i≤p T [i, hi(x)]. The lemma below gives useful properties of the estimate

Ĉ(x).

26 Michael B. Greenwald and Sanjeev Khanna

Lemma 11. Let x ∈ U be any fixed element. Then at any time t, with prob-
ability at least 1 − δ0:

Cx ≤ Ĉx ≤ Cx + ǫ0‖C‖1.

Proof. Recall that by assumption, Cy ≥ 0 for all y ∈ U at all times t. It is

then easy to see that Ĉx ≥ Cx at all times since each update (x, cx) leads
to increment of T [i, hi(x)] by cx for each 1 ≤ i ≤ p. In addition, any ele-
ment y such that hi(y) = hi(x) may contribute to T [i, hi(x)] as well but this
contribution is guaranteed to be non-negative by our assumption.

We now bound the probability that Ĉx > Cx + ǫ0‖C‖1 at any time t. Fix
an element x ∈ U and an i ∈ [1..p]. We start by analyzing the probability of
the event that T [i, hi(x)] > Cx +ǫ0‖C‖1. Let Zi(x) be a random variable that
is defined to be |{

∑

y∈U\{x} Cy | hi(y) = hi(x)}|. Since hi is drawn uniformly
at random from a universal hash family, we have

E[Zi(x)] =
∑

y∈U

Pr[hi(y) = hi(x)]Cy ≤

∑

y∈U\{x} Cy

q
≤

ǫ0‖C‖1

e
.

Then by Markov’s inequality, we have that

Pr
[

T [i, hi(x)] > Cx + ǫ0‖C‖1

]

≤ Pr
[

T [i, hi(x)] > ǫ0‖C‖1

]

≤
1

e
.

Thus

Pr

[

min
1≤i≤p

T [i, hi(x)]

]

> Cx + ǫ0‖C‖1 ≤ (
1

e
)ln(1/δ0) ≤ δ0.

CM Data Structure for Quantile Queries: In order to support quantile
queries, we need to modify the basic CM data structure to support range
queries. A range query R[ℓ, r] specifies two elements ℓ, r ∈ U and asks for
∑

ℓ≤x≤r Cx. Suppose we are given a data structure that can answer with
probability at least 1 − δ every range query to within an additive error of at
most ǫ‖C‖1. Then this data structure can be used to answer any φ-quantile
query with ǫ-accuracy with probability at least 1 − δ. The idea is to perform
a binary search for the smallest element r ∈ U such that R̂[1, r] ≥ φ‖C‖. We
output the element r as the φ-quantile. Clearly, it is an ǫ-accurate φ-quantile
with probability at least 1 − δ.

We now describe how the basic CM data structure can be modified to
support range queries. For clarity of exposition, we will assume without any
loss of generality that M = 2u for some integer u. We will define a collection
of CM data structures, say, CM0,CM1, ...,CMu such that CMi can answer
any range query of the form R[j2i + 1, (j + 1)2i] with an additive error of

at most ǫ‖C‖1

(u+1) . Then to answer a range query R[1, r] for any r ∈ [1..M], we

consider the binary representation of r. Let i1 > i2 > ... > ib denote the bit

Quantiles and Equidepth Histograms over Streams 27

positions with a 1 in the representation. In response to the query R[1, r], we
return

R̂[1, r] = R̂[1, 2i1]+R̂[2i1+1, 2i1+2i2]+...+R̂[2i1+...+2ib−1+1, 2i1+...+2ib−1+2ib]

where R̂[2i1 + ... + 2ij−1 + 1, 2i1 + ... + 2ij−1 + 2ij] is the value returned by
CMij

in response to the query R[2i1 + ... + 2ij−1 + 1, 2i1 + ... + 2ij−1 + 2ij].

Since each term in the RHS has an additive error of at most ǫ‖C‖1

(u+1) , we know

that

R[1, r] ≤ R̂[1, r] ≤ R[1, r] + ǫ‖C‖1.

The Data Structure CMi: It now remains to describe the data structure
CMi for 0 ≤ i ≤ u. Fix an i ∈ [0..u], and let ui = u − i. Define Ui =
{xi,1, ..., xi,2ui } to be the universe underlying the data structure CMi. The
element xi,j ∈ Ui serves as the unique representative for all elements in U
that lie in the range [j2i +1, (j +1)2i]. Thus each element in U is covered by a
unique element in Ui. The data structure CMi is an (ǫ0, δ0) CM data structure
over Ui where ǫ0 = ǫ

(u+1) and δ0 = δ
(u+1) . Whenever an update (x, cx) arrives

for x ∈ Ui, we simply add cx to the unique representative xi,j ∈ Ui that covers
x.

The following is an immediate corollary of Lemma 11.

Corollary 1. Let j ∈ [1..2u−i) be a fixed integer. The data structure CMi can
be used to answer the query R[j2i + 1, (j + 1)2i] within an additive error of
ǫ0‖C‖1 with probability at least 1 − δ0.

To answer a range query R[1..r], we aggregate answers from up to (u + 1)
queries (to the data structures CM0, CM1, ..., CMu), each with an additive
error of ǫ0‖C‖1 with probability at least 1 − δ0. Using union bounds, we can
thus conclude that with probability at least 1 − (u + 1)δ0 = 1 − δ, the total
error is bounded by (u + 1)ǫ0‖C‖1 = ǫ‖C‖1.

Application to Quantile Queries: In order to answer every φ-quantile
query to within ǫ-accuracy, it suffices to be able to answer φ-quantile queries
for φ-values restricted to be in the set {ǫ/2, ǫ, 3ǫ/2, ...} with ǫ/2-accuracy.
Given any arbitrary φ-quantile query, we can answer it by querying for a
φ′-quantile and returning the answer, where

φ′ = ⌈
φ

(ǫ/2)
⌉(ǫ/2).

It is easy to see that any (ǫ/2)-accurate answer to the φ′-quantile is an
ǫ-accurate answer to the φ-quantile query.

In order to answer every quantile query to within an additive error of
ǫ‖C‖1 with probability at least 1−δ, each CMi data structure is created with

28 Michael B. Greenwald and Sanjeev Khanna

suitably chosen parameters ǫ0 and δ0. Since any single range query requires
aggregating together at most (u + 1) answers, and there are 2/ǫ quantile
queries overall, it suffices to set

ǫ0 =
ǫ

(u + 1)
and δ0 =

δ

(u + 1)
·
2

ǫ
.

The space used by each CMi data structure for this choice of parameters
is O

(

1
ǫ (log M)(log(u

ǫδ))
)

. Hence the overall space used by this approach is

O
(

1
ǫ (log2 M)(log(log M

ǫδ))
)

.

The CM algorithm strongly utilizes the knowledge of the universe size.
In absence of deletions, stronger space bounds can be obtained by exploiting
the knowledge of the universe size. For instance, the q-digest summary of
Shrivastava et al [18] described in Section 5.3 is an ǫ-approximate quantile
summary that uses only O(1

ǫ log M) space. Moreover, the precision guarantee
of a q-digest is deterministic. However, the strength of the CM algorithm is
in its ability to handle deletions. To see another interesting example of an
algorithm that uses randomization to handle deletions, the reader is referred
to the RSS algorithm [8, 9].

5 Other Models

So far we have considered deterministic algorithms with absolute guarantees
and randomized algorithms with probabilistic guarantees mainly in the setting
of the cash register model [7]. However, quantile computations can be consid-
ered under different streaming models. We have seen in Section 4.2 that the
cash register model can be extended to the turnstile model [17], in which the
stream can include both insertions and deletions of observations. We can also
consider settings in which the complete dataset is accessible, at a cost, allow-
ing us to perform multiple (expensive) passes. Settings in which other features
of this model have been varied have been studied as well. For example, one
may know the types of queries in advance [15], or exploit prior knowledge of
the precision and range of the data values [8, 4, 18].

While algorithms from two different settings cannot be directly compared,
it is still worth understanding how they may be related. In this section we will
briefly consider a small sample of alternative models where the ideas presented
in this chapter are directly applicable — either used as black box components
in other algorithms, or adapted to a new setting with relatively minor modi-
fications — and compare the modified algorithms to other algorithms in the
literature. In each setting, we first briefly present an algorithm that follows
naturally from the ideas presented in this chapter, then present an algorithm
from the literature specifically designed for the new setting. Some of these
models will be covered in more depth in later chapters in this book.

Quantiles and Equidepth Histograms over Streams 29

5.1 Deletions

In many database applications, a summary is stored with large data sets. For
queries in which an approximate answer is sufficient, the query can be cheaply
executed over the summary rather than over the entire, large, dataset. In
such cases, we need to maintain the summary in the face of operations on
the underlying data set. This setting differs from our earlier model in an
important way: both insertion and deletion operations may be performed on
the underlying set. We focus here on well-formed inputs where each deletion
corresponds uniquely to an earlier insertion. When deletions are possible, the
size of the dataset can grow and shrink. The parameter n can no longer denote
both the number of observations that have been seen so far and the current
time. In the turnstile model we will, instead, denote the current time by t
and let n = n(t) denote the current number of elements in the data set, and
m = m(t) will denote max1≤i≤t n(i).

The difficulty in guaranteeing precise responses to quantile queries in the
turnstile model lies in recovering information once it has been discarded from
the summary. In particular, when there are only insertions, the error allowed
in the ranks of elements in the summary grows monotonically. But when
deletions occur, we may need to greatly refine the rank information for existing
elements in the summary. For instance, if we insert n elements in a set, then
the allowed error in the rank of any observation is ǫn. But now if we delete
all but 1/ǫ of the observations, then the ǫ-approximate property now requires
us to know the rank and value of each remaining element in the set exactly!

However, we can deal with similarly useful, but more tractable, problems
by investigating slightly more relaxed settings. Gibbons, Matias, and Poos-
ala [5, 6] were the first to present an algorithm to maintain a form of quan-
tile summary in the face of deletions in the case where multiple passes over
the data set are possible, although expensive. In situations where a second
pass is impossible, we relax the requirement that we return a value v that is
(currently) in S. In this latter setting we can gain some further traction by
weakening the guarantees we offer. Deterministic algorithms can temper their
precision guarantees as a function of the input pattern (performing better
on “easy” input patterns, and worse on “hard” patterns), and randomized
algorithms can offer probabilistic, rather than absolute, guarantees.

Deterministic Algorithms with input dependent guarantees

We first extend the GK [10] algorithm in a natural way to support a
DELETE(v) operation. We will see that for certain input sequences we can
maintain a guarantee of ǫ-precision in our responses to quantile queries —
even in the face of deletions.

DELETE(v) Find the smallest i, such that vi−1 ≤ v < vi. (Note that i
may be 1 if the minimum element was already deleted). To delete v

30 Michael B. Greenwald and Sanjeev Khanna

we must update rmaxGK(vj) and rminGK(vj) for all observations stored
in the summary. For all j > i, rminGK(vj) and rmaxGK(vj) are reduced
by 1. Further, we know that rmaxGK(vj−1) < rmaxGK(vj). If our esti-
mate of rmaxGK((vj)) is reduced, such that rmaxGK(vj−1) = rmaxGK(vj),
then decrement rmaxGK(vj−1) by 1. Deletion of an observation covered
by vi is implemented by simply decrementing gi. This decrements all
rminGK(vj) and rmaxGK(vj), for j > i, as required. The pseudo-code in Fig-
ure 7 that decrements ∆i−1 maintains the invariant that rmaxGK(vj−1) <
rmaxGK(vj). Finally, vi is removed from the summary if gi = 0 and i was
not one of the extreme ranking elements (i = 0, or i = s − 1).

DELETE(v)
gi = gi − 1
if (gi = 0) and

((i 6= s− 1) or (i 6= 0)) then

Remove ti from Q

end if

for j = (i− 1) to 0
if (∆j ≥ (gj+1 + ∆j+1))

then ∆j = ∆j − 1
else break

end if

end for

Fig. 7. Pseudocode for DELETE

Because we do not delete vi until all observations covered by the tuple are
also deleted, it is no longer the case that all vi ∈ QGK are members of the
underlying set.

At time t, a GK summary QGK(ǫ) will never delete a tuple if the resulting
gap would exceed 2ǫn(t). By Proposition 1 the precision of the resulting sum-
mary is the maximum, over all i, of (rmaxQGK(ǫ)(vi+1)−rminQGK(ǫ)(vi))/(2n(t)).

In the simple setting without deletions, the actual precision of QGK(ǫ) is al-
ways ≤ ǫ. Unfortunately it is impossible to bound this precision in the face of
arbitrary input in the setting of the turnstile model. In particular, after dele-
tions, QGK(ǫ′) may not have precision ǫ′ in the turnstile model. However, in
many cases, application-specific behavior can allow us to bound the maximum
rmaxGK(vi+1) − rminGK(vi) and hence construct summaries with guaranteed
ǫ precision.

Quantiles and Equidepth Histograms over Streams 31

Example: bounded deletions

Perhaps the simplest example of application-specific behavior is when we
know, in advance, some bound on the the impact of deletions on the size
of the data set. Let α < 1 denote a known fixed lower bound, such that
for any time t, n(t) > αm(t). If QGK(ǫ′) is an ǫ′-approximate quantile sum-
mary, then COMPRESS will never delete a tuple if the resulting gap would
exceed 2ǫ′n(t). Given that at all time t, n(t) ≤ m(t), we know that for all
tuples rmaxGK(vi+1) − rminGK(vi) ≤ 2ǫ′m(t), and the precision at time t is
then bounded above by ǫ′m(t)/n(t). n(t) > αm(t), and therefore the preci-
sion ǫ′m(t)/n(t) ≤ ǫ′/α. Consequently, if we choose ǫ′ = αǫ, then a summary
QGK(ǫ′) has precision ǫ even after deletions. This loose specification is too
broad to derive specific bounds on the size of our data structures. We pro-
ceed now to a concrete example in which analysis of the application-specific
behavior allows us to demonstrate stronger limits on the size and precision of
the resulting summary.

Example: session data

The AT&T network monitors the distribution of the duration of active calls
over time [8] through the collection of Call Detail Records (CDRs). The start-
time of each call is inserted into the quantile summary when the call begins.
When the call ends it is no longer active and the start-time is deleted from
the summary. At any time there is one observation in the set for each active
call, and the duration of the call is simply the difference between the current
time and the stored start time of the call. (The median duration is the current
time minus the start time of the median observation in the set.)

We first show that the size of the GK summary structure will be constant.
Session data arrives at the summary in order of start time. Consequently,

new observations are monotonically increasing (although deletions may occur
in arbitrary order). Each new observation is a new maximum, and we know
its rank exactly.

Proposition 5 If the input sequence is monotonically increasing, the data
structure QGK(ǫ) uses only O(1/ǫ) space.

Proof. The exact rank of each newly arriving observation is always known.
Hence, the ∆ value of each tuple in the summary is always 0. It then follows
that all tuples are siblings in the tree representation. Consequently, after we
run COMPRESS, each tuple except the leftmost tuple is a right partner of
a full tuple pair, and gi−1 + gi + ∆i > 2ǫn(t) in QGK(ǫ). Thus if there are
(k + 1) tuples in QGK(ǫ), then summing over the k full tuple pairs we get
∑k

i=1(gi−1 + gi + ∆i) ≥ k(2ǫn(t)). Since
∑

∆i = 0 and
∑

gi ≤ n(t), we
get 2n(t) ≥ k(2ǫn(t)), and k ≤ 1

ǫ . Since we run COMPRESS after 2/ǫ new
observations are added, QGK(ǫ) contains O(1/ǫ) tuples at all times t, regardless
of the size of n(t).

32 Michael B. Greenwald and Sanjeev Khanna

Proposition 5 tells us only about the size of QGK. By Proposition 1, QGK

will have precision ǫ′ at time t if the difference in rank between any two
consecutive stored tuples, rmaxGK(vi+1) − rminGK(vi), is ≤ 2ǫ′n(t). In our
example, the expected difference in rank follows from the observation that
phone calls, (for example the trace data from [8]), are typically modeled as
having exponentially distributed lifetimes.

Proposition 6 For sessions with exponentially distributed lifetimes and mono-
tonically increasing arrivals, for a given ǫ, the expected difference in rank be-
tween consecutive tuples in QGK(ǫ) at time t is ≤ 2ǫE(n(t)), where E(n(t)) is
the expected number of elements in S at time t.

Proof. Fix any i. Let t′ denote the most recent time at which COMPRESS
deleted any tuples that lay between vi and vi+1. Let ∆r denote the difference
(rmaxGK(vi+1) − rminGK(vi)) at time t′. ∆r must have been ≤ 2ǫn(t′). Let
d = d(t′, t) denote the total number of deletions that occurred between times
t′ and t. Then n(t) ≥ n(t′) − d.

The exponential distribution is “memoryless” — all calls are equally likely
to terminate within a given interval. Therefore, if the probability that a call
terminates within the interval [t′, t] is p, then the expected value of the total
number of deletions, d, during [t′, t] is pn(t′). Similarly, the expected value of
the number of deletions falling between vi and vi+1 during [t′, t] is p∆r. At
time t the expected value of (rmaxGK(vi+1) − rminGK(vi)) is (1 − p)∆r. The
expected value of n(t) is ≥ (1 − p)n(t′). Given that ∆r ≤ 2ǫn(t′), we have
(1 − p)∆r ≤ 2ǫ(1 − p)n(t′) ≤ 2ǫn(t).

By Proposition 5, the size of QGK(ǫ) will be O(1/ǫ).

To be more concrete, in the CDR trace data described in [8], the RSS
summary has ǫ = 0.1 precision, and has a maximum memory footprint of
11K bytes. Assuming that we store 12 bytes per tuple, the GK algorithm, in
the same memory footprint, should be able to store more than 900 tuples.
We expect the typical gap between stored tuples to be commensurate with a
precision of roughly .0011 — about 100 times more accurate than the RSS
summary. This demonstrates the potential payoff of domain-specific analysis,
but it is important to recall that this analysis provides no guarantees in the
general case.

Probabilistic guarantees across all inputs

The GK algorithm above exploited structure that was specific to the given
example. However, more adversarial cases are easy to imagine. An adversary,
for example, can delete all observations except for those that lie between two
consecutive tuples in the summary. In such cases either there can be no pre-
cision guarantee (we will not be able to return even a single observation from
the data set), or else the original “summary” must store every observation —
providing no reduction in space. Thus, when details of the application are not

Quantiles and Equidepth Histograms over Streams 33

known, algorithms such as GK are unsatisfactory. Even when the expected
behavior of an application is known, there may be a chance that the input
sequence is unexpectedly adversarial.

Fortunately, there is a much better approach than aiming for absolute
guarantees in the face of deletions. Randomized algorithms that summarize
the number of observations within a range of values (c.f. RSS [8] or CM [4]) can
give probabilistic guarantees on precision and upper bounds on space for any
application, without requiring case by case analysis. The Count-Min algorithm
is described in Section 4.2. Assuming that observations can take on any one of

M values, then CM summarizes a sample in space O
(

1
ǫ (log2 M)(log(log M

ǫδ))
)

.

This summary is ǫ-approximate with probability at least 1 − δ.

5.2 Sliding Window Model

In some applications, we need to compute order statistics over the W most
recent observations, rather than over the entire stream. When W is small
enough to fit into memory, it suffices to store the last W observations in a
circular buffer and compute the statistics exactly. However, when W is itself
very large, then we must summarize a sliding window of the most recent W
elements of the stream. A sliding window is a case where observations are being
deleted in a systematic fashion based on the time of arrival. The chief difficulty
in such sliding window quantile summaries compared to the summaries over
entire streams is that, as the window slides, we need to remove observations
from the summary — as in the turnstile model. However, unlike the strict
turnstile model where the deletions are delivered to the summary from an
external source (and, we presume, are properly paired to an undeleted input),
we do not have a complete ordered record of observations, and hence do not
know what value needs to be deleted at any given time. On the other hand,
deletions in the sliding window model are not arbitrarily distributed; they
have a nice structure that can be exploited.

Sliding windows may be either fixed or variable size. In a fixed sliding
window of size W , each newly arrived observation (after the first W arrivals)
is paired with a deletion of the oldest observation in the window. Thus, in the
steady state, the window always covers precisely W elements. Variable sized
sliding windows decouple the arrivals from deletions — at any point in time
either a new observation arrives or the oldest observation is deleted. A long
string of arrivals increases the size of the window; a long string of deletions can
reduce the size of the window. (We may sometimes exploit an upper bound
on the size of the variable window, if such a bound is known in advance).

Fixed Size Windows

We can implement a trivial fixed sliding window summary with precision ǫ
by dividing the input stream into blocks of ǫW/2 consecutive observations.

34 Michael B. Greenwald and Sanjeev Khanna

We summarize each block with an ǫ/2 precision quantile summary. The block
summarizing the most recent data is under construction. We add each new
arrival to it until it contains ǫW/2 observations, and is considered complete.
Once the block is complete it is no longer modified5 We store only the sum-
maries of the last 2/ǫ blocks. When a single observation in a block exits the
window (it is “deleted”), we mark that block expired, and do not include it
in our combined summary. These block summaries cover at most the last W ,
and at least the last W − ǫW/2, observations. By Corollary 1, the combined
summary has a precision of ǫ/2. If the most recent block has only just been
started, and covers a very few observations, then our combined summary is
missing up to ǫW/2 observations. In the worst case all the missing observa-
tions have values that lie between our current estimate and the true φ quantile
of interest. Even so, they could increase the error in rank by at most ǫW/2,
keeping the total error below ǫW , ensuring that our combined sliding win-
dow summary has precision ǫ. The summary for each individual block uses
O(1

ǫ log(ǫ2W)) space, and the aggregate uses O(1
ǫ2 log(ǫ2W)) space.

Arasu and Manku [2] employ the same basic structure of maintaining
a set of summaries over fixed size windows in the input stream, but use a
more sophisticated approach improves upon the space bound achieved by the
simple algorithm above. Their algorithm suffers a blowup of only a factor of
O(log(1/ǫ)) for maintaining a summary over a window of size W , compared
to a blowup of Ω(1/ǫ) in the simple implementation. When ǫ is small (say
.001), this improvement is significant.

W/2

W/4

W/8

ε

ε

Now

= Expired = Complete

0

2

1

L−1

L

W

W/16

4 /(L+1)ε

= Under construction = marked as part of combined summary

2 /(L+1)ε

/(L+1)

W /(2(L+1))

Fig. 8. Graphical representation of levels in Arasu-Manku Algorithm.

5 Lin et al [13] use a variant of this simple approach, but construct ǫW/4 size blocks,
and call prune on completed blocks.

Quantiles and Equidepth Histograms over Streams 35

Arasu and Manku use a data structure with L + 1 levels where each level
covers the stream by blocks of geometrically increasing sizes. At each point
in time, exactly one block in each of the L + 1 levels is under construction.
Each block is constructed using the GK algorithm until it is complete. It may
seem that summarizing the entire window in L + 1 different ways, with L + 1
sets of blocks, would increase the required space, but, in fact, the total space
requirement is reduced due to two basic observations.

First, once a block is complete, we can call prune to reduce the required
space to O(1/ǫ). Second, for a given precision, larger blocks summarize the
data stream more efficiently than smaller blocks — each stored tuple covers
more observations. On the other hand, small blocks result in fewer lost obser-
vations when we discard the oldest block. The Arasu-Manku algorithm sum-
marizes the window by combining non-overlapping blocks of different sizes. It
summarizes most of the window, efficiently, using large blocks with fine pre-
cision (saving space due to the large block size). We can summarize the tail
end of the window using coarser precision smaller blocks (saving space by the
coarse precision), and bounding the number of lost observations at the very
end of the window to the size of the smallest block we use.

Specifically, [2] divides the input stream into blocks in L+1 different ways,
where L = log2 (4/ǫ). Each decomposition is called a level, and the levels are
labeled 0 through L. As we go up each level the block size, denoted by Nℓ,

doubles to 2ℓǫW/4, and the precision, denoted by ǫℓ, is halved to 2(L−ℓ)ǫ
2(L+1) .

Proposition 7 The Arasu Manku window algorithm can summarize a fixed
window of the W most recent observations, using at most L+1 non-overlapping
blocks from its summary structure.

Proof. The most recent observations are covered by the level L block cur-
rently under construction. For any 0 ≤ ℓ ≤ L, let ηℓ denote the number
of observations that need to be “covered” by blocks from level 0 through ℓ.
We start by defining ηL−1 to be the number of observations not covered by
a level L block; clearly ηL−1 < W . If ηL−1 ≥ W/2, then we can include a
level L − 1 block of size W/2 to cover W/2 additional observations, and set
ηL−2 = ηL−1 −W/2 < W/2. Otherwise, ηL−2 = ηL−1 < W/2. It is easy to see
ηL−ℓ < W2−ℓ+1, and consequently at most one block from each level will be
used. There are L + 1 levels.

Lemma 12. The Arasu Manku window algorithm implements an ǫ-approximate
quantile-summary of a fixed window of the W most recent observations.

Proof. Let A denote the combined summary of non-overlapping blocks. From
the analysis in the proof of Lemma 1 the maximum gap between consecutive
stored observations in A is

∑L
ℓ=0 îlNlǫℓ, where îℓ is 1 if a block from level ℓ is

present in A, and 0 if it is not. But

Nℓǫl = 2lǫ

(

W

4

)

2L−ℓ ǫ

2(L + 1)
= ǫ

(

W

4

)

2L ǫ

2(L + 1)
,

36 Michael B. Greenwald and Sanjeev Khanna

a value that is independent of l. Since 2L = 4/ǫ, this can be simplified to
ǫW

2(L+1) . Consequently, the maximum gap is simply ǫW
2(L+1) times the number

of blocks used in A. By Proposition 7 there are at most L + 1 blocks in A.
Therefore, the maximum gap is at most (L + 1) ǫW

2(L+1) , or ǫW/2.

An upper bound on the number of unsummarized observations in the win-
dow is just the smallest block size in the summary, namely N0 = ǫW/4.
Combining this with the precision of A allows us to answer order-statistic
queries with precision 3ǫ/4 (which is less than ǫ).

Lemma 13. The Arasu Manku algorithm can answer quantile queries with ǫ
precision over a fixed window of W elements in O(1

ǫ log 1
ǫ log W) space.

Proof. There are at most 2L−ℓ complete blocks at each level, and those are
pruned to O(1/ǫℓ) space. There are L = O(log 1/ǫ) levels; the complete blocks
therefore use

L
∑

ℓ=1

(

2L−l

ǫℓ

)

=
L

∑

ℓ=1

(

2L−ℓ(2(2L + 2))

ǫ2L−ℓ

)

=
2L(2L + 2)

ǫ
= O

(

L2

ǫ

)

.

So the aggregate space used by the completed blocks at all levels is O(1
ǫ log2 1

ǫ).
At each level ℓ, there is also at most one block that is still under

construction. At its largest, just before it is completed, that block uses
O(1

ǫl
log ǫℓNℓ) space in the worst case. Expanding ǫℓ (also, as noted above,

ǫℓNℓ = ǫW
2(L+1)) yields that the space used by a level ℓ block in construction

is O(2ℓ−L 2(L+1)
ǫ log ǫW

2(L+1)). Summing over all levels ℓ gives us a geometric

series whose sum is

O

(

2(L + 1)

ǫ
log

ǫW

2(L + 1)

)

= O

(

2(log 4

ǫ
+ 1)

ǫ
log

ǫW

2(L + 1)

)

= O
(

1

ǫ
log

1

ǫ
log W

)

.

The combined space is just the sum of the completed blocks and the blocks
under construction, namely O(1

ǫ log 1
ǫ log W + 1

ǫ log2 1
ǫ), which can be simpli-

fied to O(1
ǫ log 1

ǫ log W) since the case when W < 1
ǫ can be trivially solved

using O(1
ǫ) space.

Variable Size Windows

Although the algorithms described above assume that W is fixed, they can
be extended in a straightforward way to handle variable sized windows. At
any point in time we assume that the maximum window size is some W . If
the actual window size differs from W by more than a factor of 2, then we
alter our assumed window size to 2W or W/2, and update our data structures
accordingly.

We first consider the case of a sliding window whose size has grown. We in-
crease our assumed window size to 2W . That this is generally possible follows

Quantiles and Equidepth Histograms over Streams 37

from the calculation of the maximum gap between the minimum and maxi-
mum rank of two consecutive stored tuples in the combined summary. If we
have an ǫ-approximate summary of a window of size W , then the maximum
such gap is of size 2ǫW . If the window size is increased to 2W , then that data
structure can answer queries to a precision of ǫ/2.

In particular, for the trivial fixed window algorithm described earlier, as
the window size grows, we do not alter the block size or the precision per
block. We continue to add enough blocks of size ǫW/2 to summarize our
entire window. When the number of blocks increases to 4/ǫ (corresponding to
a window size of 2W), we simply merge every adjacent pair of blocks into a
single block of size ǫW .

Extending the Arasu-Manku summary to accomodate a window that has
grown beyond W is just as easy. Recall that the number of levels, L, is a
function of ǫ and not W . So as W changes, the number of levels remain
constant. However, a block at level l is now twice the size as before. We
already have blocks of the required size of the new level l in the old level
l + 1 summary. Fortunately, those blocks are twice as precise as needed. To
proceed with a new W of twice the size, then, we simply discard the level 0
blocks, and rename each level l as level l−1. To construct level L, the highest
level, we simply duplicate the old level L. Although the nominal size of those
blocks were of size W , the expired block is of no consequence, and the block
that is under construction is truncated to the current window size — which
is guaranteed to be less than or equal to W − 1.

We now consider the case of a sliding window whose size has shrunk sig-
nificantly. It is easy to see that we can accommodate any size window smaller
than W by accepting a space blowup of at most a factor of O(log W). We can
treat any fixed window summary as a black box, and simultaneously maintain
summaries for window sizes W,W/2,W/4, ..., and so on. Each time the actual
window size halves, we can discard the summary over the largest window.

Lin et al [13] consider another variant of the sliding window model. In
their “n of N” model, we once again summarize a fixed window consisting of
the W latest observations. However a query for the φ-quantile can be qualified
by any integer w ≤ W , such that the returned value must be the observation
with rank wφ of the most recent w observations. It should be clear that the
variable window extension to the Arasu Manku algorithm must also be able to
answer such queries with precision ǫ. If not, the algorithm would not be able
to accurately answer subsequent quantile queries after the window shrank by
W − w consecutive deletions.

5.3 Distributed Quantile Summaries

The summary algorithms for streaming data described so far consider a setting
in which the data can be observed at a centralized location. In such a setting,
the GK algorithm is more space-efficient than algorithms in the combine and
prune family.

38 Michael B. Greenwald and Sanjeev Khanna

However, in some settings the input stream is not observable at a single
location. The aggregate quantile summary over a data set must then be com-
puted by merging summaries over each of the subsets comprising that total
set. For example, it may be desirable to split an input stream across different
nodes in a large cluster, in order to process the input stream in parallel. Al-
ternatively, in sensor networks whose nodes are organized into a tree, nodes
may summarize the data in their subtree in order to avoid the communication
costs of sending individual sensor readings to the root. In such cases, each site
produces a summary of a subset of the stream and then passes the summary
to another location where it is merged with summaries of other subsets until
the entire stream is summarized. Algorithms that are built out of combine
and prune can be extended naturally to such settings.

Nodes in sensor networks are typically resource-scarce. In particular, they
have very limited memory and must conserve power. Summary algorithms
over sensor networks must therefore optimize transmission cost between nodes
(communication costs are the dominant drain on power). Nodes in sensor
networks typically send their sensor readings up to the root, through a tree-
shaped topology. In order to reduce the transmission cost, each node may
aggregate the data from their children and summarize it before passing it on.
In this book, Chapter VI.1 (“Sensor Networks”, by Madden) describes sen-
sor networks in more detail. Section 1.3 of [11] discusses the relation between
streaming data and sensor networks. We briefly discuss here two summary al-
gorithms over sensor networks (more details are available in the corresponding
papers). Both Greenwald and Khanna [11] and Shrivastava et al. [18] support
efficient ǫ-approximate quantile queries over sensor networks. Both can be
characterized as applications of combine. One ([11]) uses prune to manage
communication costs, while the other ([18]) uses a variant of COMPRESS.

A general algorithm using combine and prune

A simple algorithm to build quantile summaries over sensor networks collects
the summaries of all the children of a node, and applies combine to produce
a single summary that is sent to the parent. The operation prune is then
applied to reduce the size of the data transmitted up the tree. Unfortunately,
each application of prune to reduce the input to a buffer of size K can result
in a loss of precision of up to 1/(2K). If the network topology is a tree of large
depth, then either the aggregate loss of precision is too high, or else K must
be very large and little reduction of communication costs can be achieved.
Consequently a slightly more complex strategy is required.

The general approach of the algorithms in [11] is to decouple the combin-
ing tree from the sensor network routing tree. The parent of a node in the
combining tree may not be the immediate parent in the routing tree – rather
the parent may be any ancestor at an arbitrary height up the tree. Physical
nodes in the sensor network pass all summaries up through their parents in
the routing tree until they hit the node that is considered the parent in the

Quantiles and Equidepth Histograms over Streams 39

combining tree. The combining tree, and not the routing topology, controls
the number of combine and prune operations executed by the algorithm. In-
tuitively, the goal of this algorithm is to build the widest, shallowest, such tree
subject to minimizing the worst case amount of data sent from a child to its
parent in the underlying physical topology. The paper shows that, regardless
of topology, an ǫ−approximate quantile summary can be constructed over a
sensor network with n nodes using a maximum per-node transmission cost
of O(log2 n/ǫ). Let h, the “height” of the sensor network, denote the num-
ber of hops from the root of the network to the farthest leaf node. If h is
known, then an embedding with a maximum per-node transmission cost of
O((log n log h

ǫ)/ǫ) is achievable. Finally, if h is known to be smaller than log n,
then the maximum per-node transmission cost can be bounded by O(h/ǫ).

Optimized algorithm when the range of values is known

Shrivastava et al [18] study a slightly different setting in which observations
can only take on integer values in the range [1..M], where M is known in
advance. Further, there is no requirement that the value v, returned by a
quantile query, must be an element of S. Their algorithm is therefore able
to pursue a different strategy. Rather than calling prune, which may lose
precision on every call, it calls a variant of COMPRESS, which reduces the
size of the summary as much as it can, while still preserving the precision.
Thus their COMPRESS’ operation, which we will describe shortly, can be
performed after each call to combine, at each node in the network.

The basic strategy is to construct a summary Q, called a q-digest, that
consists of a sparse binary tree over the data range 1..M . Each node b in the
tree, referred to as a “bucket”, maintains a count b.g that represents observa-
tions that fell between the minimum and maximum value of the bucket. Each
bucket has two children, covering the lower and upper halves of its range. To
keep the summary small, COMPRESS’ moves observations in underpopulated
buckets up the tree, to levels where larger ranges can be covered less precisely
by fewer buckets. Buckets with a count of 0 are elided.

The combine operation when applied to a pair of such summaries simply
sums the counts in corresponding buckets. Insertion of a new sensor value
v into a summary Q is implemented by combine(Q,Q′), where Q′ is a new
summary consisting of only the single bucket [v] with count = 1. COMPRESS’
is called after each combine operation.

The precise behavior of COMPRESS’ is a depth-first tree-walk, starting
at the leaves. It checks to see whether a bucket can be merged into its parent.
When visiting a bucket (other than the root, which has no sibling or parent),
it sums up the count of observations in the bucket, its sibling bucket, and its
parent’s bucket. If the bucket has a sum ≤ ⌊ ǫn

log M ⌋, then COMPRESS’ deletes
the bucket, and adds the count to its parent.

Proposition 8 The maximum count in any non-leaf node in Q is ǫn
log M .

40 Michael B. Greenwald and Sanjeev Khanna

16151413121110921 8753 64

g=1g=2

g=2 g=1 g=2

g=1

g=1

g=1

g=2

g=2

g=1

g=2g=2 g=2

g=4g=6

Fig. 9. An example q-digest, Q. Each non-empty bucket is labeled by g, the count
of observations within that bucket. Q has M = 16, n = 32, and ǫ = .25. It follows
from these values that if the aggregate count in two siblings and their parent is
≤ (32 × (.25))/4 = 2, then COMPRESS’ will delete the two children and merge
them into their parent. If n were 48, then the allowed aggregate count would be 3.
In such a case, [1..4] could be merged into [1..8], and both [13..14] and [15..16] could
be merged together into [13..16]. [9..10] and [11..12] would be merged into [9..12].
This would open up the subtree under [9..12]. After the next insertion (assuming it
did not lie in the range [9..12]), then the 2 observations in [9] would be moved up
into [9..10], and both [11] and [12] merged into [11..12].

Proof. Non-leaf nodes only cover new observations by either COMPRESS’
deleting their children, or by combine taking two q-digests and merging two
corresponding buckets. The first case trivially maintains the bound, because
COMPRESS’ will never delete a pair of children if the sum of the children and
their parent exceeds ǫn

log M . In the second case, when combine combines two
q-digests containing n1 and n2 observations respectively, the combined digest
contains n = n1 + n2 observations. Prior to combine the two correspond-
ing buckets contained fewer than ǫn1/ log(M) and ǫn2/ log(M) observations,

respectively. After summing they contain fewer than ǫ(n1+n2)
log M = ǫ(n)

log M obser-
vations, and the proposition holds.

We can use Q to answer quantile queries over S. The minimum rank of a
value v in the data set S is computed by adding 1 to the cumulative counts in
all of the buckets that contain only values less than v. The maximum rank of v
is computed by adding to the minimum rank, the sum of the counts in all non-
leaf buckets whose minimum value is less than v, but whose maximum value is
greater than or equal to v. For example, in Figure 9, the minimum rank of the
value 5 is 12, because 5 could be the first value after the 6 instances of 3, the
4 instances of 4, and the single observation that lies somewhere within [1,4].
The two observations within [1,8] and the single observation within [1,16] may
be values that are greater than or equal to 5, and hence cannot be counted
in the minimum possible rank. On the other hand, there may be values that
precede 5, and hence could increase the rank of 5 to be as high as 15.

Theorem 6. A q-digest Q(ǫ) summarizing a dataset S is an ǫ-approximate
quantile summary using at most 3 log(M)/ǫ buckets, regardless of the size of
|S|.

Quantiles and Equidepth Histograms over Streams 41

We first establish the upper bound on the size of Q. Let k denote the
number of surviving non-zero buckets in Q. For b ∈ Q, let b.g be the count
of observations in b, and let s(b) denote the sibling of bucket b in Q, and
p(b) denote its parent in Q. Every non-empty bucket b obeys b.g + s(b).g +
p(b).g > ǫn

log M . Each bucket can appear at most once as a left sibling, once as
a right sibling, and at most once as a parent. Summing this inequality over
all k surviving buckets, we get 3n ≥

∑

b∈Q(b.g + s(b).g + p(b).g) > k ǫn
log M .

Therefore, 3 log(M)/ǫ > k.
We next show that Q(ǫ) is an ǫ-approximate quantile summary. We observe

that at most one bucket at each level of the tree can overlap the leaf bucket
containing v. The height of the tree (excluding the leaves) is log M , and by
Proposition 8, each non-leaf bucket contains at most ǫn

log M observations, so
the cumulative gap between minimum and maximum rank is at most ǫn. The
biggest gap between the minimum rank of a stored value v in Q and the
maximum rank of its successor, v′, is therefore 2ǫn, and by Proposition 1 Q

is an ǫ-approximate quantile summary.

6 Concluding Remarks

We presented here a broad range of algorithmic ideas for computing quan-
tile summaries of data streams using small space. We highlighted connections
among these ideas, and how techniques developed for one setting sometimes
naturally lend themselves to a seemingly different setting. While the past
decade has seen significant advances in space-efficient computation of quan-
tile summaries, some fundamental questions remain unresolved. For instance,
in the cash-register model, it is not known if the space bound of O((log(ǫn)/ǫ)
achieved by the GK algorithm [10] on a stream of length n is the best pos-
sible for any deterministic algorithm. When the elements are known to be in
the range of [1..M] for some positive integer M , is the O((log(M)/ǫ) bound
achieved by the q-digest algorithm [18] optimal? In either setting, only a triv-
ial lower bound of Ω(1/ǫ) on space is known. Similarly, when randomization
is allowed, what is the best possible dependence of space needed on ǫ and δ? It
appears that progress on these questions would require significant new ideas
that may help advance our understanding of space-bounded computation as
a whole.

References

1. Khaled Alsabti, Sanjay Ranka, and Vineet Singh. A one-pass algorithm for
accurately estimating quantiles for disk-resident data. In Matthias Jarke et al.,
editors, Proceedings of the Twenty-third International Conference on Very Large
Data Bases, pages 346–355, Los Altos, CA 94022, USA, August 26–29 1997.
Morgan Kaufmann Publishers. Athens, Greece.

42 Michael B. Greenwald and Sanjeev Khanna

2. Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles
over sliding windows. In Proceedings of the 23rd ACM Symposium on Principles
of Database Systems (PODS 2004), pages 286–296, June 14–16 2004. Paris,
France.

3. J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. In
Matthias Jarke et al., editors, Proceedings of the Ninth Annual ACM Symposium
on Theory of Computing, pages 106–112, Los Altos, CA 94022, USA, 1977.
ACM. Colorado, USA.

4. Graham Cormode and S. Muthukrishnan. An improved data stream summary:
the Count-Min sketch and its applications. In Proceedings of Latin American
Theoretical Informatics (LATIN ’04), 2004.

5. Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental
maintenance of approximate histograms. In Matthias Jarke, Michael J. Carey,
Klaus R. Dittrich, Frederick H. Lochovsky, Pericles Loucopoulos, and Man-
fred A. Jeusfeld, editors, Proc. 23rd Int. Conf. Very Large Data Bases, VLDB,
pages 466–475. Morgan Kaufmann, August 25–27 1997.

6. Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental
maintenance of approximate histograms. ACM Transactions on Database Sys-
tems, 27(3):261–298, September 2003.

7. Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin J. Strauss.
Surfing wavelets on streams: One-pass summaries for approximate aggregate
queries. In Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi,
Kotagiri Ramamohanarao, and Richard T. Snodgrass, editors, Proceedings of
the 27th Intl. Conf. Very Large Data Bases, VLDB, pages 79–88, September
11-14 2001. Rome, Italy.

8. Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin J. Strauss. How
to summarize the universe: Dynamic maintenance of quantiles. In Proceedings
of the 28th Intl. Conf. Very Large Data Bases, VLDB, pages 454–465, August
2002. Hong Kong, China.

9. Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin J. Strauss.
Domain-driven data synopses for dynamic quantiles. IEEE Transactions on
Knowledge and Data Engineering, 17(7):927–938, July 2005.

10. Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of
quantile summaries. In Proceedings of the 2001 ACM SIGMOD Intl. Conference
on Management of Data, pages 58–66, May 2001.

11. Michael B. Greenwald and Sanjeev Khanna. Power-conserving computation of
order-statistics over sensor networks. In Proceedings of the 23rd ACM Sym-
posium on Principles of Database Systems (PODS 2004), pages 275–285, June
14–16 2004. Paris, France.

12. S. Guha and A. McGregor. Lower Bounds for Quantile Estimation in Random-
Order and Multi-Pass Streaming. International Colloquium on Automata, Lan-
guages and Programming, 2007.

13. Xuemin Lin, Hongjun Lu, Jian Xu, and Jeffrey Xu Yu. Continuously maintain-
ing quantile summaries of the most recent n elements over a data stream. In Pro-
ceedings of the 20th International Conference on Data Engineering (ICDE04),
pages 362–374. IEEE Computer Society, March 30 – April 2 2004. Boston, MA.

14. Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approxi-
mate medians and other quantiles in one pass and with limited memory. SIG-
MOD Record (ACM Special Interest Group on Management of Data) SIGMOD
’98, 27(2):426–435, June 1998. Seattle, WA.

Quantiles and Equidepth Histograms over Streams 43

15. Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Random
sampling techniques for space efficient online computation of order statistics of
large datasets. SIGMOD Record (ACM Special Interest Group on Management
of Data), SIGMOD ’99, 28(2):251–262, June 1999. Philadelphia, PA.

16. J. I. Munro and M.S. Paterson. Selection and sorting with limited storage.
Theoretical Computer Science, 12:315–323, 1980.

17. S. Muthukrishnan. Data streams: Algorithms and applications,
2003. Unpublished report, (invited talk at SODA03), available at
http://athos.ruthers.edu/~muthu/stream-1-1.ps.

18. Nisheeth Shrivastava, Chiranjeeb Buragohain, Divy Agrawal, and Subhash Suri.
Medians and beyond: New aggregation techniques for sensor networks. In Pro-
ceedings of the 2nd ACM Conference on Embedded Network Sensor Systems
(SenSys ’04), pages 239–249, Nov 3-5 2004. Baltimore, MD.

