
ar
X

iv
:1

51
2.

06
14

3v
1

 [
cs

.D
B

]
 1

8
D

ec
 2

01
5

Algorithms for Provisioning Queries and Analytics

Sepehr Assadi∗ Sanjeev Khanna∗ Yang Li∗ Val Tannen†

Abstract

Provisioning is a technique for avoiding repeated expensive computations in what-if
analysis. Given a query, an analyst formulates k hypotheticals, each retaining some of the
tuples of a database instance, possibly overlapping, and she wishes to answer the query
under scenarios, where a scenario is defined by a subset of the hypotheticals that are
“turned on”. We say that a query admits compact provisioning if given any database
instance and any k hypotheticals, one can create a poly-size (in k) sketch that can then be
used to answer the query under any of the 2k possible scenarios without accessing the
original instance.

In this paper, we focus on provisioning complex queries that combine relational al-
gebra (the logical component), grouping, and statistics/analytics (the numerical compo-
nent). We first show that queries that compute quantiles or linear regression (as well as
simpler queries that compute count and sum/average of positive values) can be compactly
provisioned to provide (multiplicative) approximate answers to an arbitrary precision. In
contrast, exact provisioning for each of these statistics requires the sketch size to be expo-
nential in k. We then establish that for any complex query whose logical component is
a positive relational algebra query, as long as the numerical component can be compactly
provisioned, the complex query itself can be compactly provisioned. On the other hand,
introducing negation or recursion in the logical component again requires the sketch size
to be exponential in k. While our positive results use algorithms that do not access the
original instance after a scenario is known, we prove our lower bounds even for the case
when, knowing the scenario, limited access to the instance is allowed.

∗Department of Computer and Information Science, University of Pennsylvania. Supported in part by National
Science Foundation grants CCF-1116961, CCF-1552909, and IIS-1447470 and an Adobe research award.
Email: {sassadi,sanjeev,yangli2}@cis.upenn.edu.

†Department of Computer and Information Science, University of Pennsylvania. Supported in part by National
Science Foundation grants IIS-1217798 and IIS-1302212. Email: val@cis.upenn.edu.

http://arxiv.org/abs/1512.06143v1

Contents

1 Introduction 2

2 Problem Statement 4

3 A “Hard” Problem for Provisioning 7

3.1 The Coverage Problem . 7
3.2 The Lower Bound . 8

4 Numerical Queries 11
4.1 The Count, Sum, and Average Queries . 11
4.2 The Quantiles Query . 15
4.3 The Linear Regression Query . 18

5 Complex Queries 21

5.1 Positive, Non-Recursive Complex Queries . 21
5.2 Adding Negation, Recursion, or HAVING . 23

6 Comparison With a Distributed Computation Model 25

7 Conclusions and Future Work 26

A Tools from Information Theory 30

1

1 Introduction

“What if analysis” is a common technique for investigating the impact of decisions on out-
comes in science or business. It almost always involves a data analytics computation. Nowa-
days such a computation typically processes very large amounts of data and thus may be
expensive to perform, especially repeatedly. An analyst is interested in exploring the com-
putational impact of multiple scenarios that assume modifications of the input to the analysis
problem. Our general aim is to avoid repeating expensive computations for each scenario.
For a given problem, and starting from a given set of potential scenarios, we wish to perform
just one possibly expensive computation producing a small sketch (i.e., a compressed repre-
sentation of the input) such that the answer for any of the given scenarios can be derived
rapidly from the sketch, without accessing the original (typically very large) input. We say
that the sketch is “provisioned” to deal with the problem under any of the scenarios and
following [17], we call the whole approach provisioning. Again, the goal of provisioning is
to allow an analyst to efficiently explore a multitude of scenarios, using only the sketch and
thus avoiding expensive recomputations for each scenario.

In this paper, we apply the provisioning approach to queries that perform in-database
analytics [28]1. These are queries that combine logical components (relational algebra and Dat-
alog), grouping, and numerical components (e.g., aggregates, quantiles and linear regression).
Other analytics are discussed under further work.

Abstracting away any data integration/federation, we will assume that the inputs are
relational instances and that the scenarios are defined by a set of hypotheticals. We further
assume that each hypothetical indicates the fact that certain tuples of an input instance are
retained (other semantics for hypotheticals are discussed under further work).

A scenario consists of turning on/off each of the hypotheticals. Applying a scenario to
an input instance therefore means keeping only the tuples retained by at least one of the
hypotheticals that are turned on. Thus, a trivial sketch can be obtained by applying each
scenario to the input, solving the problem for each such modified input and collecting the
answers into the sketch. However, with k hypotheticals, there are exponentially (in k) many
scenarios. Hence, even with a moderate number of hypotheticals, the size of the sketch could
be enormous. Therefore, as part of the statement of our problem we will aim to provision
a query by an algorithm that maps each (large) input instance to a compact (essentially size
poly(k)) sketch.

Example. Suppose a large retailer has many and diverse sales venues (e.g., its own stores,
its own web site, through multiple other stores, and through multiple other web retailers). An
analyst working for the retailer is interested in learning, for each product in, say, “Electronics”,
a regression model for the way in which the revenue from the product depends on both a sales
venue’s reputation (assume a numerical score) and a sales venue commission (in %; 0% if own
store). Moreover, the analyst wants to ignore products with small sales volume unless they
have a large MSRP (manufacturer’s suggested retail price). Usually there is a large (possibly
distributed/federated) database that captures enough information to allow the computation
of such an analytic query. For simplicity we assume in this example that the revenue for each
product ID and each sales venue is in one table and thus we have the following query with a
self-explanatory schema:

SELECT x.ProdID, LIN_REG(x.Revenue, z.Reputation, z.Commission) AS (B, A1, A2)

FROM RevenueByProductAndVenue x

INNER JOIN Products y ON x.ProdID=y.ProdID

1In practice, the MADlib project [2] has been one of the pioneers for in-database analytics, primarily in collab-
oration with Greenplum DB [1]. By now, major RDBMS products such as IBM DB2, MS SQL Server, and Oracle
DB already offer the ability to combine extensive analytics with SQL queries.

2

INNER JOIN SalesVenues z ON x.VenueID=z.VenueID

WHERE y.ProdCategory="Electronics" AND (x.Volume>100 OR y.MSRP>1000)

GROUP BY x.ProdID

The syntax for treating linear regression as a multiple-column-aggregate is simplified for
illustration purposes in this example. Here the values under the attributes B,A1,A2 denote,
for each ProdID, the coefficients of the linear regression model that is learned, i.e., Revenue =

B + A1*Reputation + A2*Commission.
A desirable what-if analysis for this query may involve hypotheticals such as retaining cer-

tain venue types, retaining certain venues with specific sales tax properties, retaining certain
product types (within the specified category, e.g., tablets), and many others. Each of these
hypotheticals can in fact be implemented as selections on one or more of the tables in the
query (assuming that the schema includes the appropriate information). However, combin-
ing hypotheticals into scenarios is problematic. The hypotheticals overlap and thus cannot be
separated. With 10 (say) hypotheticals there will be 210 = 1024 (in practice at least hundreds)
of regression models of interest for each product. Performing a lengthy computation for each
one of these models is in total very onerous. Instead, we can provision the what-if analysis
of this query since the query in this example falls within the class covered by our positive
results.

Our results. Our goal is to characterize the feasibility of provisioning with sketches of com-
pact size (see Section 2 for a formal definition) for a practical class of complex queries that
consist of a logical component (relational algebra or Datalog), followed by a grouping compo-
nent, and then by a numerical component (aggregate/analytic) that is applied to each group
(a more detailed definition is given in Section 5).

The main challenge that we address, and the part where our main contribution lies, is
the design of compact provisioning schemes for numerical queries, specifically linear (ℓ2)
regression and quantiles. Together with the usual count, sum and average, these are defined
in Section 4 as queries that take a set of numbers or of tuples as input and return a number
or a tuple of constant width as output. It turns out that if we expect exact answers, then none
of these queries can be compactly provisioned. However, we show that compact provisioning
schemes indeed exist for all of them if we relax the objective to computing near-exact answers
(see Section 2 for a formal definition). The following theorem summarizes our results for
numerical queries (see Section 4):

Theorem 1.1 (Informal). The quantiles, linear (ℓ2) regression, count, and sum/average (of pos-
itive numbers) queries can be compactly provisioned to provide (multiplicative) approximate answers
to an arbitrary precision, while their exact provisioning requires the sketch size to be exponential in the
number of hypotheticals.

Our results on provisioning numerical queries can then be used for complex queries, as
the following theorem summarizes (see Section 5):

Theorem 1.2 (Informal). Any complex query whose logical component is a positive relational al-
gebra query can be compactly provisioned to provide an approximate answer to an arbitrary precision
as long as its numerical component can be compactly provisioned for the same precision, and as long
as the number of groups is not too large. On the other hand, introducing negation or recursion in the
logical component requires the sketch size to be exponential in the number of hypotheticals.

Our techniques. At a high-level, our approach for compact provisioning can be described
as follows. We start by building a sub-sketch for each hypothetical by focusing solely on
the retained tuples of each hypothetical individually. We then examine these sub-sketches
against each other and collect additional information from the original input to summarize

3

the effect of appearance of other hypotheticals to each already computed sub-sketch. The
first step usually involves using well-known (and properly adjusted) sampling or sketching
techniques, while the second step, which is where we concentrate the bulk of our efforts, is
responsible for gathering the information required for combining the sketches and specifically
dealing with overlapping hypotheticals. Given a scenario, we answer the query by fetching
the corresponding sub-sketches and merging them together; the result is a new sketch that
act as sketch for the input consist of the union of the hypotheticals.

We prove our lower bounds by first identifying a central problem, i.e., the Coverage prob-
lem (see Problem 1), with provably large space requirement for any provisioning scheme,
and then we use reductions from this problem to establish lower bounds for other queries of
interest. The space requirement of the Coverage problem itself is proven using simple tools
from information theory (see Theorem 3.1).

Comparison with existing work. Our techniques for compact provisioning share some
similarities with those used in data streaming and in the distributed computation models
of [14, 15, 39] (see Section 6 for further discussion and formal separations), and in particular
with linear sketching, which corresponds to applying a linear transformation to the input data
to obtain the sketch. However, due to overlap in the input, our sketches are required to to
be composable with the union operation (instead of the addition operation obtained by linear
sketches) and hence linear sketching techniques are not directly applicable.

Dealing with duplicates in the input (similar to the overlapping hypotheticals) has also
been considered in streaming and distributed computation models (see, e.g., [10, 13]), which
consider sketches that are “duplicate-resilient”. Indeed, for simple queries like count, a di-
rect application of these sketches is sufficient for compact provisioning (see Section 4.1). We
also remark that the Count-Min sketch [12] can be applied to approximate quantiles even in
the presence of duplication (see [10]), i.e., is duplicate-resilient. However, the approximation
guarantee achieved by the Count-Min sketch for quantiles is only additive (i.e., ±ǫn), in con-
trast to the stronger notion of multiplicative approximation (i.e., (1± ǫ)) that we achieve in this
paper. To the best of our knowledge, there is no similar result concerning duplicate-resilient
sketches for multiplicative approximation of quantiles or the linear regression problem, and
existing techniques do not seem to be applicable for our purpose. Indeed one of the primary
technical contributions of this paper is designing provisioning schemes that can effectively
deal with overlapping hypotheticals for quantiles and linear regression.

Further related work. Provisioning, in the sense used in this paper, originated in [17] together
with a proposal for how to perform it taking advantage of provenance tracking. Answering
queries under hypothetical updates is studied in [5, 21] but the focus there is on using a
specialized warehouse to avoid transactional costs. (See also [17] for more related work.)

Estimating the number of distinct elements (corresponding to the count query) has been
studied extensively in data streams [4,7,20,31] and in certain distributed computation models
[14, 15, 39]. For estimating quantiles, [12, 22, 25, 26, 33, 41] achieve an additive error of ǫn for
an input of length n, and [11, 27] achieve a (stronger guarantee of) (1 ± ǫ)-approximation.
Sampling and sketching techniques for ℓ2-regression problem have also been studied in [8,
18, 19, 36] for either speeding up the computation or in data streams (see [32, 38] for excellent
surveys on this topic).

2 Problem Statement

Hypotheticals. Fix a relational schema Σ. Our goal is to provision queries on Σ-instances. A
hypothetical w.r.t. Σ is a computable function h that maps every Σ-instance I to a sub-instance

4

h(I) ⊆ I. Formalisms for specifying hypotheticals are of course of interest (e.g., apply a
selection predicate to each table in I) but we do not discuss them here because the results in
this paper do not depend on them.

Scenarios. We will consider analyses (scenario explorations) that start from a finite set H of
hypotheticals. A scenario is a non-empty set of hypotheticals S ⊆ H. The result of applying a
scenario S = {h1, . . . , hs} to an instance I is defined as a sub-instance I|S = h1(I)∪ · · · ∪ hs(I).
In other words, under S, if any h ∈ S is said to be turned on (similarly, any h ∈ H \ S is
turned off), each turned on hypothetical h will retain the tuples h(I) from I.

Definition 1 (Provisioning). Given a query Q, to provision Q means to design a pair of algorithms:
(i) a compression algorithm that takes as input an instance I and a set H of hypotheticals, and outputs
a data structure Γ called a sketch, and (ii) an extraction algorithm that for any scenario S ⊆ H,
outputs Q(I|S) using only Γ (without access to I).

To be more specific, we assume the compression algorithm takes as input an instance I
and k hypotheticals h1, . . . , hk along with the sub-instances h1(I), . . . , hk(I) that they define.
A hypothetical will be referred to by an index from {1, . . . , k}, and the extraction algorithm
will be given scenarios in the form of sets of such indices. Hence, we will refer to a scenario
S ⊆ H where S = {hi1 , . . . , his} by abusing the notation as S = {i1, . . . , is}. Throughout the
paper, we denote by k the number of hypotheticals (i.e. k := |H|), and by n the size of the
input instance (i.e., n := |I|).

We call such a pair of compression and extraction algorithms a provisioning scheme. The
compression algorithm runs only once; the extraction algorithm runs repeatedly for all the
scenarios that an analyst wishes to explore. We refer to the time that the compression algo-
rithm requires as the compression time, and the time that extraction algorithm requires for each
scenario as the extraction time.

The definition above is not useful by itself for positive results because it allows for triv-
ial space-inefficient solutions. For example, the definition is satisfied when the sketch Γ is
defined to be a copy of I itself or, as mentioned earlier, a scenario-indexed collection of all
the answers. Obtaining the answer for each scenario is immediate for either case, but such
a sketch can be prohibitively large as the number of tuples in I could be enormous, and the
number of scenarios is exponential in k = |H|.

This discussion leads us to consider complexity bounds on the size of the sketches.

Definition 2 (Compact provisioning). A query Q can be compactly provisioned if there exists a
provisioning scheme for Q that given any input instance I and any set of hypotheticals H, constructs
a sketch of size poly(k, log n) bits, where k := |H| and n := |I|.

We make the following important remark about the restrictions made in Definitions 1
and 2.

Remark 2.1. At first glance, the requirement that the input instance I cannot be examined at all
during extraction may seem artificial, and the same might be said about the size of the sketch depending
polynomially on log n rather than a more relaxed requirement. However, we show in Theorem 3.1 that
our central lower bound result holds even if a portion of size o(n) of the input instance can be examined
during extraction after the scenario is revealed, and even if the space dependence of the sketch is only
restricted to be o(n) (instead of depending only polynomially on log n). These additional properties
transfer to all our lower bound results (i.e., Theorems 4.1, 4.7, 4.10, 5.6) although we choose not to
restate them in each of them. In spite of these additional properties, the positive results we obtain (i.e.,
Theorems 4.3, 4.4, 4.11, 5.1) all use sketches whose space requirements depend polynomially only on
log n and do not require examining the original database at all during the extraction. These calibration
results further justify our design choices for compact provisioning.

5

Even though the definition of compact provisioning does not impose any restriction on
either the compression time or the extraction time, all our positive results in this paper are
supported by (efficient) polynomial time algorithms. Note that this is data-scenario complexity:
we assume the size of the query (and the schema) to be a constant but we consider dependence
on the size of the instance and the number of hypotheticals. Our negative results (lower
bounds on the sketch size), on the other hand, hold even when the compression and the
extraction algorithms are computationally unbounded.

Exact vs. approximate provisioning. Definition 2 focused on exact answers for the queries.
While this is appropriate for, e.g., relational algebra queries, as we shall see, for queries
that compute numerical answers such as aggregates and analytics, having the flexibility of
answering queries approximately is essential for any interesting positive result.

Definition 3 (ǫ-provisioning). For any 0 < ǫ < 1, a query Q can be ǫ-provisioned if there exists
a provisioning scheme for Q, whereby for each scenario S, the extraction algorithm outputs a (1 ± ǫ)
approximation of Q(I|S), where I is the input instance.

We say a query Q can be compactly ǫ-provisioned if Q can be ǫ-provisioned by a provision-
ing scheme that, given any input instance I and any set of hypotheticals H, creates a sketch of size
poly(k, log n, 1/ǫ) bits.

We emphasize that throughout this paper, we only consider the approximation guaran-
tees which are relative (multiplicative) as opposed to the weaker notion of additive approx-
imations. The precise definition of relative approximation guarantee will be provided for
each query individually. Moreover, as expected, randomization will be put to good use in
ǫ-provisioning. We therefore extend the definition to cover the provisioning schemes that use
both randomization and approximation.

Definition 4. For any ǫ, δ > 0, an (ǫ, δ)-provisioning scheme for a query Q is a provisioning
scheme where both the compression and extraction algorithms are allowed to be randomized and the
output for every scenario S is a (1 ± ǫ)-approximation of Q(I|S) with probability 1 − δ.

An (ǫ, δ)-provisioning scheme is called compact if it constructs sketches Γ of size only
poly(k, log n, 1/ǫ, log(1/δ)) bits, has compression time that is poly(k, n, 1/ǫ, log (1/δ)), and has
extraction time that is poly(|Γ|).

In many applications, the size of the database is a very large number, and hence the
exponent in the poly(n)-dependence of the compression time might become an issue. If
the dependence of the compression time on the input size is essentially linear, i.e., O(n) ·
poly(k, log n, 1/ǫ, log (1/δ)) we say that the scheme is linear. We emphasize that in all our
positive results for queries with numerical answers we give compact (ǫ, δ)-linear provisioning
schemes, thus ensuring efficiency in both running time and sketch size.

Complex queries. Our main target consists of practical queries that combine logical, group-
ing, and numerical components. In Section 5, we focus on complex queries defined by a logical
(relational algebra or Datalog) query that returns a set of tuples, followed by a group-by oper-
ation (on set of grouping attributes) and further followed by numerical query that is applied
to each sets of tuples resulting from the grouping. This class of queries already covers many
practical examples. We observe that the output of such a complex query is a set of p tuples
where p is the number of distinct values taken by the grouping attributes. Therefore, the size of
any provisioning sketches must also depend on p. We show (in Theorem 5.1) that a sketch
for a query that involves grouping can be obtained as a collection of p sketches. Hence, if
each of the p sketches is of compact size (as in Definitions 2 and 4) and the value p itself is
bounded by poly(k, log n), then the overall sketch for the complex query is also of compact
size. Note that p is typically small for the kind of grouping used in practical analysis queries

6

(e.g., number of products, number of departments, number of locations, etc.). Intuitively, an
analyst would have trouble making sense of an output with a large number of tuples.

Notation. For any integer m > 0, [m] denotes the set {1, 2, . . . , m}. The Õ(·) notation sup-
presses log log(n), log log(1/δ), log(1/ǫ), and log(k) factors. All logarithms are in base two
unless stated otherwise.

3 A “Hard” Problem for Provisioning

To establish our lower bounds in this paper, we introduce a “hard” problem called Coverage.
Though not defined in the exact formalism of provisioning, the Coverage problem can be
solved by many provisioning schemes using proper “reductions” and hence a lower bound
for the Coverage problem can be used to establish similar lower bounds for provisioning
various queries.

We start by describing the Coverage problem in details and then present our lower bound.
In Appendix A, we survey some simple tools from information theory that we need in our
lower bound proof.

3.1 The Coverage Problem

Informally speaking, in the Coverage problem, we are given a collection of k subsets of a
universe [n] and the goal is to “compress” this collection in order to answer to the questions
in which indices of some subsets in the collection are provided and we need to figure out
whether these subsets cover the universe [n] or not. We are interested in compressing schemes
for this problem that when answering each question, in addition to the already computed
summary of the collection, also have a limited access to the original instance (see Remark 2.1
for motivation of this modification). The Coverage problem is defined formally as follows.

Problem 1 (Coverage). Suppose we are given a collection S = {S1, S2, . . . Sk} of the subsets of [n].
The goal in the Coverage problem is to find a compressing scheme for S , defined formally as a triple
of algorithms:

• A compression algorithm which given the collection S creates a data structure D.

• An examination algorithm which given a subset of [k], a question, Q = {i1, . . . , is} and the
data structure D, computes a set J ⊆ [n] of indices and lookup for each j ∈ J and each Si (i ∈ [k]),

whether j ∈ Si or not. The output of the examination algorithm is a tuple SJ := (SJ
1, . . . , SJ

k),

where SJ
i = Si ∩ J.

• An extraction algorithm which given a question {i1, . . . , is}, the data structure D, and the
tuple SJ , outputs “Yes”, if Si1 ∪ . . . ∪ Sis

= [n] and “No” otherwise.

We refer to the size of D, denoted by |D|, as the storage requirement of the compression
scheme and to the size of J, denoted by |J|, as the examination requirement of the scheme.
The above algorithms can all be randomized; in that case, we require that for each question
Q, the final answer (of the extraction algorithm) to be correct with a probability at least 0.99.
Note that this choice of constant is arbitrary and is used only to simplify the analysis; indeed,
one can always amplify the probability of success by repeating the scheme constant number
of times and return the majority answer.

While Coverage is not stated in the exact formalism of provisioning, the analogy between
this problem and provisioning schemes should be clear. In particular, for our lower bound
proofs for provisioning schemes, we can alter the Definition 1 to add an examination algo-
rithm and allow a similar access to the original database to the provisioning scheme.

7

3.2 The Lower Bound

We prove the following lower bound on storage and examination requirement of any com-
pressing scheme for the Coverage problem.

Theorem 3.1. Any compressing scheme for the Coverage problem that answers each question cor-
rectly with probability at least 0.99, either has storage requirement or examination requirement of
min(2Ω(k), Ω(n)) bits.

Allowing access to the original input in Theorem 3.1 makes the lower bound very robust.
However, due to this property, the lower bound does not seem to follow from standard com-
munication complexity lower bounds and hence we use an information-theoretic approach to
prove this theorem directly, which may be of independent interest. We note that since our
other lower bounds are typically proven using a reduction from the Coverage problem, the
properties in Theorem 3.1 (i.e., allowing randomization and o(n) access to the database after
being given the scenario) also hold for them and we do not mention this explicitly.

In order to prove this lower bound, by Yao’s minimax principle [40] (see also [34]), it
suffices to define a distribution of instances of the problem and show that any deterministic
algorithm that is correct on the input chosen according to this distribution with probability
0.99, has to have either large storage requirement or large examination requirement. We
define the following distribution D (for simplicity assume k is even).

Hard distribution D for the Coverage problem.

1. Let n = (k
k/2); pick a string x ∈ {0, 1}n uniformly at random.

2. Let F be the family of all subsets of k with size k/2. Pick uniformly at random a
bijection σ : F 7→ [n].

3. Embedding. Starting from Si = [n] for all i ∈ [k], for any j ∈ [n], if xj = 0, remove j

from all sets Si ∈ σ−1(j).

4. Question. Pick the question Q to be a uniformly at random member of F .

The following claim is immediate.

Claim 3.2. For any question Q =
{

Si1 , . . . , Sik/2

}
∈ F , Si1 ∪ . . . ∪ Sik/2

= [n] iff xσ(Q) = 1.

Fix any deterministic compressing scheme for the distribution D. We define D, Q, and J

as the random variables corresponding to, respectively, the data structure D, the question Q,
and the examination indices J in this compressing scheme. Moreover X is a random variable
for the input string x, ΣΣΣ is for the bijection σ, and Si (i ∈ [k]) is for the subset Si. We use

SJ := (SJ
1, . . . , S

J
k) for the output of the examination algorithm.

Overview of the proof. The intuition behind the proof is as follows. By Claim 3.2, in
order to give a correct answer to the question Q, the scheme has to determine the value of
xσ(Q) correctly. Suppose first that the scheme only consists of compression and extraction
algorithms, i.e., without the examination algorithm. In this case, even if we give the bijection
σ to the extraction algorithm, the extraction algorithm has to effectively recover the value
of xσ(Q) from D, where σ(Q) is chosen uniformly at random from [n]. In this case, simple
information-theoretic facts imply that D has to be of size Ω(n).

Now consider the other case where we remove the compression algorithm. In this case,
even if we give the string x to the examination algorithm and assume that upon examining
an entry j in the input, it can determine whether σ(Q) = j or not, for the extraction algorithm

8

to be able to find the value of xσ(Q) correctly, it better be the case that σ(Q) ∈ J. In other
words, the set of indices computed by the examination algorithm should contain the target
index σ(Q). However, for any fixed J of size o(n), the probability that σ(Q) ∈ J is o(1), and
hence the extraction algorithm cannot recover the correct answer with high probability.

To prove Theorem 3.1, we have to consider schemes that consist of both compression and
examination algorithms and a priori it is not clear that how much the interleaved informa-
tion obtained from both these algorithms can help the extraction algorithm to compute the
final answer, especially considering the fact that having a compression algorithm also helps
examination algorithm in finding the “correct” index. However, using a careful analysis we
separate the information given from these two algorithms to the extraction algorithm and
argue that at least one of the examination or compression requirements of any scheme has to
be of size Ω(n).

Proof of Theorem 3.1. Suppose θθθ is the random variable which is 1 if the correct answer is
Yes, and is zero otherwise and I is the random variable that denotes the index of the string
x which determines the correct answer, i.e., I = ΣΣΣ(Q) (by Claim 3.2). Let δ (≤ 0.01) be the
probability of failure; we have,

H2(δ) ≥ H(θθθ | D, Q, SJ) (Fano’s inequality, Claim A.1-(5))

≥ H(θθθ | D, Q, SJ, I) (Conditioning reduces entropy, Claim A.1-(2))

= H(θθθ | D, Q, I)− I(θθθ; SJ | D, Q, I)

We bound each term in the above equation in the following two claims separately.

Claim 3.3. Suppose |D| = o(n); then H(θθθ | D, Q, I) = 1 − o(1).

Proof.

H(θθθ | D, Q, I) ≥ H(θθθ | D, Q, I, ΣΣΣ) (Conditioning reduces entropy, Claim A.1-(2))

= H(θθθ | D, I, ΣΣΣ) (Q is uniquely determined by ΣΣΣ and I)

=
n

∑
i=1

Pr(I = i) · H(θθθ | D, I = i, ΣΣΣ)

=
n

∑
i=1

1

n
· H(Xi | D, I = i, ΣΣΣ) (I is uniform on [n] and θθθ = Xi)

Now, notice that ΣΣΣ is independent of the event I = i, and moreover conditioned on ΣΣΣ, D is a
function of X alone and hence is independent of I = i. Additionally, Xi is chosen independent
of the value of I = i; hence Xi is also independent of I = i. Consequently, we can drop
conditioning on I = i and have,

H(θθθ | D, Q, I) ≥
n

∑
i=1

1

n
· H(Xi | D, ΣΣΣ)

≥ H(X | D, ΣΣΣ)

n
(By subadditivity of entropy, Claim A.1-(4))

=
H(X | ΣΣΣ)− I(X, D | ΣΣΣ)

n

≥ H(X)− H(D)

n
(X ⊥ ΣΣΣ and I(X, D | ΣΣΣ) ≤ H(D | ΣΣΣ) ≤ H(D))

≥ 1 − |D|
n

= 1 − o(1)

9

where in the last inequality we use the fact that X is uniformly chosen from a domain of size
2n and hence H(X) = n and H(D) ≤ |D| (both by Claim A.1-(1)).

Claim 3.4. Suppose |D|+ |J| = o(n) ; then I(θθθ; SJ | D, Q, I) ≤ 0.9.

Proof. We first define some notation. For a fixed D and Q, we use J = exam(D, Q) to denote
the unique set of examined indices (recall that the compressing scheme is deterministic over
the distribution D). For a triple T := (D, Q, i) as an assignment to (D, Q, I), we say that the
tuple is good if i /∈ J, where J = exam(D, Q). We use the set X to denote the set of all valid
tuples T and the set Xg to denote the set of all good tuples. Using this notation,

I(θθθ; SJ | D, Q, I) = ∑
T∈X

Pr((D, Q, I) = T) · I(θθθ; SJ | (D, Q, I) = T)

We decompose the above summands into two parts; one over Xg and one over X \ Xg. We
first argue that for a tuple T ∈ Xg, I(θθθ; SJ | (D, Q, I) = T) = 0. This is because conditioned on
(D, Q, I) = (D, Q, i), by Claim 3.2, θθθ = Xi and Xi is independent of X \ Xi and ΣΣΣ, and hence
Xi is independent of SJ as well whenever i /∈ J. For a tuple T /∈ Xg, we simply use the upper
bound I(θθθ; SJ | (D, Q, I) = T) ≤ H(θθθ | (D, Q, I) = T) ≤ |θθθ|, where |θθθ| = 1. Consequently,

I(θθθ; SJ | D, Q, I) = ∑
T /∈Xg

Pr((D, Q, I) = T) · I(θθθ; SJ | (D, Q, I) = T)

≤ ∑
T /∈Xg

Pr((D, Q, I) = T) · |θθθ|

= Pr((D, Q, I) /∈ Xg) (|θθθ| = 1)

We now show that Pr((D, Q, I) /∈ Xg) ≤ 0.9. Let µ be the distribution of I (i.e., a uniform
distribution on [n]) and for any D and Q, νD,Q be the distribution of I | D = D, Q = Q. Fix
any set J of size o(n); it is clear that under µ, Prµ(I ∈ J) = o(1). We show that the total
variation distance of µ and νD,Q (for “typical” choices of D and Q) is bounded away from
1 and hence PrνD,Q

(I ∈ J) < 1 as well (using Claim A.4). To achieve the bound on the total
variation distance, we instead bound the KL-divergence of νD,Q from the uniform distribution
µ (in expectation over the choice of D and Q) and then use Pinsker’s inequality (Claim A.3)
to bound the total variation distance between these distributions. We have,

ED,Q [D(νD,Q ‖ µ)] = I(I; D, Q) = H(I)− H(I | D, Q) (by Claim A.2)

= log n − ∑
Q∈F

Pr(Q = Q) · H(I | D, Q = Q)

= log n − ∑
Q∈F

1

n
· H(ΣΣΣ(Q) | D)

(I = ΣΣΣ(Q) and ΣΣΣ(Q) ⊥ Q = Q, D ⊥ Q = Q)

≤ log n − H(ΣΣΣ | D)

n
(By subadditivity of entropy, Claim A.1-(4))

≤ log n − |ΣΣΣ| − |D|
n

(H(ΣΣΣ | D) ≥ |ΣΣΣ| − |D|, Claim A.1-(1))

= log n − log (n!)− o(n)

n
(|ΣΣΣ| = log n!, |D| = o(n))

≤ log n − n log n − n log e + O(log n)− o(n)

n
(by Stirling approximation of n!)

= log e + o(1)

10

We now have,

ED,Q [|νD,Q − µ|] ≤ ED,Q

[√
1

2
· D(νD,Q ‖ µ)

]
(Pinsker’s inequality, Claim A.3)

≤
√

1

2
· ED,Q [D(νD,Q ‖ µ)] (Convexity of

√·)

≤
√

log e

2
+ o(1) < 0.85

Fix any pair (D, Q), by Claim A.4,

Pr
νD,Q

(i ∈ exam(D, Q)) ≤ Pr
µ
(i ∈ exam(D, Q)) + |νD,Q − µ|

By taking expectation over (D, Q),

ED,Q

[
Pr

νD,Q

(i ∈ exam(D, Q))

]
≤ ED,Q

[
Pr
µ
(i ∈ exam(D, Q))

]
+ ED,Q [|νD,Q − µ|]

≤ o(1) + 0.85 ≤ 0.9

Noting that the LHS in the above equation is equal Pr((D, Q, I) /∈ Xg) finalizes the proof.
By plugging in the values from the above two claims, we have

H2(δ) ≥ H(θθθ | D, Q, I)− I(θθθ; SJ | D, Q, I) ≥ 1 − o(1)− 0.9 = 0.1 − o(1)

which is in contradiction with the fixed value of H2(δ) ∼ 0.08 (for δ = 0.01). Hence, |D|+
|J| = Ω(n), implying that the storage requirement or examination requirement of the scheme
has to be of size Ω(n). The bound of 2Ω(k) also follows from the fact that n = 2Ω(k) in this
construction.

Notice that in the proof of Theorem 3.1, the constructed instances have a simple property
(the union in each question is either [n] or [n] \ {i} for some i). We extract this useful property
and provide the following stronger version of Theorem 3.1 as a corollary (to its proof). This
stronger version is used to prove a lower bound for the average query in Theorem 4.1.

Corollary 3.5. Suppose the given sets S1, . . . , Sk in the Coverage problem are promised to have the
property that for any set

{
i1, . . . , i⌊k/2⌋

}
⊆ [k], Si1 ∪ . . . ∪ Si⌊k/2⌋ is either [n] or [n] \ {j} for some

j ∈ [n]. The lower bound of Theorem 3.1 still holds for this promised version of the Coverage problem.

4 Numerical Queries

In this section, we study provisioning of numerical queries, i.e., queries that output some
(rational) number(s) given a set of tuples. In particular, we investigate aggregation queries
including count, sum, average, and quantiles (therefore min, max, median, rank, and per-
centile), and as a first step towards provisioning database-supported machine learning, linear
(ℓ2) regression. We assume that the relevant attribute values are rational numbers of the form
a/b where both a, b are integers in range [−W, W] for some W > 0.

4.1 The Count, Sum, and Average Queries

In this section, we study provisioning of the count, sum, and average queries, formally defined
as follows. The answer to the count query is the number of tuples in the input instance. For
the other two queries, we assume a relational schema with a binary relation containing two

11

attributes: an identifier (key) and a weight. We say that a tuple x is smaller than the tuple y,
if the weight of x is smaller than the weight of y. Given an instance I, the answer to the sum

query (resp. the average query) is the total weights of the tuples (resp. the average weight of the
tuples) in I.

We first show that none of the count, sum, average queries can be provisioned both com-
pactly and exactly, which motivates the ǫ-provisioning approach, and then briefly describe
how to build a compact (ǫ, δ)-linear provisioning scheme for each of them. Our lower bound
results for count, sum, and average queries are summarized in the following theorem.

Theorem 4.1. Exact provisioning of any of the count, sum, or average queries requires sketches of size
min(2Ω(k), Ω(n)) bits.

Proof. We provide a proof for each of the queries separately.
Count query. Given {S1, . . . , Sk}, where each Si is a subset of [n], we solve Coverage using

a provisioning scheme for the count query. Define an instance I of a relational schema with
a unary relation A, where I = {A(x)}x∈[n]. Define a set H of k hypotheticals, where for

any i ∈ [k], hi(I) = {A(x)}x∈Si
. For any scenario S = {i1, . . . , is}, the count of I|S is n iff

Si1 ∪ . . . ∪ Sis
= [n]. Hence, any provisioning scheme for the count query solves the Coverage

problem and the lower bound follows from Theorem 3.1.
Sum query. The lower bound of the sum follows immediately from the one for count by

setting all weights to be 1.
Average query. For simplicity, in the following construction we will omit the id attribute

of the tuples as the weights of the tuples are distinct and can be used to identify each tuple.
Given S = {S1, S2, . . . Sk}, where each Si is a subset of [n], with the promise that for any

set
{

i1, . . . , i⌊k/2⌋
}
⊆ [k], Si1 ∪ . . . ∪ Si⌊k/2⌋ is either [n] or [n] \ {j} for some j ∈ [n], we want to

solve this restricted Coverage problem. By Corollary 3.5, the restricted Coverage problem also
needs a data structure of size min(Ω(n), 2Ω(k)) bits.

Define an instance I of the relational schema with a unary relation A, where I = {A(x)}x∈[n].
Define a set H of k hypotheticals, where for any i ∈ [k], hi(I) = {A(x)}x∈Si

. For any scenario

S =
{

i1, . . . , i⌊k/2⌋
}

, the average weight of I|S is n+1
2 (resp.

n(n+1)/2−j
n−1 for some j ∈ [n]) if

Si1 ∪ . . . ∪ Si⌊k/2⌋ is equal to (resp. not equal to) [n]. The two values are equal iff j = (n + 1)/2,
which, if we assume n is even, could never happen. Therefore knowing the average value is
enough to solve the restricted Coverage problem, and the lower bound follows.

We further point out that if the weights can be both positive and negative, the sum (and
average) cannot be compactly provisioned even approximately, and hence we will focus on
ǫ-provisioning for positive weights.

Theorem 4.2. Provisioning of the sum (and average) query approximately (up to any multiplica-
tive factor) over the input instances with both positive and negative weights requires sketches of size
min(2Ω(k), Ω(n)) bits.

Proof. We use a reduction from the Coverage problem. Suppose we are given a collection of
sets S = {S1, S2, . . . Sk}, where each Si is a subset of [n] in the Coverage problem. Consider the
relational schema Σ = {A} where A is binary and the second attribute of A is the weight. Let
I = {A(1, 1), A(2, 1), . . . , A(n, 1), A(n + 1,−n)}. We define k hypotheticals: for any i ∈ [k],
hi(I) = {A(j, 1) | j ∈ Si} ∪ {A(n + 1,−n)}. For any set {i1, . . . , is} ⊆ [k], let S be the scenario
consisting of hi1 , . . . , his

; then the total weight of I|S is zero iff Si1 ∪ . . . ∪ Sis
= [n]. Therefore,

any multiplicative approximation to the sum query would distinguish between the zero and
non-zero cases, and hence solves the Coverage problem. The lower bound on the size of the
sketch now follows from Theorem 3.1.

We conclude this section by explaining the ǫ-provisioning schemes for the count, sum, and
average queries. Formally,

12

Theorem 4.3 (ǫ-provisioning count). For any ǫ, δ > 0, there exists a compact (ǫ, δ)-linear provi-
sioning scheme for the count query that creates a sketch of size Õ(ǫ−2k(k + log(1/δ))) bits.

Theorem 4.4 (ǫ-provisioning sum & average). For instances with positive weights, for any ǫ, δ > 0,
there exists compact (ǫ, δ)-linear provisioning schemes for the sum and average queries, with a sketch
of size Õ(ǫ−2k2 log(n) log(1/δ) + k log log W) bits.

We remark that the results in Theorems 4.3 and 4.4 are mostly direct application of known
techniques and are presented here only for completeness.

The count query can be provisioned by using linear sketches for estimating the ℓ0-norm (see,
e.g., [31]) as follows. Consider each hypothetical hi(I) as an n-dimensional boolean vector xi,
where the j-th entry is 1 iff the j-th tuple in I belongs to hi(I). For each xi, create a linear
sketch (using Õ(ǫ−2 log n) bits of space) that estimates the ℓ0-norm [31]. Given any scenario S,
combine (i.e., add together) the linear sketches of the hypotheticals in S and use the combined
sketch to estimate the ℓ0-norm (which is equal to the answer of count).

Remark 4.5. Note that we can directly use linear sketching for provisioning the count query since
counting the duplicates once (as done by union) or multiple times (as done by addition) does not change
the answer. However, this is not the case for other queries of interest like quantiles and regression and
hence linear sketching is not directly applicable for them.

Here, we also describe a self-contained approach for ǫ-provisioning the count query with
a slightly better dependence on the parameter n (log log n instead of log n).

We use the following fact developed by [7] in the streaming model of computation to
design our scheme. For a bit string s ∈ {0, 1}+, denote by trail(s) the number of trailing 0’s
in s. Given a list of integers A = (a1, . . . , an) from the universe [m], a function g : [m] → [m],
and an integer t > 0, the 〈t, g〉-trail of A is defined as the list of the t smallest trail(g(ai))
values (use binary expression of g(ai)), where the duplicate elements in A are counted only
once.
Lemma 4.6 ([7]). Given a list A = (a1, . . . , an), ai ∈ [m] with F0 distinct elements, pick a random
pairwise independent hash function g : [m] → [m], and let t = ⌈256ǫ−2⌉. If r is the largest value
in the 〈t, g〉-trail of A and F0 ≥ t, then with probability at least 1/2, t · 2r is a (1± ǫ) approximation
of F0.

We now define our (ǫ, δ)-linear provisioning scheme for the count query.

Compression algorithm for the count query. Given an input instance I, a set H of hypo-
theticals, and an ǫ > 0:

1. Assign each tuple in I with a unique number (an identifier) from the set [n].
2. Let t = ⌈256ǫ−2⌉. Pick ⌈k + log (1/δ)⌉ random pairwise independent hash functions{

gj : [n] → [n]
}⌈k+log (1/δ)⌉

i=1
. For each hash function gj, create a sub-sketch as follows.

(a) Compute the 〈t, gj〉-trail over the identifiers of the tuples in each hi(I).

(b) Assign a new identifier to any tuple that accounts for at least one value in the
〈t, gj〉-trail of any hi, called the concise identifier.

(c) For each hypothetical hi, record each value in the 〈t, gj〉-trail along with the concise
identifier of the tuple that accounts for it.

Extraction algorithm for the count query. Given a scenario S, for each hash function gj,
we use the concise identifiers to compute the union of the 〈t, gj〉-trail of the hypotheticals
that are turned on by S. Let r be the t-th smallest value in this union, and compute t · 2r.
Output the median of these t · 2r values among all the hash functions.

13

We call a sketch created by the above compression algorithm a CNT-Sketch. For each
hash function gj and each hi(I), we record concise identifiers and the number of trailing 0’s
(O(log log n) bits each) of at most t tuples. Since at most t · k tuples will be assigned with a
concise identifier, O(log (t · k)) bits suffice for describing each concise identifier. Hence the
total size of a CNT-Sketch is Õ(ǫ−2k · (k + log(1/δ))) bits. We now prove the correctness of
this scheme.

Proof of Theorem 4.3. Fix a scenario S; for any picked hash function gi, since the t-th
smallest value of the union of the recorded 〈t, gi〉-trail, r, is equal to the t-th smallest value
in the 〈t, gi〉-trail of I|S. Hence, by Lemma 4.6, with probability at least 1/2, t · 2r is a
(1 ± ǫ) approximation of |I|S|. By taking the median over ⌈k + log (1/δ)⌉ hash functions,
the probability of failure is at most δ/2k. If we take union bound over all 2k scenarios, with
probability at least 1 − δ, all scenarios could be answered with a (1 ± ǫ) approximation.

We now state the scheme for provisioning the sum query; the schemes for the sum and the
count queries together can directly provision the average query, which finalizes the proof of
Theorem 4.4. We use and extend our CNT-Sketch to ǫ-provision the sum query.

Compression algorithm for the sum query. Given an instance I, a set H of hypotheticals,
and two parameters ǫ, δ > 0, let ǫ′ = ǫ/4, t = ⌈log1+ǫ′ (n/ǫ′)⌉, and δ′ = δ

k(t+1) .

1. Let p = ⌈log(1+ǫ′) W⌉ and for any l ∈ [p], let wl = (1 + ǫ′)l . For each l ∈ [p], define a

set of k new hypotheticals Hl = {hl,1, hl,2, . . . , hl,k}, where hl,i(I) ⊆ hi(I) and contains the
tuples whose weights are in the interval [wl , wl+1).

2. For each hypothetical hi, let w be the largest weight of the tuples in hi(I), and find the
index γ such that wγ ≤ w < wγ+1. Record γ, and discard all the tuples in hi(I) with
weight less than wγ−t.

a Consequently, all the remaining tuples of hi(I) lie in the (t + 1)
intervals {[wl, wl+1)}γ

l=γ−t. We refer to this step as the pruning step.

3. For each l, denote by Ĥl the resulting set of hypotheticals after discarding the above
small weight tuples from Hl (some hypotheticals might become empty). For each of the
Ĥl that contains at least one non-empty hypothetical, run the compression algorithm
that creates a CNT-Sketch for I and Ĥl , with parameters ǫ′ and δ′. Record each created
CNT-Sketch.

aIn case γ < t, no tuple needs to be discarded.

Extraction algorithm for the sum query. Given a scenario S, for any interval [wl, wl+1)
with a recorded CNT-Sketch, compute the estimate of the number of tuples in the interval,
denoted by ñl. Output the summation of the values (wl+1 · ñl), for l ranges over all the
intervals [wl, wl+1) with a recorded CNT-Sketch.

We call a sketch created by the above provisioning scheme a SUM-Sketch. Since for every
hypothetical we only record the (t + 1) non-empty intervals, by an amortized analysis, the
size of the sketch is Õ(ǫ−2k2 log(n) log(1/δ) + k log log W) bits. We now prove the correctness
of this scheme.

Proof of Theorem 4.4. For now assume that we do not perform the pruning step (line (2)
of the compression phase). For each interval [wl, wl+1) among the ⌈log1+ǫ′ W⌉ intervals, the
CNT-Sketch outputs a (1 ± ǫ′) approximation of the total number of tuples whose weight
lies in the interval. Each tuple in this interval will be counted as if it has weight wl+1, which

14

is a (1 + ǫ′) approximation of the original tuple weight. Therefore, we can output a (1 ± ǫ′)2

approximation of the correct sum.
Now consider the original SUM-Sketch with the pruning step. We need to show that

the total weight of the discarded tuples is negligible. For each hypothetical hi, we discard
the tuples whose weights are less than wγ−t, while the largest weight in hi(I) is at least wγ.
Therefore, the total weight of the discarded tuples is at most

nwγ−t ≤
nwγ

(1 + ǫ′)⌈log(1+ǫ′) (n/ǫ′)⌉ ≤ ǫ′wγ

Since whenever hi is turned on by a given scenario, the sum of the weights is at least wγ, we
lose at most ǫ′ fraction of the total weight by discarding those tuples from hi(I). To see why
we only lose an ǫ′ fraction over all the hypotheticals (instead of ǫ′k), note that at most n tuples
will be discarded in the whole scenario, hence the n in the inequality nwγ−t ≤ ǫ′wγ can be
amortized over all the hypotheticals.

4.2 The Quantiles Query

In this section, we study provisioning of the quantiles query. We again assume a relational
schema with just one binary relation containing attributes identifier and weight. For any
instance I and any tuple x ∈ I, we define the rank of x to be the number of tuples in I that
are smaller than or equal to x (in terms of the weights). The output of a quantiles query with
a given parameter φ ∈ (0, 1] on an instance I is the tuple with rank ⌈φ · |I|⌉. Finally, we say a
tuple x is a (1 ± ǫ)-approximation of a quantiles query whose correct answer is y, iff the rank
of x is a (1 ± ǫ)-approximation of the rank of y.

Similar to the previous section, we first show that the quantiles query admits no compact
provisioning scheme for exact answer and then provide a compact ǫ-provisioning scheme for
this query.

Theorem 4.7. Exact provisioning of the quantiles query even on disjoint hypotheticals requires
sketches of size min(2Ω(k), Ω(n)) bits.

In the quantiles query, the parameter φ may be given either already to the compression
algorithm or only to the extraction algorithm. The latter yields an immediate lower bound of
Ω(n), since by varying φ over (0, 1], one can effectively “reconstruct” the original database.
However, we achieve a more interesting lower bound for the case when φ is given at to
the compression algorithm (i.e., a fixed φ for all scenarios, e.g., setting φ = 1/2 to find the
median). An important property of the lower bound for quantiles is that, in contrast to all other
lower bounds for numerical queries in this paper, this lower bound holds even for disjoint
hypotheticals2.

Proof of Theorem 4.7. Assume we want to prove the lower bound for any provisioning
scheme for answering the median query (quantiles with fixed φ = 1/2).

Let N = 2k−1. We show how to encode a bit-string of length N into a database I with
n = Θ(N) tuples and a set of k + 1 hypotheticals such that given provisioned sketch of the
median query for this instance, one can recover any bit of this string with constant probability.
Standard information-theoretic arguments then imply that the sketch size must have Ω(N) =
2Ω(k) = Ω(n) bits.

For any vector v = (v1, v2, . . . , vN) ∈ {0, 1}N, define an instance Iv on a relational schema
with a binary relation A whose second attribute is the weight. Let Iv = L ∪ M ∪ R, where

2All other numerical queries that we study in this paper can be compactly provisioned for exact answer, when
the hypotheticals are disjoint.

15

L = {A(x, 0)}x∈[N], M = {A(N + x, 2x + vx)}x∈[N], and R = {A(2N + x, W)}x∈[2N] (where W
is the largest possible value of the weight). The weights of the tuples are ordered “L < M <

R”. The answers of all the scenarios will be in M: L is the set of “padding” tuples which
shifts the median towards M, and R will be divided into disjoint hypotheticals with different
sizes (basically size 2i−1 for the i-th hypothetical) where different scenarios over such set of
hypotheticals allow us to output all the tuples in M.

Formally, define the set H of (k + 1) hypotheticals, where for any i ∈ [k], hi(Iv) =
{A(2N + x, W)}x∈{2i−1,...,2i−1} with 2i−1 tuples, and hk+1 = L ∪ M. For any set S′ ⊆ [k],

consider the scenario S = S′ ∪ {k + 1}. Let γ = ⌈∑i∈S |hi(Iv)| /2⌉. It is straightforward to
verify that the median tuple of Iv|S is A(γ, 2γ + vγ). By varying ∑i∈S |hi(Iv)| from 1 to 2N
(using the fact that size of hypotheticals are different powers of two), any tuple in M will be
outputted and the vector v could be reconstructed.

Note that one can extend this lower bound, by using an approach similar to Theorem 3.1,
to provisioning schemes that are allowed a limited access to the original database after being
given the scenario (see Section 3 for more details). We omit the details of this proof.

We now turn to prove the main theorem of this section, which argue the existence of
a compact scheme for ǫ-provisioning the quantiles. We emphasize that the approximation
guarantee in the following theorem is multiplicative.

Theorem 4.8 (quantiles). For any ǫ, δ > 0, there exists a compact (ǫ, δ)-linear provisioning scheme
for the quantiles query that creates a sketch of size Õ(kǫ−3 log n · (log(n/δ) + k)(log W + k)) bits.

We should note that in this theorem the parameter φ is only provided in the extraction
phase3. Our starting point is the following simple lemma first introduced by [27].

Lemma 4.9 ([27]). For any list of unique numbers A = (a1, . . . , an) and parameters ǫ, δ > 0, let
t =

⌈
12ǫ−2 log (1/δ)

⌉
; for any target rank r > t, if we independently sample each element with

probability t/r, then with probability at least 1 − δ, the rank of the t-th smallest sampled element is a
(1 ± ǫ)-approximation of r.

The proof of Lemma 4.9 is an standard application of the Chernoff bound and the main
challenge for provisioning the quantiles query comes from the fact that hypotheticals overlap.
We propose the following scheme which addresses this challenge.

Compression algorithm for the quantiles query. Given an instance I, a set H of
hypotheticals, and two parameters ǫ, δ > 0, let ǫ′ = ǫ/5, δ′ = δ/3, and t =⌈
12ǫ′−2(log(1/δ′) + 2k + log(n))

⌉
.

1. Create and record a CNT-Sketch for I and H with parameters ǫ′ and δ′.

2. Let
{

rj = (1 + ǫ′)j
}⌈log(1+ǫ′) n⌉

j=0 . For each rj, create the following sub-sketch individually.

3. If rj ≤ t, for each hypothetical hi, record the rj smallest chosen tuples in hi(I). If rj > t,
for each hypothetical hi, choose each tuple in hi(I) with probability t/rj, and record

the ⌈(1 + 3ǫ′) · t⌉ smallest tuples in a list Ti,j. For each tuple x in the resulting list Ti,j,
record its characteristics vector for the set of the hypotheticals, which is a k-dimensional
binary vector (v1, v2, . . . , vk), with value 1 on vl whenever x ∈ hl(I) and 0 elsewhere.

3We emphasize that we gave a lower bound for the easier case in terms of provisioning (φ given at compression
phase and disjoint hypotheticals), and an upper bound for the harder case (φ given at extraction phase and
overlapping hypotheticals).

16

Extraction algorithm for the quantiles query. Suppose we are given a scenario S and a
parameter φ ∈ (0, 1]. In the following, the rank of a tuple always refers to its rank in the
sub-instance I|S.

1. Denote by ñ the output of the CNT-Sketch on S. Let r̃ = φ · ñ, and find the index γ,
such that rγ ≤ r̃ < rγ+1.

2. If rγ ≤ t, among all the hypotheticals turned on by S, take the union of the recorded
tuples and output the rγ-th smallest tuple in the union.

3. If rγ > t, from each hi turned on by S, and each tuple x recorded in Ti,γ with a charac-
teristic vector (v1, v2, . . . , vk), collect x iff for any l < i, either vl = 0 or hl /∈ S. In other
words, a tuple x recorded by hi is taken only when among the hypotheticals that are
turned on by S, i is the smallest index s.t. x ∈ hi(I). We will refer to this procedure as
the deduplication. Output the t-th smallest tuple among all the tuples that are collected.

We call a sketch created by the above compression algorithm a QTL-Sketch. It is straight-
forward to verify that the size of QTL-Sketch is as stated in Theorem 4.8. We now prove the
correctness of the above scheme.

Proof of Theorem 4.8. Given an instance I and a set H of hypotheticals , we prove that with
probability at least 1 − δ, for every scenario S and every parameter φ ∈ (0, 1], the output
for the quantiles query on I|S is a (1 ± ǫ)-approximation. Fix a scenario S and a parameter
φ ∈ (0, 1]; the goal of the extraction algorithm is to return a tuple with rank in range (1 ± ǫ)
of the queried rank ⌈φ · |I|S|⌉. Recall that in the extraction algorithm, ñ is the output of the
CNT-Sketch. Therefore, r̃ = φñ is a (1 ± ǫ′) approximation of the queried rank, and rγ with
rγ < r̂ ≤ (1+ ǫ′)rγ is a (1± 3ǫ′) approximation of the rank. In the following, we argue that the
tuple returned by the extraction algorithm has a rank in range (1 ± ǫ′) · rγ, and consequently
is a (1 ± ǫ)-approximation answer to the quantiles query.

If rγ ≤ t, the rγ-th smallest tuple of I|S is the rγ-th smallest tuple of the union of the
recorded tuples Ti,γ for i ∈ S. Therefore, we obtain a (1 ± ǫ) approximation in this case.

If rγ > t, for any i ∈ S, define T̂i to be the list of all the tuples sampled from hi(I) in
the compression algorithm (instead of maintaining the (1 + 3ǫ′)t tuples with smallest ranks).
Hence Ti,γ ⊆ T̂i. If we perform the deduplication procedure on the union of the tuples in T̂i

for i ∈ S and denote the resulting list T∗, then every tuple in I|S has probability exactly t/rγ

to be taken into T∗ (for any tuple, only the appearance in the smallest index hi(I) could be
taken). Hence, by Lemma 4.9, with probability at least 1 − δ′/2k+log(n), the rank of the t-th
tuple of T∗ is a (1 ± ǫ′)-approximation of the rank rγ. In the following, we assume this holds.

The extraction algorithm does not have access to T̂i’s. Instead, it only has access to the
list Ti,γ, which only contains the (1 + 3ǫ′)t tuples of T̂i with the smallest ranks. We show that
with high probability, the union of Ti,γ for i ∈ S, contains the first t smallest tuples from T∗.

Note that for any i ∈ S, if the largest tuple x in T̂i ∩ T∗ is in Ti,γ, then all tuples in T̂i ∩ T∗ are
also in Ti,γ (e.g. the truncation happens after the tuple x). Hence, we only need to bound the
probability that x is truncated, which is equivalent to the probability of the following event:
more than (1 + 3ǫ′)t tuples in hi(I) are sampled in the compression phase for the rank rγ

(with probability t/rγ).
Let Li be the set of all the tuples in hi(I) which are smaller than x. Rank of x is less than

or equal to the rank of the t-th smallest tuple in T∗, which is upper bounded by (1 + ǫ′)rγ.
Hence, |Li| ≤ (1 + ǫ)rγ. For any j ∈ hi(I), define a binary random variable yj, which is equal
to 1 iff the tuple with rank j is sampled and 0 otherwise. The expected number of the tuples
that are sampled from L is then E[∑j∈L yj] = |L| · (t/rγ) ≤ (1 + ǫ′)t.

Using Chernoff bound, the probability that more than (1+ 3ǫ′)t tuples from L are sampled

17

is at most δ′

22k+log(n) . If we take union bound over all the hypotheticals in S, with probability at

least 1 − δ′

2k+log(n) , for all hi, the largest tuple in T̂i ∩ T∗ is in Ti,γ, which ensures that the rank of

the returned tuple is a (1 ± ǫ)-approximation of the queried rank.
Finally, since there are only n different values for φ ∈ (0, 1] which results in different an-

swers, applying union bound over all these n different values of φ and 2k possible scenarios,
with probability at least (1 − 2δ′), the output of the extraction algorithm is a (1 + ǫ) approx-
imation of the quantiles query. Since the failure probability of creating the CNT-Sketch is at
most δ′, with probability (1 − 3δ′) = (1 − δ) the QTL-Sketch successes.

Extensions. By simple extensions of our scheme, many variations of the quantiles query can
be answered, including outputting the rank of a tuple x, the percentiles (the rank of x divided
by the size of the input), or the tuple whose rank is ∆ larger than x, where ∆ > 0 is a given
parameter. As an example, for finding the rank of a tuple x, we can find the tuples with ranks

approximately
{
(1 + ǫ)l

}
, l ∈ [

⌈
log(1+ǫ) n

⌉
], using the QTL-Sketch, and among the found

tuples, output the rank of the tuple whose weight is the closest to the weight of x.

4.3 The Linear Regression Query

In this section, we study provisioning of the regression query (i.e., the ℓ2-regression problem),
where the input is a matrix An×d and a vector bn×1, and the goal is to output a vector x that
minimizes ‖Ax − b‖ (‖ · ‖ stands for the ℓ2 norm). A (1 + ǫ)-approximation of the regression

query is a vector x̃ such that ‖Ax̃ − b‖ is at most (1 + ǫ)minx ‖Ax − b‖.
The input is specified using a relational schema Σ with a (d + 2)-ary relation R. Given

an instance I of Σ with n tuples, we interpret the projection of R onto its first d columns, the
(d + 1)-th column, and the (d + 2)-column respectively as the matrix A, the column vector
b, and the identifiers for the tuples in R. For simplicity, we denote I = (A, b), assume
that the tuples are ordered, and use the terms the i-th tuple of I and the i-th row of (A, b)
interchangeably.

Notation. For any matrix M ∈ R
n×d, denote by M(i) the i-th row of M, and by UM ∈ R

n×ρ

(where ρ is the rank of M) the orthonormal matrix of the column space of M (see [29] for more
details). Given an instance I = (A, b), and k hypotheticals, we denote for each hypothetical hi

the sub-instance hi(I) = (Ai, bi). For any integer i, ei denotes the i-th standard basis; hence,
the i-th row of M can be written as eT

i M.
The following theorem shows that the regression query cannot be compactly provisioned

for exact answers and hence, we will focus on ǫ-provisioning.

Theorem 4.10. Exact provisioning of the regression query, even when the dimension is d = 1,
requires sketches of size min(2Ω(k), Ω(n)) bits

Proof. We show how to use the regression query to check whether the sum of a list of values
is equal to 0, then, the same reduction used in Theorem 4.2 will complete the proof.

Given a list of values a1, a2, . . . , an, create an instance of ℓ2-regression problem with d = 1
where AT

n×1 = [1, 1, . . . , 1] and bT
n×1 = [a1, a2, . . . , an]. We will show that ∑

n
i=1 ai = 0 iff

arg minx ‖Ax − b‖2 is 0.

‖Ax − b‖2 =
n

∑
i=1

(x − ai)
2 = nx2 − (2

n

∑
i=1

ai)x +
n

∑
i=1

a2
i

This parabola reaches its minimum when x = (∑n
i=1 ai)/n and the result follows.

18

Before continuing, we remark that if hypotheticals are disjoint, the regression query admits
compact provisioning for exact answers, and hence the hardness of the problem again lies on
the fact that hypotheticals overlap. To see this, consider the closed form solution:

xopt = (ATA)†ATb (1)

where † denotes the Moore-Penrose pseudo-inverse of a matrix [29]. Let AT = [AT
1 , AT

2 , . . . , AT
k]

and bT = [bT
1 , bT

2 , . . . , bT
k], where for any i ∈ [k], the (Ai, bi) pair corresponds to the sub-

instance of the i-th hypotheticals, i.e., hi(I). Then

ATA =
k

∑
i=1

AT
i Ai ATb =

k

∑
i=1

AT
i bi

Therefore, we can design a provisioning scheme that simply records the d × d matrix AT
i Ai

and the d dimensional vector AT
i bi for each hypothetical. Then, for any given scenario S ⊆

[k], the extraction algorithm computes ∑i∈S AT
i Ai and ∑i∈S AT

i bi, and obtains xopt by using
Equation (1).

We now turn to provide a provisioning scheme for the regression query and prove the
following theorem, which is the main contribution of this section.

Theorem 4.11 (regression). For any ǫ, δ > 0, there exists a compact (ǫ, δ)-linear provisioning scheme
for the regression query that creates a sketch of size Õ(ǫ−1k3d log(nW)(k + log 1

δ)) bits.

Overview. Our starting point is a non-uniform sampling based approach (originally used
for speeding up the ℓ2-regression computation [36]) which uses a small sample to accurately
approximates the ℓ2-regression problem. Since the probability of sampling a tuple (i.e., a row
of the input) in this approach depends on its relative importance which can vary dramatically
when input changes, this approach is not directly applicable to our setting.

Our contribution is a two-phase sampling based approach to achieve the desired sampling
probability distribution for any scenario. At a high level, we first sample and record a small
number of tuples from each hypothetical using the non-uniform sampling approach; then,
given the scenario in the extraction phase, we re-sample from the recorded tuples of the hy-
potheticals presented in the scenario. Furthermore, to rescale the sampled tuples (as needed
in the original approach), we obtain the exact sampling probabilities of the recorded tuples by
recording their relative importance in each hypothetical. Our approach relies on a monotonic-
ity property of the relative importance of a tuple when new tuples are added to the original
input.

RowSample. We first describe the non-uniform sampling algorithm. Let P = (p1, p2, . . . , pn)
be a probability distribution, and r > 0 be an integer. Sample r tuples of I = (A, b)
with replacement according to the probability distribution P . For each sample, if the j-
th row of A is sampled for some j, rescale the row with a factor (1/

√
rpj) and store it

in the sampling matrix (Ã, b̃). In other words, if the i-th sample is the j-th row of I,

then (Ã(i), b̃(i)) = (A(j), b(j))/
√

rpj. We denote this procedure by RowSample(A, b,P , r),

and (Ã, b̃) is its output. The RowSample procedure has the following property [36] (see
also [18, 38] for more details on introducing the parameter β).

Lemma 4.12 ([36]). Suppose A ∈ R
n×d, b ∈ R

n, and β ∈ (0, 1]; P = (p1, p2, . . . , pn) is a proba-
bility distribution on [n], and r > 0 is an integer. Let (Ã, b̃) be an output of RowSample(A, b,P , r),

and x̃ = arg minx ‖Ãx − b̃‖.

If for all i ∈ [n], pi ≥ β
‖eT

i UA‖2

∑
n
j=1 ‖eT

j UA‖2 , and r = Θ(d log d log(1/δ)
ǫ·β), then with probability at least

(1 − δ), ‖Ax̃ − b‖ ≤ (1 + ǫ)minx ‖Ax − b‖.

19

The value ‖eT
i UA‖2, i.e the square norm of the i-th row of UA, is also called the leverage

score of the i-th row of A. One should view the leverage scores as the “relative importance” of
a row for the ℓ2-regression problem (see [32] for more details). Moreover, using the fact that
columns of UA are orthonormal, we have ∑j ‖eT

j UA‖2 = ρ, where ρ is the rank of A.

We now define our provisioning scheme for the regression query, where the compression
algorithm performs the first phase of sampling (samples rows from each hypothetical) and
the extraction algorithm performs the second (samples from the recorded tuples).

Compression algorithm for the regression query. Suppose we are given an in-
stance I = (A, b) and k hypotheticals with hi(I) = (Ai, bi) (i ∈ [k]). Let t =
Θ(ǫ−1kd log d · (k + log (1/δ))), and define for each i ∈ [k] a probability distribution
Pi = (pi,1, pi,2, . . . , pi,n) as follows. If the j-th row of A is the l-th row of Ai (they corre-
spond to the same tuple), let pi,j = ‖eT

l UAi
‖2/ρ, where ρ is the rank of Ai. If A(j) does not

belong to Ai, let pi,j = 0. Using the fact that for every i ∈ [k], UAi
is an orthonormal matrix,

∑
n
j=1 pi,j = 1. Record t independently chosen random permutations of [k], and for each

hypothetical hi, create a sub-sketch as follows.

1. Sample t tuples of hi(I) with replacement, according to the probability distribution
Pi.

2. For each of the sampled tuples, assuming it is the j-th tuple of I, record the tuple
along with its sampling rate in each hypothetical, i.e.,

{
pi′,j

}
i′∈[k].

Extraction algorithm for the regression query. Given a scenario S = {i1, . . . , is}, we will

recover from the sketch a matrix Ãt×d and a vector b̃t×1. For l = 1 to t:

1. Pick the l-th random permutation recorded in the sketch. Let γ be the first value in this
permutation that appears in S.

2. If (a, b) is the l-th tuple sampled by the hypothetical hγ, which is the j-th tuple of I, let
qj = ∑i∈S pi,j/|S|, using the recorded sampling rates.

3. Let (Ã(l), b̃(l)) = (a, b)/
√

tqj. Return x̃ = arg minx‖Ãx− b̃‖ (using any standard method
for solving the ℓ2-regression problem).

We call a sketch constructed above a REG-Sketch. In order to show the correctness of this
scheme, we need the following lemma regarding the monotonicity of leverage scores.

Lemma 4.13 (Monotonicity of Leverage Scores). Let A ∈ R
n×d and B ∈ R

m×d be any matrix.
Define matrix C ∈ R

(n+m)×d by appending rows of B to A, i.e., CT = [AT, BT]. For any i ∈ [n], if
Li is the leverage score of A(i) and L̂i is the leverage score of C(i), then Li ≥ L̂i.

Before providing the proof, we note that Lemma 4.13 essentially claims that adding more
rows to a matrix A can only reduce the importance of any point originally in A. Note that this
is true even when the matrix C is formed by arbitrarily combining rows of B and A (rather
than appending at the end).

Proof of Lemma 4.13. We use the following characterization of the leverage scores (see [9]
for a proof). For any matrix M ∈ R

n×d and i ∈ [n], the leverage score of M(i) is equal

min
MTx=M(i)

‖x‖2

20

Now, fix an i ∈ [n], and let x∗ = arg minATx=A(i)
‖x‖2. By the above characterization of

leverage scores, Li = ‖x∗‖2. Denote by z, the vector in R
n+m where zT = [x∗T, 0]. Then,

CT · z =
[
AT, BT

]
· z = ATx∗ = A(i) = C(i)

where the last two equalities are by the definitions of x∗ and C, respectively. Therefore,

L̂i = min
CTx=C(i)

‖x‖2 ≤ ‖z‖2 = ‖x∗‖2 = Li

where the inequality holds because z satisfies CTz = C(i).

Proof of Theorem 4.11. Fix a scenario S and let I|S = (Â, b̂). It is straightforward to verify
that, for any step l ∈ [t], qj (in line (2) of the extraction algorithm) is the probability that the
j-th tuple of I is chosen, if the j-th tuple belongs to I|S. Hence, assuming P ′ is the proba-
bility distribution defined by the qjs on rows of the I|S, the extraction algorithm implements

RowSample(Â, b̂,P ′, t).
We will show that qj ≥ ‖eT

l UÂ‖2/kρ̂, where the l-th row of Â is the j-th row of A, and ρ̂ is

the rank of Â. Then, by Lemma 4.12 with β set to 1/k, with probability at least 1 − δ
2k , ‖Âx̃ −

b̂‖ is at most (1 + ǫ)minx ‖Âx − b̂‖; hence, the returned vector x̃ is a (1 + ǫ)-approximation.
Applying a union bound over all 2k scenarios, with probability at least (1 − δ), our scheme
ǫ-provisions the regression query.

We now prove that qj ≥ ‖eT
l UÂ‖2/kρ̂. Denote by Li,j (resp. LS,j) the leverage score of the

j-th tuple of I in the matrix Ai (resp. Â). Further, denote by ρi the rank of Ai. Consequently,
pi,j = Li,j/ρi, and our goal is to show qj ≥ LS,j/(kρ̂). Pick any i∗ ∈ S where hi∗ (I) contains
the j-th tuple of I, then:

qj =
∑i∈S pi,j

s
≥ pi∗ ,j

s
≥ Li∗,j

kρi
≥ LS,j

kρ̂

For the last inequality, since Ai is a sub-matrix of Â, ρi ≤ ρ̂ and the leverage score decreases
due to the monotonicity (Lemma 4.13).

To conclude, the probabilities will be stored with precision 1/n (hence stored using
O(log n) bits each), and the size of the sketch is straightforward to verify.

5 Complex Queries

We study the provisioning of queries that combine logical components (relational algebra and
Datalog), with grouping and with the numerical queries that we studied in Section 4.

We start by defining a class of such queries and their semantics formally. For the purposes
of this paper, a complex query is a triple 〈QL; GA; QN〉 where QL is a relational algebra or
Datalog query that outputs some relation with attributes AB for some B, GA is a group-by
operation applied on the attributes A, and QN is a numerical query that takes as input a
relation with attributes B. For any input I let P = ΠA(QL(I)) be the A-relation consisting of
all the distinct values of the grouping attributes. We call the size of P the number of groups of
the complex query. For each tuple u ∈ P, we define Γu = {v | uv ∈ QL(I)}. Then, the output
of the complex query 〈QL; GA; QN〉 is a set of tuples {〈u, QN(Γu)〉 | u ∈ P}.

5.1 Positive, Non-Recursive Complex Queries

In the following, we give compact provisioning results for the case where the logical compo-
nent is a positive relational algebra (i.e., SPJU) query. It will be convenient to assume a different,

21

but equivalent, formalism for these logical queries, namely that of unions of conjunctive queries
(UCQs)4. We review quickly the definition of UCQs. A conjunctive query (CQ) over a relational
schema Σ is of the form ans(x) : − R1(x1), . . . , Rb(xb), where atoms R1, . . . , Rb ∈ Σ, and the
size of a CQ is defined to be the number of atoms in its body (i.e., b). A union of conjunctive
query (UCQ) is a finite union of some CQs whose heads have the same schema.

In the following theorem, we show that for any complex query, where the logical compo-
nent is a positive relational algebra query, compact provisioning of the numerical component
implies compact provisioning of the complex query itself, provided the number of groups is
not too large.

Theorem 5.1. For any complex query 〈QL; GA; QN〉 where QL is a UCQ, if the numerical component
QN can be compactly provisioned (resp. compactly ǫ-provisioned), and if the number of groups is
bounded by poly(k, log n), then the query 〈QL; GA; QN〉 can also be compactly provisioned (resp.
compactly ǫ-provisioned with the same parameter ǫ).

Proof. Suppose QN can be compactly provisioned (the following proof also works when QN

can be compactly ǫ-provisioned). Let b be the maximum size of the conjunctive queries in QL.
Given an input instance I and a set H of k hypotheticals, we define a new instance Î = QL(I)
and a set Ĥ of O(kb) new hypotheticals as follows. For each subset S ⊆ [k] of size at most b

(i.e., |S| ≤ b), define a hypothetical ĥS(Î) = QL(I|S) (though S is not a number, we still use it

as an index to refer to the hypothetical ĥS).
By our definition of the semantics of complex queries, the group-by operation partitions Î

and each ĥS into p = |ΠA(Î)| sets. We treat each group individually, and create a sketch for

each of them. To simplify the notation, we still use Î and Ĥ to denote respectively the portion
of the new instance, and the portion of each new hypothetical that correspond to, without loss
of generality, the first group. In the following, we show that a compact provisioning scheme
for QN with input Î and Ĥ can be adapted to compactly provision 〈QL; GA; QN〉 for the first
group. Since the number of groups p is assumed to be poly(k, log n), the overall sketch size
is still poly(k, log n), hence achieving compact provisioning for the complex query.

Create a sketch for QN with input Î and Ĥ. For any scenario S ∈ [k] (over H), we can an-
swer the numerical query QN using the scenario Ŝ (over Ĥ) where Ŝ = {S′ | S′ ⊆ S & |S′| ≤ b}.
To see this, we only need to show that the input to QN remains the same, i.e., QL(I|S) is equal
to Î|Ŝ. Each tuple t in QL(I|S) can be derived using (at most) b hypotheticals. Since any subset

of S with at most b hypotheticals belongs to Ŝ, the tuple t belongs to Î|Ŝ. On the other hand,

each tuple t′ in Î|Ŝ belongs to some ĥS′ where S′ ∈ S, and hence, by definition of ĥS′ , the tuple

t is also in QL(I|S). Hence, QL(I|S) = Î|Ŝ.
Consequently, any compact provisioning scheme for QN can be adapted to a compact

provisioning scheme for the query 〈QL; GA; QN〉.
Theorem 5.1 further motivates our results in Section 4 for numerical queries as they can

be extended to these quite practical queries. Additionally, as an immediate corollary of the
proof of Theorem 5.1, we obtain that any boolean UCQ (i.e., any UCQ that outputs a boolean
answer rather than a set of tuples) can be compactly provisioned.

Corollary 5.2. Any boolean UCQ can be compactly provisioned using sketches of size O(kb) bits,
where b is the maximum size of each CQ.

Remark 5.3. Deutch et al. [17] introduced query provisioning from a practical perspective and pro-
posed boolean provenance [23, 24, 30, 37] as a way of building sketches. This technique can also be
used for compactly provisioning boolean UCQs.

4Although the translation of an SPJU query to a UCQ may incur an exponential size blowup [3], in this paper,
query (and schema) size are assumed to be constant. In fact, in practice, SQL queries often present with unions
already at top level.

22

Proof Sketch. Given a query Q, an instance I and a set H of hypotheticals we compute a
small sketch in the form of a boolean provenance expression.

Suppose that each tuple of an instance I is annotated with a distinct provenance token.
The provenance annotation of the answer to a UCQ is a monotone DNF formula ∆ whose
variables are these tokens. Crucially, each term of ∆ has fewer than b tokens where b is the size
of the largest CQ in Q. Associate a boolean variable xi with each hypothetical hi ∈ H, i ∈ [k].
Substitute in ∆ each token annotating a tuple t with the disjunction of the xi’s such that
t ∈ hi(I) and with false otherwise. The result ∆′ is a DNF on the variables x1, . . . , xk such
that each of its terms has at most b variables; hence the size of ∆′ is O(kb). Now ∆′ can be
used as a sketch if the extraction algorithm sets to true the variables corresponding to the
hypotheticals in the scenario and to false the other variables.

Remark 5.4. A similar approach based on rewriting boolean provenance annotations, which are now
general DNFs, can be used to provision UCQ¬s under disjoint hypotheticals. The disjointness as-
sumption insures that negation is applied only to single variables and the resulting DNF has size
O((2k + 1)b) = O(kb).

We further point out that the exponential dependence of the sketch size on the query size
(implicit) in Theorem 5.1 and Corollary 5.2 cannot be avoided even for CQs.

Theorem 5.5. There exists a boolean conjunctive query Q of size b such that provisioning Q requires
sketches of size min(Ω(kb−1), Ω(n)) bits.

Proof of Theorem 5.5. Consider the following boolean conjunctive query QEXP defined over
a schema with a unary relation A and a (b − 1)-ary relation B.

QEXP ≡ ans() :− A(x1), A(x2), . . . , A(xb−1),

B(x1, x2, . . . , xb−1)

We show how to encode a bit-string of length N := (k−1
b−1) into a database I with n = Θ(N)

tuples and a set of k hypotheticals such that given provisioned sketch of QEXP, one can recover
any bit of this string with constant probability. Standard information-theoretic arguments
then imply that the sketch size must have Ω(N) = Ω(kb−1) = Ω(n) bits.

Let (S1, . . . , SN) be a list of all subsets of [k − 1] of size b − 1. For any vector v ∈ {0, 1}N ,
define the instance Iv = {A(x)}x∈[k−1] ∪

{
B(Sy)

}
vy=1

(this is slightly abusing the notation:

B(Sy) = B(x1, . . . , xb−1) where {x1, . . . , xb−1} = Sy), and a set {hi}i∈[k] of k hypotheticals,

where for any i ∈ [k − 1], hi(I) = {A(i)} and hk(I) =
{

B(Sy)
}

vy=1
. To compute the i-th entry

of v, we can extract the answer to the scenario Si ∪ {k} from the sketch and output 1 iff the
answer of the query is true.

To see the correctness, vi = 1 iff B(Si) ∈ hk(I) iff QEXP(I|Si∪{k}) is true.
Note that one can extend this lower bound, by using an approach similar to Theorem 3.1,

to provisioning schemes that are allowed a limited access to the original database after being
given the scenario (see Section 3 for more details). We omit the details of this proof.

5.2 Adding Negation, Recursion, or HAVING

It is natural to ask (a) if Theorem 5.1 still holds when adding negation or recursion to the
query QL (i.e. UCQ with negation and recursive Datalog, respectively), and (b) whether or not
it is possible to provision queries in which logical operations are done after numerical ones.
A typical example of a query in part (b) is a selection on aggregate values specified by a
HAVING clause. Unfortunately, the answer to both questions is negative.

23

We first show that the answer to the question (a) is negative, i.e., there exists a boolean
conjunctive query with negation (CQ¬) and a recursive Datalog query which require sketches
of exponential size (in k) for any provisioning scheme. Formally,

Theorem 5.6. Exact provisioning of (i) boolean CQ with negation or (ii) recursive Datalog (even
without negation) queries requires sketches of size min(2Ω(k), Ω(n)).

Recall that a CQ¬ is a rule of the form

ans() :− L1, . . . Lb

where the Li’s are positive or negative literals (atoms or negated atoms) that is subject to
range-restriction: every variable occurring in the rule appears in at least one positive literal.
We define the size of such a query to be the number of literals.

Define the following boolean CQ¬ over a schema with two unary relation symbols, named
A and B:

QNOTSUB() :− A(x),¬B(x)

This query returns true on I iff there exists some x where A(x) ∈ I and B(x) /∈ I. Intuitively,
if we view A, B as subsets of the active domain of I, it is querying whether or not “B is a
subset of A”. We use a reduction from the Coverage problem to prove the lower bound for
QNOTSUB.

Proof of Theorem 5.6, Part (I). Suppose we are given a collection {S1, . . . , Sk} of subsets of
[n] and we want to solve the Coverage problem using a provisioning scheme for QNOTSUB. Create
the following instance I for the schema Σ = {A, B}, where for any x ∈ [n], A(x), B(x) ∈ I.
Define the set of of hypotheticals H = {h1, h2, . . . , hk+1}, where for any i ∈ [k], hi(I) =
{B(x) | x ∈ Si} and hk+1(I) = {A(x) | x ∈ [n]}.

For any set Ŝ = {i1, . . . , is} ⊆ [k], under the scenario S = Ŝ ∪ {k + 1}, QNOTSUB(I|S) is true
iff there exists x ∈ [n] s.t. B(x) /∈ I|S which is equivalent to [n] 6⊆ Si1 ∪ . . . ∪ Sis

. Therefore any
provisioning scheme of QNOTSUB solves the Coverage problem, and it follows from Theorem 3.1
that the sketch of such scheme must have size min(2Ω(k), Ω(n)) bits.

While adding negation extends UCQs in one direction, adding recursion to UCQ also
results in another direction. This leads to recursive Datalog (without negation). Consider the
st-connectivity query, which captures whether there is a path from the vertex s to the vertex t:

ans() :− T(t)

T(y) :− E(x, y), T(x)

T(s)

To prove a lower bound for the st-connectivity query, we again use a reduction from the
Coverage problem, where in our construction, the only path from s to t has n edges, and
hence only when all the n edges are presented in a scenario s will be connected to t.

Proof of Theorem 5.6, Part (II). Suppose we are given a collection {S1, . . . , Sk} of sub-
sets of [n] and we want to solve the Coverage problem using a provisioning scheme for st-

connectivity. Consider a graph G(V, E) with vertex set V = {(s =)v0, v1, v2, . . . , vn(= t)}, and
edges E(vj−1, vj), for all j ∈ [n]. The edge set E of the graph G is the input I to the provision-
ing scheme. Define the hypotheticals H = {h1, h2, . . . , hk} where hi(I) =

{
E(vj−1, vj)

}
j∈Si

, for

all i ∈ [k].
For any scenario S = {i1, . . . , is} ⊆ [k], T(t) is true (i.e., s is connected to t) in I|S iff all

n edges are in I|S, which is equivalent to Si1 ∪ . . . ∪ Sis
= [n]. Therefore, any provisioning

24

scheme for the st-connectivity query solves the Coverage problem, and it follows from Theo-
rem 3.1 that the sketch of such scheme must have size min(2Ω(k), Ω(n)) bits.

Showing a negative answer to the question (b) in the beginning of this section is very
easy. As we already showed in Section 4 (see, e.g., Theorem 4.1), there are numerical queries
that do not admit compact provisioning for exact answer. One can simply verify that each of
those queries can act as a counter example for question (b) by considering HAVING clauses
that test the equality of the answer to the numerical part against an exact answer (e.g. testing
whether the answer to count is n or not).

6 Comparison With a Distributed Computation Model

Query provisioning bears some resemblance to the following distributed computation model:
k sites want to jointly compute a function, where each site holds only a portion of the in-
put. The function is computed by a coordinator, who receives/sends data from/to each site.
The goal is to design protocols with small amount of communication between the sites and
the coordinator (see [15, 39], and references therein). In what follows, we highlight some
key similarities and differences between this distributed computation model and our query
provisioning framework.

In principle, any protocol where data are only sent from the sites to the coordinator (i.e.,
one-way communication), can be adapted into a provisioning scheme with a sketch of size
proportional to the size of the transcript of the protocol. To see this, view each hypothetical
as a site and record the transcripts as the sketch. Given a scenario S, the extraction algorithm
acts as the coordinator and computes the function from the transcripts of the hypotheticals
in S. The protocol for counting the number of distinct elements in the distributed model
introduced in [14] is an example (which in fact also uses the streaming algorithm from [7] as
we do in Lemma 4.6).

However, protocols in the distributed model usually involve back and forth (two-way) com-
munication between the sites and the coordinator (e.g., the algorithms of [10, 41] for estimat-
ing quantiles in the distributed model). In general, the power of the distributed computation
model with two-way communication is incomparable to the query provisioning framework.
Specifically, for k sites/hypotheticals (even when the input is partitioned, i.e., no overlaps),
there are problems where a protocol with poly(k)-bit transcripts exists but provisioning re-
quires 2Ω(k)-bit sketches. Conversely, there are problems where provisioning can be done us-
ing poly(k)-bit sketches but any distributed protocol requires 2Ω(k)-bit transcripts. We make
these observations precise below.

Another source of difference between our techniques and the ones used in the distributed
computation model is the typical assumption in the latter that the input is partitioned among
the sites in the distributed computation model (i.e. no overlaps; see, for instance, [15, 39, 41]).
This assumption is in contrast to the hypotheticals with unrestricted overlap that we handle
in our query provisioning framework. A notable exception to the no-overlaps assumption is
the study of quantiles (along with various other aggregates) by [10]. However, as stated by the
authors, they benefit from the coordinator sharing a summary of the whole data distribution
to individual sites, which requires a back and forth communication between the sites and
coordinator. As such the results of [10] can not be directly translated into a provisioning
scheme. We also point out that the approximation guarantee we obtain for the quantiles query
is stronger than the result of [10] (i.e. a relative vs additive approximation).

Finally, we use two examples to establish an exponential separation between the minimum
sketch size in the provisioning model and the minimum transcript length in the distributed
computation model, proving a formal separation between the two models.

Before describing the examples, we should note that, in the following, we assume that
input tuples are made distinct by adding another column which contains unique identifiers,

25

but the problems and the operations will only be defined over the part of the tuples without
the identifiers. For instance, ‘two sets of tuples are disjoint’ means ‘after removing the identifiers
of the tuples, the two sets are disjoint’.

A problem with poly-size sketches and exponential-size transcripts. The following SetDis-

jointness problem is well-known to require transcripts of Ω(N) bits for any protocol [6, 35]:
Alice is given a set S and Bob is given a set T both from the universe [N], and they want to
determine, with success probability at least 2/3, whether S and T are disjoint. Similarly, if
each of the k sites is given a set and they want to determine whether all their sets are disjoint,
the size of the transcript is also lower bounded by Ω(N) bits. If we let N = 2k, the distributed
model requires Ω(2k) bits of communication for solving this problem.

However, to provision the SetDisjointness query (problem), we only need to record the pairs
of hypotheticals whose sets are not disjoint (hence O(k2) bits). The observation is that if a
collection of sets are not disjoint, there must exist two sets that are also not disjoint, which
can be detected by recording the non-disjoint hypothetical pairs.

A problem with exponential-size sketches and poly-size transcripts. Consider a relational
schema with two unary relations A and B. Given an instance I, we let a = ∑A(x)∈I 2x; then,
the problem is to determine whether B(a) ∈ I or not. Intuitively, A ‘encodes’ the binary
representation of a value a, and the problem is to determine whether a belongs to ‘the set of
values in B’.

Let n = 2k, and I =
{

A(x)x∈[k]
}
∪ {B(y)}y∈[n]. Using a similar construction as Lemma 3.5,

one can show that provisioning this problem requires a sketch of size 2Ω(k), even when the
input instance is guaranteed to be a subset of I (i.e., the largest value of A is k).

However, in the distributed model, there is a protocol using a transcript of size poly(k)
bits: every site sends its tuple in A to the coordinator; the coordinator computes a = ∑A(x) 2x

and sends a to every site; a site response 1 iff it contains the tuple B(a), and 0 otherwise.

7 Conclusions and Future Work

In this paper, we initiated a formal framework to study compact provisioning schemes for
relational algebra queries, statistics/analytics including quantiles and linear regression, and
complex queries. We considered provisioning for exact as well as approximate answers, and
established upper and lower bounds on the sizes of the provisioning sketches.

The queries in our study include quantiles and linear regression queries from the list of
in-database analytics highlighted in [28]. This is only a first step and the study of provisioning
for other core analytics problems, such as variance computation, k-means clustering, logistic
regression, and support vector machines is of interest.

Another direction for future research is the study of queries in which numerical compu-
tations follow each other (e.g., when the linear regression training data is itself the result of
aggregations). Yet another direction for future research is an extension of our model to allow
other kinds of hypotheticals/scenarios as discussed in [17] that are also of practical inter-
est. For example, an alternative natural interpretation of hypotheticals is that they represent
tuples to be deleted rather than retained. Hence the application of a scenario S ⊆ [k] to I
becomes I|S = I \ (⋃i∈S hi(I)). Using our lower bound techniques, one can easily show that
even simple queries like count or sum cannot be approximated to within any multiplicative
factor under this definition. Nevertheless, it will be interesting to identify query classes that
admit compact provisioning in the delete model or alternative natural models.

26

References

[1] Greenplum DB (Pivotal). http://pivotal.io/big-data/pivotal-greenplum-database.

[2] The MADlib Project. http://madlib.net.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In STOC, pages 20–29. ACM, 1996.

[5] Andrey Balmin, Thanos Papadimitriou, and Yannis Papakonstantinou. Hypothetical
queries in an OLAP environment. In VLDB, pages 220–231, 2000.

[6] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, and D Sivakumar. An information statistics
approach to data stream and communication complexity. In FOCS, pages 209–218. IEEE,
2002.

[7] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In RANDOM. Springer, 2002.

[8] Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the streaming
model. In STOC, pages 205–214. ACM, 2009.

[9] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and
Aaron Sidford. Uniform sampling for matrix approximation. arXiv:1408.5099, 2014.

[10] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s different: Distributed, continu-
ous monitoring of duplicate-resilient aggregates on data streams. In ICDE, pages 20–31,
2006.

[11] Graham Cormode, Flip Korn, S Muthukrishnan, and Divesh Srivastava. Space-and time-
efficient deterministic algorithms for biased quantiles over data streams. In PODS, pages
263–272. ACM, 2006.

[12] Graham Cormode and S Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms, 55(1), 2005.

[13] Graham Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams.
In PODS, pages 271–282, 2005.

[14] Graham Cormode, S Muthukrishnan, and Ke Yi. Algorithms for distributed functional
monitoring. ACM Transactions on Algorithms (TALG), 7(2):21, 2011.

[15] Graham Cormode, S Muthukrishnan, Ke Yi, and Qin Zhang. Optimal sampling from
distributed streams. In PODS, pages 77–86. ACM, 2010.

[16] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons,
2012.

[17] Daniel Deutch, Zachary G Ives, Tova Milo, and Val Tannen. Caravan: Provisioning for
what-if analysis. In CIDR, 2013.

[18] Petros Drineas, Michael W Mahoney, and S Muthukrishnan. Sampling algorithms for ℓ2

regression and applications. In SODA, pages 1127–1136. ACM, 2006.

[19] Petros Drineas, Michael W Mahoney, S Muthukrishnan, and Tamás Sarlós. Faster least
squares approximation. Numerische Mathematik, 117(2):219–249, 2011.

27

http://pivotal.io/big-data/pivotal-greenplum-database
http://madlib.net

[20] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of computer and system sciences, 31(2):182–209, 1985.

[21] Shahram Ghandeharizadeh, Richard Hull, and Dean Jacobs. Heraclitus: Elevating deltas
to be first-class citizens in a database programming language. ACM Trans. Database Syst.,
21(3):370–426, 1996.

[22] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J Strauss. How to summa-
rize the universe: Dynamic maintenance of quantiles. In PVLDB, pages 454–465. VLDB
Endowment, 2002.

[23] T.J. Green. Containment of conjunctive queries on annotated relations. Theory Comput.
Syst., 49(2), 2011.

[24] T.J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS, pages
31–40, 2007.

[25] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile
summaries. In ACM SIGMOD Record, volume 30, pages 58–66. ACM, 2001.

[26] Michael B Greenwald and Sanjeev Khanna. Power-conserving computation of order-
statistics over sensor networks. In PODS, pages 275–285. ACM, 2004.

[27] Anupam Gupta and Francis X Zane. Counting inversions in lists. In SODA, pages 253–
254. Society for Industrial and Applied Mathematics, 2003.

[28] Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene
Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and
Arun Kumar. The madlib analytics library or MAD skills, the SQL. PVLDB, 5(12):1700–
1711, 2012.

[29] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[30] T. Imielinski and W. Lipski. Incomplete information in relational databases. J. ACM,
31(4), 1984.

[31] Daniel M Kane, Jelani Nelson, and David P Woodruff. An optimal algorithm for the
distinct elements problem. In PODS, pages 41–52. ACM, 2010.

[32] Michael W Mahoney. Randomized algorithms for matrices and data. Foundations and
Trends R© in Machine Learning, 3(2):123–224, 2011.

[33] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Approximate medi-
ans and other quantiles in one pass and with limited memory. In ACM SIGMOD Record,
volume 27, pages 426–435. ACM, 1998.

[34] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. In The Computer
Science and Engineering Handbook, pages 141–161. 1997.

[35] Alexander A. Razborov. On the distributional complexity of disjointness. Theor. Comput.
Sci., 106(2):385–390, 1992.

[36] Tamas Sarlos. Improved approximation algorithms for large matrices via random pro-
jections. In FOCS, pages 143–152. IEEE, 2006.

[37] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthesis Lectures on
Data Management. Morgan & Claypool Publishers, 2011.

28

[38] David P Woodruff. Sketching as a tool for numerical linear algebra. arXiv:1411.4357,
2014.

[39] David P Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring.
In STOC, pages 941–960. ACM, 2012.

[40] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of com-
plexity (extended abstract). In 18th Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 222–227, 1977.

[41] Ke Yi and Qin Zhang. Optimal tracking of distributed heavy hitters and quantiles.
Algorithmica, 65(1):206–223, 2013.

29

A Tools from Information Theory

We use basic concepts from information theory in our lower bound proof in Section 3. For a
broader introduction to the field and proofs of the claims in this section, we refer the reader
to the excellent text by Cover and Thomas [16].

In the following, we denote random variables using capital bold-face letters. We denote
the Shannon Entropy of a random variable A by H(A) and the mutual information of two
random variables A and B by I(A; B) = H(A) − H(A | B) = H(B)− H(B | A). For a real
number 0 ≤ x ≤ 1, we further use: H2(x) = x log 1

x + (1 − x) log 1
1−x to denote the binary

entropy function. Finally, we use SA to denote the support of the random variable A and
|A| := log |SA|.

We use the following basic properties of entropy and mutual information.

Claim A.1. Suppose A, B, and C are random variables and f : SA 7→ SB is a function;

1. 0 ≤ H(A) ≤ |A|; H(A) = |A| iff A is uniformly distributed over its support.

2. Conditioning reduces entropy, i.e, H(A | B) ≤ H(A).

3. I(A; B) ≥ 0; equality holds iff A and B are independent.

4. Subadditivity of entropy: H(A, B) ≤ H(A) + H(B).

5. (Fano’s inequality) For a binary random variable B, and a function f that predicts B based on
A, if Pr(f (A) 6= B) = δ, then H(B | A) ≤ H2(δ).

6. If A and B are mutually independent conditioned on C, then I(A; B | C) = 0.

7. (Data processing inequality) I(f (A); B) ≤ I(A; B).

For two distributions µ and ν over the same probability space, the Kullback-Leibler diver-

gence between µ and ν is defined as D(µ ‖ ν) = Ea∼µ

[
log

Prµ(a)
Prν(a)

]
. For our proofs, we need

the following basic relation between KL-divergence and mutual information.

Claim A.2. For any two random variables A and B, suppose µ denotes the distribution of A and νB

denotes the distribution of A | B = B for any B in the support of B; then, EB [D(νB ‖ µ)] = I(A; B).

We denote the total variation distance between two distributions µ and ν over the same
probability space Ω by |µ − ν| = 1

2 · ∑x∈Ω

∣∣Prµ(x)− Prν(x)
∣∣. The Pinsker’s inequality upper

bounds the total variation distance between two distributions based on their KL-divergence
as follows.

Claim A.3 (Pinsker’s inequality). For any two distributions µ and ν,

|µ − ν| ≤
√

1

2
· D(µ ‖ ν)

Finally,

Claim A.4. Suppose µ and ν are two probability distributions for a random variable A and J is any
fixed set in the domain of A; then Prµ(A ∈ J) ≤ Prν(A ∈ J) + |µ − ν|.

30

	1 Introduction
	2 Problem Statement
	3 A ``Hard'' Problem for Provisioning
	3.1 The Coverage Problem
	3.2 The Lower Bound

	4 Numerical Queries
	4.1 The Count, Sum, and Average Queries
	4.2 The Quantiles Query
	4.3 The Linear Regression Query

	5 Complex Queries
	5.1 Positive, Non-Recursive Complex Queries
	5.2 Adding Negation, Recursion, or HAVING

	6 Comparison With a Distributed Computation Model
	7 Conclusions and Future Work
	A Tools from Information Theory

