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Abstract
We study the problem of finding an approximate maxi-
mum matching in two closely related computational mod-
els, namely, the dynamic graph streaming model and the
simultaneous multi-party communication model. In the dy-
namic graph streaming model, the input graph is revealed
as a stream of edge insertions and deletions, and the goal is
to design a small space algorithm to approximate the maxi-
mum matching. In the simultaneous model, the input graph
is partitioned across k players, and the goal is to design a
protocol where the k players simultaneously send a small-size
message to a coordinator, and the coordinator computes an
approximate matching.

Dynamic graph streams. We resolve the space
complexity of single-pass turnstile streaming algorithms for
approximating matchings by showing that for any ε >
0, Θ(n2−3ε) space is both sufficient and necessary (up
to polylogarithmic factors) to compute an nε-approximate
matching; here n denotes the number of vertices in the input
graph.

The simultaneous communication model. Our re-
sults for dynamic graph streams also resolve the (per-player)
simultaneous communication complexity for approximating
matchings in the edge partition model. For the vertex par-
tition model, we design new randomized and determinis-
tic protocols for k players to achieve an α-approximation.
Specifically, for α ≥

√
k, we provide a randomized protocol

with total communication of O(nk/α2) and a deterministic
protocol with total communication of O(nk/α). Both these
bounds are tight. Our work generalizes the results estab-
lished by Dobzinski et al. (STOC 2014) for the special case

of k = n. Finally, for the case of α = o(
√
k), we estab-

lish a new lower bound on the simultaneous communication
complexity which is super-linear in n.

1 Introduction

As massive datasets become more prevalent, there is
a rapidly growing interest in design of sub-linear al-
gorithms (algorithms whose resource requirements are
substantially smaller than the input size) for classical
problems. Over the years, different computational mod-
els for sub-linear algorithms have been studied, focusing
on different types of resources. The streaming model of
computation, formally introduced in the seminal work
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of [7], is one of the most classical example. In this
model, an algorithm is only allowed to make a single
or a few passes over the input and the target resource is
the amount of space being used. The (multi-party) com-
munication model is another classical example, in which
the goal is to design algorithms (or protocols) for k play-
ers to compute a function on their combined input; here
the target resource is the amount of communication be-
tween players.

The two models above, along with their seemingly
different target resources, turn out to be closely related.
For example, any streaming algorithm directly works as
a one-way communication protocol: each player receives
the memory state of the previous player, continues
running the streaming algorithm on his own input, and
sends his memory state to the next player. Based
on this fact, many lower bounds on space requirement
of streaming algorithms are established through lower
bounds on communication complexity (see e.g. [7]).
The recent result of [29] is another example, which
shows that any algorithm for turnstile streams (i.e.,
streams that contain both insertions and deletions) can
be turned into a simultaneous protocol (i.e, protocols
in which players simultaneously send a message to
a central party). In this reduction, the amount of
communication sent by each player is essentially the
same as the space requirement of the original turnstile
algorithm.

Many important graph problems have been stud-
ied in both these models, including connectivity, bipar-
titeness, minimum spanning trees, spanners, sparsifiers,
matchings, etc. [4, 5, 26, 33, 21, 22, 14] (see the survey
by McGregor [32] for a summary of the results in the
streaming model). However, the space/communication
complexity of the fundamental problem of maximum
matching [30] remains unresolved, and the goal of this
paper is to further advance our understanding of the
matching problem in these two models. Specifically, we
will study the space complexity of matchings in the dy-
namic graph streaming model and the communication
complexity of simultaneous protocols for matchings in
the multi-party communication model. In the rest of
this section, we formally define these two models, re-



view related work, and summarize our results.

1.1 Models and previous work
Dynamic graph streams. Two models of graph

streams are mainly studied in the literature: in the
insertion-only model, the stream contains only edge in-
sertions, and in the dynamic model, the stream contains
both edge insertions and deletions. The focus of this
paper is on the dynamic model formally defined below.

A dynamic graph stream can be defined as a special
case of turnstile streams. A turnstile stream S =
〈a1, a2, . . . , at〉 is a sequence of updates that defines a d-
dimensional vector x. Each update ak is a tuple (ik,∆k)
where ik ∈ [d] and ∆k ∈ {−1,+1}, which changes
the ik-th coordinate of x by an additive value of ∆k.
Given any function f over the vector x, algorithms that
compute f(x) in turnstile streams are called turnstile
algorithms.

A dynamic graph stream is a turnstile stream that
defines edges of a multi-graph G(V,E) on n vertices
(V = [n]). More specifically, the vector x has

(
n
2

)
dimensions, where each coordinate of x, denoted by
xi,j , represents the multiplicity of the edge between the
vertices i and j. Additionally, it is standard to require
that the multiplicity of every edge remains non-negative
throughout the stream, since most graph problems are
undefined when edges have negative multiplicity. We
should note that a turnstile algorithm always works in
dynamic graph streams, but the reverse is not true. The
difference is that an algorithm that works in dynamic
graph streams is allowed to abort if negative edge
multiplicities are encountered, even if in the final graph,
the multiplicity of every edge is non-negative. The
notion of strict turnstile algorithms precisely captures
algorithms in dynamic graph streams. Though, to
the best of our knowledge, all algorithms proposed for
dynamic graph streams are in fact turnstile algorithms1.

Matchings have received a lot of attention in the
graph stream literature [31, 18, 15, 16, 20, 28, 36, 5,
3, 24, 21, 25, 13, 17, 32, 2]. For single-pass adversari-
ally ordered insertion-only streams2, the best known al-
gorithm that uses Õ(n) space (i.e., the semi-streaming
model [18]) achieves a 2-approximation, which is ob-
tained by simply maintaining a maximal matching dur-
ing the stream. On the negative side, it is shown
in [20, 24] that any streaming algorithm that achieves

1To the best of our knowledge the only exception is [12]

(when they consider a promised problem). However, a subsequent

work [11] achieved the optimal space bound for the same problem
via a turnstile algorithm.

2A weaker notion of randomly ordered streams (which is less

relevant to our work) is also often considered. See [28, 25] and
references therein.

an approximation factor of better than e/(e−1) requires
the storage of n1+Ω(1/ log logn) bits.

Despite the huge body of work on the matching
problem in insertion-only streams, for dynamic graph
streams, no non-trivial single-pass streaming algorithm
using space o(n2) was known prior to this work. Resolv-
ing the space complexity of matchings in single-pass dy-
namic graph streams has been posed as an open problem
at the Bertinoro workshop on sub-linear and streaming
algorithms in 2014 [1]. To the best of our knowledge,
the only previous result concerning matchings in the
single-pass dynamic graph streams is the recent paper
by Chitnis et al. [12], which provides an algorithm for
computing a maximal matching of size k using Õ(nk)
space.

Multi-party communication. In the multi-party
communication model, the input (in our case, an input
graph) is adversarially partitioned across k players and
the goal is to design a protocol such that the players
can jointly compute a function of the original input (in
our case, an approximate matching). We further dis-
tinguish between two possible ways of partitioning the
input graph: in the edge partition model, each player
holds a subset of edges of an input (multi-) graph while
in the vertex partition model the input graph must be
bipartite and each player holds a distinct subset of ver-
tices on the left together with all their adjacent edges.
Two measures of complexity are considered, namely
the total communication, which is simply the total size
of all messages sent to the coordinator, and the per-
player communication which is the maximum size of the
messages sent by every player. We study both deter-
ministic and randomized protocols (with public coins),
and solely focus on simultaneous protocols, where every
player simultaneously sends a message to a coordinator
who outputs the final answer. Note that simultaneous
protocols, in addition to their aforementioned connec-
tion to turnstiles algorithms, are indeed more preferable
in distributed settings since they are naturally round-
efficient [35].

Matching in the multi-party communication model
was previously studied under different variations [14,
9, 22, 21]. Huang et al. [22] focused on the k-party
message-passing model (with two-way player-to-player
communication) and gave a tight bound of Θ

(
nk
α2

)
on

the total communication required to compute an α-
approximate matching for both vertex partition and
edge partition models. This result immediately implies
a lower bound of Θ

(
nk
α2

)
for simultaneous protocols.

However, the protocol in their upper bound is not
simultaneous, and thus far it was not known if this
lower bound is achievable by simultaneous protocols.
The work of [14, 9] considers the bipartite matching



problem in the n-party vertex partition model (i.e.,
every player holds a single vertex on the left). In
particular, [14] showed that a protocol in which every
player simultaneously sends a random incident edge
achieves an O(

√
n)-approximation, which matches the

lower bound of [22]. The authors further studied
deterministic protocols and showed an essentially tight
bound on per-player communication of Θ(n1−ε) bits for
achieving an nε-approximation. However, these results
do not directly generalize to an arbitrary number of
players.

1.2 Our results and techniques
Dynamic graph streams. We resolve the space

complexity of turnstile algorithms for approximating
maximum matchings by proving tight upper and lower
bounds on the space requirement.

Theorem 1.1. There is a single-pass streaming algo-
rithm that takes any 0 < ε < 1 as input, and outputs
an nε-approximate matching with high probability in dy-
namic graph streams, while using (i) Õ(n2−3ε) space for
ε ≤ 1/2 and (ii) Õ(n1−ε) space for ε > 1/2. Moreover,
the algorithm only maintains a linear sketch and has
Õ(1) update time for each edge insertion/deletion.

In Section 3.1, we present a sampling based algo-
rithm that takes advantage of the well-known linear
sketching implementation of `0-sampler (see Section 2).
The algorithm maintains a set of (edge) samplers that
are coordinated in such a way that the sampled edges
are “well-spread” across different parts of the graph,
and hence contain a large matching. We point out that
for weighted graphs with poly(n)-bounded weights, the
standard “grouping by weight” technique can be used
to obtain a similar result for approximating weighted
matchings, while increasing the approximation ratio by
a factor of O(log n).

Note that Ω(n1−ε) is always a lower bound for the
space requirement since an nε-approximate matching
needs to output Ω(n1−ε) edges whenever the optimal
matching is of size Ω(n). Therefore, our algorithm
immediately achieves optimal space requirement when
ε ≥ 1/2. More interestingly, we also show a space lower
bound of n2−3ε−o(1) when ε < 1/2. Since n2−3ε > n1−ε

for any ε < 1/2, our algorithm in Theorem 1.1 achieves
the optimal space bound for any 0 < ε < 1.

Theorem 1.2. For any ε < 1/2, any randomized
single-pass turnstile algorithm that outputs an nε-
approximate matching in dynamic graph streams with
a constant probability must have worst case space com-
plexity of n2−3ε−o(1) bits.

Theorem 1.2 resolves an open problem posed at

the Bertinoro workshop on sub-linear and streaming
algorithms in 2014 [1], regarding the possibility of
having a constant factor approximation algorithm for
the maximum matching in o(n2) space in turnstile
streams. To establish Theorem 1.2, as shown by [29], it
suffices to prove the same lower bound on the per-player
communication complexity of simultaneous protocols in
the edge partition model for multi-graphs.

We establish the lower bound of n2−3ε−o(1) bits
for simultaneous protocols following the line of work
by [20, 24] on using constructions based on Ruzsa-
Szemerédi graphs (RS graphs) [34], which are graphs
that can be decomposed into large-size induced match-
ings (see Section 2 for a formal definition). However,
our focus is on simultaneous protocols (instead of one-
way protocols studied previously) and polynomial ap-
proximation regime (instead of constant). We provide a
new approach for this setting that benefits from a very
dense construction of RS graphs [8] and hence bypass
the n1+Ω(1/ log logn) barrier in the aforementioned work
on the value of the space lower bound.

Remark 1.1. Very recently, [6] generalized the charac-
terization of turnstile algorithms in [29] to strict turn-
stile algorithms. Theorems 1.1 and 1.2, combined with
their result, resolve the space complexity for matchings
in dynamic graph streams by extending Theorem 2 lower
bound for turnstile algorithms to strict turnstile algo-
rithms.

Multi-party communication. The fact that our
algorithm for Theorem 1.1 only maintains a linear
sketch, together with composability of these sketches
(sketches of subgraphs can simply be added to produce a
sketch of the full graph) make our results directly appli-
cable for different distributed settings. In particular, for
the edge partition model, our result immediately gives a
simultaneous protocol for achieving an nε-approximate
matching using Õ(n2−3ε) communication per player. As
mentioned above, a matching lower bound of n2−3ε−o(1)

bits on per-player communication (for multi-graphs) is
obtained as a by-product of the proof of Theorem 1.2
(see Theorem 3.1).

For the vertex partition model, we show that the
lower bound of Ω(nk/α2) proved for the message-
passing model in [22] is achievable via (the weaker class
of) simultaneous protocols, as long as α ≥

√
k.

Theorem 1.3. There exists a randomized simultane-
ous protocol that for any k > 1, computes an O(α)-
approximate matching in expectation in the k-party ver-
tex partition model, while using total communication of
(i) O(nk/α2) when

√
k ≤ α ≤ k, and (ii) Õ(n/α) when

α > k.



Similar to the case of Theorem 1.1, since Ω(n/α) is
always a lower bound on the total communication, our
protocol immediately achieves the optimal communica-
tion bound for any α > k. Moreover, when

√
k ≤ α ≤ k

and in the meaningful regime where α ≤
√
n, we have

nk/α2 ≥ k, and hence the total communication is in-
deed O(nk/α2), which matches the lower bound of [22].

The core idea in our simultaneous protocol is to
send a “random matching” from each player to the
coordinator. Note that for the case where k = n,
since each player only has one vertex on the left, a
random matching degrades to a random neighbor (as is
used by [14]). However, for arbitrary k, simply sending
random neighbors does not result in a protocol with
good approximation guarantees. Indeed, we concentrate
the bulk of our efforts on both finding a proper definition
of random matchings for our purpose, and exploring
their underlining structures. We show that picking a
random order of the vertices on the right and computing
a maximal matching following this order gives a suitable
definition of a random matching. Our proof is based on
a proper decomposition of the random orders, which
allows us to define multiple independent events that
were originally based on the same random order.

Furthermore, we establish that achieving an o(
√
k)

approximation actually requires the (even per-player)
communication to be super-linear in n, even when the
number of players (k) is a constant. Combined with
Theorem 1.3, this shows that for matchings, forcing pro-
tocols to be simultaneous is only a limitation for achiev-
ing o(

√
k)-approximation guarantees, and in this case

simultaneous protocols require much more communica-
tion than interactive ones.

Theorem 1.4. For any k > 1, there exists a suf-
ficiently large n such that for any simultaneous pro-
tocol (possibly randomized) that outputs an o(

√
k)-

approximate matching in the k-party vertex partition
model, in the worst case, at least one player must send

n1+Ωk( 1
log logn ) bits of communication.

We obtain this result in a similar way as Theo-
rem 1.2 by using a construction based on RS graphs;
however, since here the vertices on the left are parti-
tioned across the players, we can only use a restricted
class of RS graphs (with no known dense construction).
In the proof, we cast the lower bound of the per-player
communication in terms of upper bounds on the edge
density for this family of RS graphs (see Lemma 4.7).

Similar to [14], we also study the power of determin-
istic protocols and establish a tight bound of Θ(nk/α)
for the total communication for the case of α ≥

√
k

(Theorem 1.4 establishes the same barrier of
√
k for

deterministic protocols). This generalizes the bounds

in [14] to arbitrary values of k.

Theorem 1.5. For deterministic simultaneous proto-
cols that compute an O(α)-approximate matching in the
k-party vertex partition model for any k > 1, the to-
tal communication of (i) O(nk/α) is sufficient as long
as α ≥

√
k, and (ii) Ω(nk/α) is necessary as long as

α = o(k/ log k).

Part (i) of Theorem 1.5 (the upper bound) is
achieved by a novel protocol whereby each player re-
peatedly finds maximum matchings that matches dis-
tinct sets of vertices on the right, and sends all match-
ings to the coordinator. Part (ii) of this theorem (the
lower bound) is proved using a simple combinatorial
construction and a fooling set argument.

1.3 Recent related work Independently and con-
currently to our work on approximating matchings in
dynamic graph streams [10], Chitnis et al. [11] and
Konrad [27] also obtained new results on this prob-
lem. Chitnis et al. [11] also shows an nε-approximation
algorithm in dynamic graph streams using Õ(n2−3ε)
space for ε ≤ 1/2 (similar to our Theorem 1.1). Al-
though both the algorithm of [11] and our algorithm
are based on sampling, our result is somewhat stronger
in that (i) we also obtain an optimal space bound for
the regime ε > 1/2, and (ii) we achieve an update
time of Õ(1) in contrast to an update time of O(opt)
achieved by [11] (opt is the maximum matching size).
Konrad [27] gives an upper bound of Õ(n2−2ε) on space
for nε-approximation algorithm and a lower bound of
Ω(n3/2−4ε). Both our upper and lower bound results
(Theorem 1.1 and Theorem 1.2) are stronger than the
results established in [27]. We point out that while at a
high level, the lower bound approach used in our paper
and the one used in [27] are similar, the constructions
and techniques are different.

Organization. The rest of the paper is organized
as follows. After introducing some preliminaries in Sec-
tion 2, we state our upper bound result (Theorem 1.1) in
Section 3.1 and lower bound result (Theorem 1.2) in Sec-
tion 3.2 for dynamic graph streams. Then, we present a
randomized simultaneous protocol to prove Theorem 1.3
in Section 4.1, along with the lower bound in Theo-
rem 1.4 in Section 4.2. We further present our deter-
ministic protocol in Section 4.3, and the lower bound in
Section 4.4 to prove Theorem 1.5. Finally, we conclude
the paper in Section 5 with some further directions.

2 Preliminaries

`0-Samplers. We use the following powerful tool
developed in the streaming literature for performing
sampling in a turnstile stream.



Definition 2.1. (`0-sampler [19]) An `0-sampler is
an algorithm which given access to a turnstile stream
on a d-dimensional vector x, outputs an index i ∈ [d],
where i is chosen uniformly at random from the non-
zero entries of the vector x.

We will use each `0-sampler to recover an edge
between a pre-defined set of vertices, if one exists. Since
edges are presented in dynamic graph streams, we need
to use a linear sketching implementation.

Lemma 2.1. ([23]) For any 0 < δ < 1, there is a linear
sketching implementation of `0-sampler for vectors in
Rn, which fails with probability δ, using O(log2 n ·
log (δ−1)) bits of space.

Ruzsa-Szemerédi graphs. For any graph G, a
matching M of G is an induced matching iff for any two
vertices u v that are matched in M , if u and v are not
matched to each other, then there is no edge between u
and v in G.

Definition 2.2. (Ruzsa-Szemerédi graph) A
graph G is an (r, t)-RS graph, iff the set of edges in
G consists of t pairwise disjoint induced matchings
M1, . . . ,Mt, each of size r.

We refer the interested reader to [8, 20] for more
information about RS graphs and their application to
different areas of computer science, including proving
lower bounds for streaming algorithms. In this paper,
we use the construction of (r, t)-RS graphs given by [8],
summarized in the following lemma.

Lemma 2.2. ([8]) For any sufficiently large N , there
exists an (r, t)-RS graph on N vertices with r = N1−o(1)

and r · t =
(
N
2

)
− o(N2).

We also consider lopsided RS graphs, which play an
important role for proving communication lower bounds
in the vertex partition model.

Definition 2.3. (Lopsided RS graphs) We say a
bipartite graph G(L,R,E) is a (δ, γ, t)-lopsided RS
graph, if |L| ≤ |R| ≤ γ · |L|, and the edge set E can
be partitioned into t induced matchings M1, . . . ,Mt of
size (1− δ)|L|.

We use U(δ, γ, n) to denote the maximum number of
edges a (δ, γ, t)-lopsided RS graphG(L,R,E) with |L| =
Θ(n) can have. The following lemma is established
by [20] (full version), which shows U(δ,Θ(1/δ), n) =
n1+Ωδ(1/ log logn).

Lemma 2.3. ([20]) For any sufficiently small constant
δ > 0, there exists a family of (δ, γ, t)-lopsided RS graphs
with parameters γ = Θ(1/δ) and t = nΩδ(1/ log logn).

3 Matchings in Dynamic Graph Streams

3.1 Space upper bound for nε-approximation In
this section, we establish Theorem 1.1 by presenting our
algorithm for computing an nε-approximate matching
in dynamic graph streams using Õ(max

{
n2−3ε, n1−ε})

space.
Without loss of generality, we make the following

assumptions. First, we assume that the input graph
is bipartite; otherwise by applying the standard tech-
nique of choosing a random bipartition of the vertices
upfront (using a pairwise independent hash function)
and only considering edges that cross the bipartition,
we can make the graph bipartite, while increasing the
approximation ratio by a factor of 2. Moreover, we as-
sume that the algorithm is provided with a value ˜opt
that is a 2-approximation of opt (i.e., the size of a max-
imum matching in G); we can run our algorithm for
O(log n) different estimates of opt in parallel and out-
put the largest matching among the matchings found
for all estimates. Finally, to simplify the analysis, we
can assume opt ≥ 103 ·nε, since otherwise a single edge
is an O(nε)-approximation of the maximum matching.

At a high level, our algorithm randomly partitions
the vertices on each side into Θ(opt/nε) groups and
for each group on the left, it chooses a subset of
Õ(opt/n2ε) groups on the right uniformly at random
and maintain one `0-sampler between the left group
and each chosen group on the right. At the end of the
stream the algorithm samples one edge from each `0-
sampler and computes a maximum matching of these
edges. Formally,

Algorithm 1. A single-pass turnstile algorithm for
computing nε-approximate matching

Input: A bipartite graph G(L,R,E) defined by a
dynamic graph stream, a parameter 0 < ε < 1, and a
2-approximation ˜opt of the maximum matching size.
Output: A matching M with size Ω(opt/nε).
• Pre-processing:

1. Let: γ =

⌈
˜opt
nε

⌉
, β = 100

⌈
˜opt
n2ε

⌉
· log n.

2. Create two collections L and R, each containing
γ sets (called groups). Create two pairwise
independent hash functions hL : L 7→ L and
hR : R 7→ R. Each vertex u ∈ L (resp.
v ∈ R) is assigned to the group hL(u) ∈ L (resp.
hR(v) ∈ R).

3. For each Li ∈ L, assign β groups in R to Li
chosen independently and uniformly at random
with replacement. For each Rj assigned to Li,



we say Rj is an active partner of Li and (Li, Rj)
form an active pair.

• Streaming updates: For each active pair (Li, Rj),
maintain an `0-sampler over the edges between the
vertices assigned to Li and Rj .
• Post-processing: Compute a maximum matching
over the edges sampled from `0-samplers.

We first note that in the following, whenever we
use `0-samplers, we always apply Lemma 2.1 with
parameter δ = n−3. Since the number of `0-samplers
used by our algorithm is bounded by O(n2), with high
probability, none of them will fail. Hence we will not
explicitly account for the probability of `0-samplers
failure in our proofs.

Algorithm 1 stores two pairwise independent hash
functions hL and hR to assign vertices to their groups,
which requires O(log n) bits of space, the identities of all
active pairs, which requires Õ(γ ·β) bits, and O(γ ·β) `0-
samplers for the active pairs during the stream, where
each requires O(log3 n) bits (Lemma 2.1). Hence, the
total space complexity of Algorithm 1 is:

Õ(γ · β) =

{
Õ(n2−3ε) if ε ≤ 1/2

Õ(n1−ε) otherwise

where we used the obvious bound of ˜opt = O(n) and
the fact that β = O(log n) when ε > 1/2. Moreover, for
any update on any edge (u, v), we apply hL on u and hR
on v to identify the groups they belongs to, and update
the `0-sampler for the edges between the groups hL(u)
and hR(v) if they form an active pair. Therefore, the
update time of the algorithm is Õ(1).

Notation. Fix a maximum matching M∗ in G (of
size opt). We say a vertex v is in M∗ if v is matched
by M∗. For any group Li ∈ L, (resp. Rj ∈ R) each
edge in M∗ incident on Li (resp. Rj) is referred to as
a matching edge of this group. We say an (Li, Rj) pair
is matchable if Li and Rj share at least one matching
edge. The general idea is to treat each group as a
single vertex (which forms a new graph G), and to show
that the `0-samplers we stored for G contain an O(1)-
approximate matching for G which in turn leads to an
O(nε)-approximate matching in G.

More specifically, we show that there exists a subset
of the groups in L and R where in the subgraph of
G induced by this subset, each vertex has bounded
degree while the total number of edges is sufficiently
large. Then using the following well known result (which
we give a simple proof here for completeness), we can
conclude that Algorithm 1 outputs a large matching in
G, which will be an O(nε)-approximate matching in the

original input graph G.

Lemma 3.1. Suppose we are given a bipartite graph
G(L,R,E) with m edges and maximum degree d; if
for every vertex u in L, we pick one edge incident on
u uniformly at random, then with probability at least
1−exp(−m/12d), the sampled edges contain a matching
of size Ω(m/d).

Essentially, the bounded degree is a consequence of
randomly grouping the vertices. The number of edges
being large is established by arguing that the matching
edges of the groups in L and R are “well-spread” across
G, implying most pair of L and R contains at least one
edge. Then, we argue that picking active partners for
each group in L (in Algorithm 1) can be interpreted as
picking a random neighbor for each vertex on the left
of the induced graph. We first give a simple proof for
Lemma 3.1.

Proof. (Proof of Lemma 3.1) Since every vertex in L
chooses one neighbor, it suffices to show that Ω(m/d)
distinct vertices in R will be chosen. Since every vertex
in L has degree at most d, each edge in G is picked with
probability at least 1/d. For any vertex v ∈ R, let dv
be the degree of v. The probability that v is not picked
by any vertex in L is at most

(1− 1/d)dv ≤ e−dv/d ≤ 1− dv/2d

where the last inequality uses the fact that e−x ≤ 1−x/2
when x ∈ [0, 1]. Hence the expected number of vertices
in R that are picked is at least

∑
v∈R dv/2d = m/2d.

Since a vertex in R being picked is negatively correlated
with other vertices in R being picked, by Chernoff
bounds, the probability that at least m/8d vertices in
R is matched is at least 1− exp(−m/12d) �

We now provide a formal proof of Theorem 1.1. We
start by examining the number of edges of M∗ that
end up in different pairs of (Li, Rj) groups. Since we
will only consider the edges in M∗ (i.e., the matching
edges), and the grouping leads to all edges between each
(Li, Rj) pair treated as a single edge, it is crucial that
enough edges in M∗ remain in distinct pair of groups.

Claim 3.1. With probability at least 0.5, the number of
edges of M∗ that appear in different pairs of (Li, Rj)
groups is at least min

{
opt/32, γ2/2

}
.

Proof. We will consider two cases. First suppose opt >
4γ2. Let Yi,j be the random variable counting the
number of edges in M∗ that appear in (Li, Rj). The
total number of distinct (Li, Rj) pairs is γ2, and each
edge in M∗ appears in any (Li, Rj) pair with probability



1/γ2. Hence E [Yi,j ] = opt/γ2 > 4. Since the end points
of any two edges of M∗ are independently assigned
to the groups L and R (using pairwise independent
hash functions hL and hR), Var[Yi,j ] ≤ E [Yi,j ]. By
Chebyshev inequality,

Pr (Yi,j = 0) ≤ Pr (|Yi,j − E [Yi,j ] | ≥ E [Yi,j ])

≤ Var[Yi,j ]

(E [Yi,j ])2
≤ 1

E [Yi,j ]
≤ 1

4

Hence, the expected number of (Li, Rj) pairs that do
not contain any edge from M∗ is at most γ2/4, and
by Markov inequality, with probability at least 0.5, the
number of (Li, Rj) pairs that do not contain an edge
from M∗ is at most γ2/2.

Now suppose opt ≤ 4γ2. Consider the first opt/16
edges of M∗. For any two edges e1 and e2 in M∗, the
probability that e1 and e2 belong to the same (Li, Rj)
pair, for some Li and Rj , (i.e., e1 and ej collide) is 1/γ2.
Therefore, the expected number of collisions between
the first opt/16 edges is (opt/16)2/γ2 ≤ opt/64 (since
opt ≤ 4γ2). Hence, with probability at least 0.5, the
total number of collision is less than opt/32. Since all
collisions can be resolved after removing opt/32 edges,
at least (opt/16 − opt/32) = opt/32 edges of M∗ are
assigned to distinct (Li, Rj) pairs. �

In the following, we focus on the case where at
least min

{
opt/32, γ2/2

}
edges of M∗ appears in dis-

tinct (Li, Rj) pairs. By Claim 3.1, this happens with
probability at least 0.5. We consider the cases for γ2/2
edges (Lemma 3.2) and opt/32 edges (Lemma 3.3) sep-
arately, and prove that in each case, the algorithm out-
puts an O(nε)-approximate matching, hence proving
Theorem 1.1.

Lemma 3.2. If at least γ2/2 edges of M∗ appears in
distinct (Li, Rj) pairs, then Algorithm 1 outputs a
matching of size Ω(opt/nε) with probability at least 1/4.

Proof. If at least γ2/2 edges of M∗ appears in distinct
(Li, Rj) pairs, then at least 1/4 fraction of the groups in
L (denoted by L′) have at least γ/3 different matchable
groups in Rj . Otherwise, the total number of edges
incident on L is strictly less than

γ/4 · γ + 3γ/4 · (γ/3) = γ2/2

which is a contradiction. Then, the groups L′ and R
forms a graph (treating each group as a singe vertex)
with at least (γ/3) · (γ/4) edges where each vertex has
degree at most γ (there are only γ groups on each side).

It remains to show that any Li in L′ will pick
at least one matchable Rj ∈ R as an active partner
with probability 1−1/n2, and moreover, the matchable

Rj is chosen uniformly at random. We can then
apply Lemma 3.1 to complete the argument. Each
Li is matchable to 1/3 fraction of the groups in R
and since Li picks more than 6 log n active partners
(independently and uniformly at random), by Chernoff
bounds, Li will pick a matchable Rj with probability
at least 1 − 1/n2. By union bound, all Li’s in L′
will pick at least one matchable Rj ∈ R. Moreover,
for each Li in L′, a matchable Rj would be picked
uniformly at randomly from all groups matchable to
Li. Now, by Lemma 3.1, the edges returned by
these matchable (Li, Rj) pairs contain a matching of
size Ω(γ2/γ) = Ω(opt/nε) with probability at least
(1 − exp(−γ/(3 · 4 · 12)). Since γ = d ˜opt/nεe ≥ 500,
the probability of failure is at most 1/2, and the total
probability that Algorithm 1 outputs a matching of size
Ω(opt/nε) is at least 1/4. �

Lemma 3.3. If at least opt/32 edges of M∗ appear in
distinct (Li, Rj) pairs, Algorithm 1 outputs a matching
of size Ω(opt/nε) with probability at least 0.15.

Proof. We need some additional definition for this case.
We say a group Li ∈ L (resp. Rj ∈ R) is good if the
number of vertices in M∗ that belong to Li (resp. Rj)
at least 0.999nε and at most 1.001nε. The rest of the
groups are bad. We first show that most groups are
good.

Claim 3.2. With probability at least 0.9, at most 0.001
fraction of the groups in L (resp. R) are bad.

Proof. We only prove for L and the same argument
works for R, as well. For each group Li ∈ L, let Xi

be the random variable counting the number of vertices
in M∗ that are in Li, we show that

Pr
(
|Xi − nε| ≥ 0.001nε

)
≤ 0.0001

Then in expectation, at most 0.0001 fraction of the
groups in L are bad, and by Markov inequality, with
probability at most 1/10, more than 0.001 fraction of
the groups are bad, which proves the claim.

Let M∗L be the set of vertices in L that are matched
in M∗. For any vertex u ∈ M∗L, define Xi

u to be the
indicator random variable denoting whether u belongs
to Li. We have Xi =

∑
u∈M∗L

Xi
u. The expectation of

Xi is

E[Xi] =
∑
u∈M∗L

E[Xi
u] = |M∗L| · (1/γ)

= opt · (nε/opt) = nε

Since we use a pairwise independent hash function hL
in Algorithm 1 to assign vertices in L to groups in L,



Var[Xi] ≤ E
[
Xi
]
. By Chebyshev inequality,

Pr
(
|Xi − nε| ≥ 0.001nε

)
≤

Pr
(
|Xi − E[Xi]| ≥ 100nε/2

)
≤ 0.0001

for n being sufficiently large. �

Consider the joint event that (i) at least opt/32
edges of M∗ appear in distinct (Li, Rj) pairs, (ii) at
most 0.0001 fraction of L are bad, and (iii) at most
0.0001 fraction of R are bad. By Claim 3.2, this event
happens with probability at least 1 − 1/2 − 1/10 −
1/10 = 0.3. Moreover, the total number of edges in
M∗ that are incident on good groups in L is at least
0.999nε · 0.999γ ≥ 0.998opt. Therefore, removing the
bad groups in L only removes 0.002opt edges of M∗.
Similarly, removing the bad groups in R only removes
0.002opt edges of M∗. Therefore, in the worst case,
the total number of edges in M∗ that appear in distinct
(Li, Rj) pairs where both Li and Rj are good groups is
at least (1/32− 0.002× 2)opt ≥ opt/40.

Now, opt/40 edges are incident on (at most) γ
groups on each side where each group only incident on
at most 1.001nε of them. Hence, at least 1/80 fraction of
the good L groups (denoted by L′′) must be incident on
at least nε/100 edges, since otherwise, the total number
of edges incident on L is strictly less than

γ/80 · 1.001nε + 79γ/80 · nε/100 < opt/40

For each group Li in L′′, nε/100 good R groups are

matchable to Li. Since Li picks at least
100·opt logn

n2ε ac-
tive partners and each time, the picked active partner is
matchable to Li with probability at least (nε/100)/γ =
n2ε/(100opt), by Chernoff bounds, with high probabil-
ity, we will pick at least one matchable group in R
for Li and the first picked matchable group is chosen
uniformly at random from all matchable groups of Li.
By Lemma 3.1, Algorithm 1 outputs a matching of size
Ω(opt/nε) with probability at least

(1− exp(−opt/(80 · 12nε))

Since opt ≥ 103nε, the probability of failure is at most
1/2, and hence the total probability of success is at least
0.3× 0.5 = 0.15. �

3.2 Space lower bound for nε-approximation
In this section, we establish Theorem 1.2 which
shows that any turnstile algorithm for matchings re-
quires n2−3ε−o(1) space in order to achieve an nε-
approximation. As pointed out in Section 1.2, it suffices
to prove the same result for simultaneous protocols in
the edge partition model [29] as captured by the follow-
ing theorem.

Theorem 3.1. For any ε < 1/2, any public-coin ran-
domized simultaneous protocol that with a constant prob-
ability outputs an nε-approximate matching in the k-
party edge partition model, for k = nε+o(1), has to com-
municate n2−3ε−o(1) bits from at least one player.

Note that though we state Theorem 1.2 and The-
orem 3.1 for general graphs, using the same reduction
mentioned earlier in Section 3.1, the same lower bound
also holds for bipartite graphs.

By Yao’s minimax principle, it suffices to prove the
lower bound on the per-player communication complex-
ity of deterministic protocols for a fixed distribution of
the inputs (known to the players). In our hard distri-
bution, intuitively, each player will be given an (r, t)-RS
graph with half of the edges discarded uniformly at ran-
dom from each induced matchings. The final graph is
constructed in a correlated way where for each player,
only one of the induced matchings is “private” and all
other edges will be incident on the same set of vertices.
We carefully choose the parameters such that the co-
ordinator has to know the edges of the private induced
matchings for outputting a large matching. However,
since each player is unaware of the identity of his private
matchings, he has to send enough information for recov-
ering a large fraction of the edges from every induced
matching. We now define this distribution formally.

A hard input distribution. (for any ε > 0 and any
sufficiently large integer N)

Parameters:

r = N1−o(1) t =

(
N
2

)
− o(N2)

r
k =

(
N1+ε

r

)1/(1−ε)

n = k ·N α = nε

• Fix an (r, t)-RS graph GRS on N vertices.
• For each player P (i) independently,

1. Let Gi be the input graph of P (i), initialized as
a copy of GRS with vertices Vi = [N ].

2. Pick λi ∈ [t] uniformly at random and let V ∗i be
the set of vertices matched in the λi-th induced
matching of Gi.

3. For each of the t induced matchings of Gi, drop
half of the edges uniformly at random.

• Pick a random permutation π of [n]. For every
player P (i), for each vertex v in Vi \ V ∗i with label
j, relabel v with π(j). Enumerate the vertices in
V ∗i (from the one with the smallest label to the



largest), and relabel the j-th enumerated vertex with
π(N + (i− 1) · 2r+ j). In the final graph, the vertices
with the same label correspond to the same vertex.

Several remarks are in order. First, one can easily
verify the following relation between the parameters,

k = αN/r = nεNo(1) = nε+o(1)

Second, for the choice of the parameters r, t, and N ,
by Lemma 2.2, an (r, t)-RS graph with N vertices (i.e.,
GRS) indeed exists. Moreover, note that the labels of
the vertices in Vi \ V ∗i for all players are assigned in
π(1), . . . , π(N), and the vertices in V ∗i for each player
are assigned unique labels in π(N + (i − 1) · 2r +
1), . . . , π(N + i · 2r). Consequently, the final graph is
a multi-graph with n vertices and O(kN2) = O(k ·
(n/k)2) = n2−ε−o(1) total number of edges (counting
the multiplicities).

Denote by G(V,E) the final graph. We say a vertex
v ∈ V is good if it belongs to V ∗i for some i ∈ [k]. For
each player P (i), we call the induced matching between
the good vertices (of size r/2) the private matching of
P (i). We say that a matching M is trivial if M matches
no more than N good vertices.

Claim 3.3. Let M∗ be a maximum matching in G and
M be any trivial matching, then

|M |
|M∗|

≤ 4

α

Proof. Since M∗ is a maximum matching, it contains at
least k ·(r/2) edges (just by using all private matchings).
On the other hand, since M is a trivial matching, its size
is at most the number of vertices shared by all players
plus the number of good vertices matched in M , which
is at most 2N . Since k = αN/r,

|M |
|M∗|

≤ 2N

k · r/2
=

2N

αN/2
=

4

α

�

Our goal from now on is to show that if the players
do not communicate enough information, all that the
coordinator can do is to output a trivial matching. Fix
a player P (i). According to the distribution, the input
to P (i) is a graph Gi (which is a subgraph of the final
graph G) obtained by dropping edges from a copy of
GRS with vertices labeled by [N ] (where we denote by
Hi the graph after dropping edges), and relabeling each
vertex from [N ] to [n] (where we denote the relabeling
function by σi). Therefore, we can formally define the

input to P (i) as a pair (Hi, σi) ∈ G × Σi where G is
the family of all possible graphs after dropping half of
the edges from each induced matching of GRS , and Σi
is the set of all possible relabeling functions. Note that
each relabeling function σi is defined by a permutation
π of [n] and λi ∈ [t] chosen in the distribution. A
crucial observation for our analysis is that the input to
each player P (i) is chosen uniformly at random from the
product distribution G × Σi, independent of the value
of λi. However, note that the relabeling functions given
to different players are indeed correlated.

In what follows, we prove two general lemmas
required for the proof of main theorem. Since these
lemmas are also required for the proof of Theorem 1.4,
they are stated in a slightly more general way. In
particular, they work for any family G that is obtained
from dropping half of the edges from each induced
matching of any fixed RS graph (rather than just GRS).

For any subset F ⊆ G, we define the graph GF as
the intersection graph of all graphs in F , i.e., an edge
belongs to GF iff it belongs to every graph in F . The
following lemma states that if F is large enough, then
most of the t induced matchings in GF are small.

Lemma 3.4. For any subset F ⊆ G, and any two
integers a ≤ r, b ≤ r/2a, let Ib ⊆ [t] be the set of
indices such that for all j ∈ Ib, the intersection graph
GF contains at least (b ·r)/a edges from the j-th induced

matching; if |F | ≥ 2(− r.t
4a logn )|G|, then |Ib| ≤ t

4b logn .

Proof. First, notice that |G| =
(
r
r
2

)t
. Let η = |Ib|; we

can upper bound the size of F as follows:

|F | ≤
(
r − b·r

a
r
2

)η
·
(
r
r
2

)t−η
≤
(

2−
br
a ·
(
r
r
2

))η
·
(
r
r
2

)t−η
= 2−

brη
a ·

(
r
r
2

)t
= 2−

brη
a · |G|

Therefore, η > t
4b logn implies |F | < 2(− r.t

4a logn )|G|; a
contradiction. �

Lemma 3.5. For any a ≤ r/100, suppose every player
P (i) sends a message of size at most

s =
r · t

5a · log n

bits to the coordinator; then, the expected number of
good vertices that are matched in the matching computed
by the coordinator is at most k·r

2a .



Proof. Fix a player P (i). Let Xi denote the random
variable counting the number of good vertices that are
matched by the coordinator from the graph Gi provided
to the player P (i). In the following, we prove that

E
Gi

[Xi] = E
(Hi,σi)

[Xi] ≤
r

2a
(3.1)

Having this, for X :=
∑
i∈[k]Xi, by linearity of expecta-

tion, we have E[X] ≤ kr/2a, implying that the expected
number of good vertices matched by the coordinator is
at most kr/2a.

In order to prove E[Xi] ≤ r
2a , we show that for

any fixed σ ∈ Σi, EHi∼G [Xi | σi = σ] ≤ r
2a , i.e,

conditioning on the relabeling function being σi, the
coordinator can still only match r

2a good vertices in P (i).
Fix a σ ∈ Σi; suppose the coordinator knows all inputs
to the players except for the graph Hi given to the
player P (i). Note that this is the maximum information
the coordinator can obtain from other players. Define
ψi : G×Σi 7→ {0, 1}s as the deterministic mapping used
by the player P (i) to map the input to a s-bit message
and send it to the coordinator. Note that since σ is
fixed, we can define a function φi : G 7→ {0, 1}s where
φi(H) = ψ(H,σ) for any H ∈ G, and assume that φi is
the function used by the player P (i) when σi = σ. We
further define the function Γi : G 7→ 2G such that for
any H ∈ G, Γi(H) = {H ′ ∈ G | φi(H ′) = φi(H)}.

The important observation is that since the protocol
is deterministic, the coordinator can output an edge
e = (u, v) ∈ Gi as a matching edge for the player P (i),
only if e′ = (σ−1(u), σ−1(v)) is part of every graph in
Γi(Hi), i.e, it belongs to the intersection graph GΓi(Hi).

We define Ei to be the event that for the graph

Hi, |Γi(Hi)| < 2(− r.t
4a·logn )|G|. The following claim can

be proved using a simple counting argument (proof is
deferred to the end of this section).

Claim 3.4. For any i ∈ [k], Pr(Ei | σi = σ) < 1
n .

We can write the expected value of Xi as,

E[Xi | σi = σ] = E[Xi | Ei, σi = σ] · Pr(Ei | σi = σ)

+ E[Xi | Ēi, σi = σ] · Pr(Ēi | σi = σ)(3.2)

By Claim 3.4, the first term in this equation is less
than 1. Since a ≤ r/100 by lemma assumption and our
goal is to show that E[Xi | σi = σ] ≤ r/2a, we can
safely ignore this additive value of 1. We now bound
the second term. We have:

E[Xi | Ēi, σi = σ] =

n∑
j=1

j · Pr(Xi = j | Ēi, σi = σ)

≤
logn∑
`=1

2`+1r

a
Pr(Xi ≥

2`r

a
| Ēi, σi = σ)(3.3)

We can upper bound Pr(Xi ≥ 2`r
a | Ēi, σi = σ)

for any ` ≥ 0 as follows. Let F = Γi(Hi); the

event Ēi implies that |F | ≥ 2(− r.t
4a·logn )|G|. By applying

Lemma 3.4 on the family G and F ⊆ G with parameters
a and b = 2`, we have that for Ib defined as in the lemma
statement, |Ib| ≤ t

4b logn = t
2`+2 logn

. In the input
distribution, it is an easy calculation to see that for any
λ ∈ [t], Pr (λi = λ | σi = σ) = 1/t. Moreover, since λi is
chosen independent ofHi (and hence independent of Ēi),
Pr
(
λi = λ | Ēi, σi = σ

)
= Pr (λi = λ | σi = σ) = 1/t.

Hence,

Pr(Xi ≥
2`r

a
| Ēi, σi = σ) = Pr(λi ∈ Ib | Ēi, σi = σ)

=
|Ib|
t
≤ 1

2`+2 log n
(3.4)

By plugging in inequality (3.4) in (3.3) we obtain,

E[Xi | Ēi, σi = σ] ≤
logn∑
`=1

2`+1r

a
· 1

2`+2 log n

=

logn∑
`=1

r

2a log n
=

r

2a

As E[Xi | σi = σ] ≤ r
2a for every σ ∈ Σi, we obtain

inequality (3.1). �

Proof. (Proof of Theorem 3.1) For ε < 1/2, we have α =
o(r) and hence by Lemma 3.5 with parameter a = α, if
no player communicates a message of size Ω( r·t

α·logn ) bits,
then the expected number of good vertices matched in
the matching output by the coordinator is kr/2α = N/2
and hence by Markov inequality, the output matching
is a trivial matching with probability at least 1/2. By
Claim 3.3, any trivial matching is at most an (α/4)-
approximation to the maximum matching.

Since α = nε, k = nε+o(1), N = n/k, and
r · t = Ω(N2) (by Lemma 2.2), we have that any
simultaneous protocol that obtains a better than (nε/4)-
approximation to the maximum matching with constant
probability, has to communicate n2−3ε−o(1) bits from
at least one player. Note that by a slight change
in the parameters, we obtain the same result for nε-
approximation also. �

Here we provide the deferred proof of Claim 3.4 in
Lemma 3.5.

Proof. (Proof of Claim 3.4) Let o ∈ {0, 1}s be the
output of the function φi, and with a slight abuse
of notation, we let Γi(o) = Γi(H) for any H that

φi(H) = o. We say o is light iff |Γi(o)| < 2(− r.t
4a·logn )|G|.



We have

Pr(Ei | σi = σ) =
∑

o is light

Pr
H∼G

(φi(H) = o | σi = σ)

=
∑

o is light

|Γi(o)|
|G|

≤ 2s−
r.t

4a·logn <
1

n

�

4 Matchings in the Simultaneous
Communication Model

4.1 Upper bounds for randomized protocols In
this section, we establish Theorem 1.3 by presenting
a simultaneous protocol for k players to compute an
O(α)-approximate matching for any α ≥

√
k using

O(nk/α2) total communication in the vertex partition
model. We should note that technically, similar to the
case for dynamic graph streams, since n/α could be
the size of the target matching, the lower bound of the
total communication should be Ω(max

{
nk/α2, n/α

}
).

Consequently, when α ≥ k, Ω(n/α) becomes the lower
bound and when α ≤ k, Ω(nk/α2) is the lower bound.
We give a protocol for each regime. The first regime
is easier since at least one player contains 1/k fraction
(which is at least 1/α fraction) of any fixed optimum
matching. The latter case is much more challenging
and it is indeed the main contribution of this section.

4.1.1 A protocol with O(nk/α2) communication
for
√

k ≤ α ≤ k We introduce the following protocol
Prand.

Protocol Prand. A randomized O(α)-approximation
simultaneous protocol (for

√
k ≤ α ≤ k).

1. Let Li be the vertices in L that belong to the i-th
player P (i), and let li = |Li|.

2. For each player P (i) independently:

(a) Pick a random permutation π(i) of the vertices
in R.

(b) Use π(i) to construct a matching Mi as follows:
Enumerate the vertices v in R according to the
order π(i), and match v with any unmatched
neighbor if one exists.

(c) Send the first
⌈
li·k
α2

⌉
edges of Mi to the coordi-

nator.

3. The coordinator finds a maximum matching M
among all received edges.

Since each player only sends a matching of size at
most

⌈
li·k
2α2

⌉
, the total communication is O(nk/α2 + k).

Note that in the meaningful regime where α ≤
√
n,

nk/α2 ≥ k, and the total communication is indeed
O(nk/α2). In the rest of this section, we show that
the protocol Prand outputs an α-approximate matching,
and hence prove Theorem 1.3.

Fix a maximum matching M∗ of G (of size opt).
Let opti be the number of edges in M∗ that belong to
the i-th player P (i). A vertex v ∈ R is said to be good
for P (i) if v is matched in M∗ by an edge in P (i). The
vertices in R that are not good for P (i) are said to be
bad for P (i). A few remarks are in order.

Remark 4.1. (a) Each player P (i) will send at least⌈
opt

i
·k

2α2

⌉
(≤

⌈
opt

i

2

⌉
since α ≥

√
k) edges. This is

because Prand can find a maximal matching in P (i),
where the size of a maximum matching in P (i) is at
least opti. As it turns out, it suffices for us to only

consider the first
⌈
opt

i
·k

2α2

⌉
edges sent by P (i). (b)

Without loss of generality, assume opti < n/100 for
each player, since otherwise P (i) will send a matching

of size
opt

i
·k

2α2 ≥ opt
200α (since k ≥ α), which is an O(α)-

approximation.

One key component of our analysis is to decompose
picking a random permutation π(i) into three indepen-

dent components. π
(i)
pos: randomly pick opti positions

in [n] for placing the good vertices. We will refer to the
picked positions as the good positions and the rest as

bad positions; π
(i)
b : pick a random permutation of the

bad vertices; and π
(i)
g : pick a random permutation of

the good vertices. Then, placing the good/bad vertices

in the good/bad positions following the orders π
(i)
g /π

(i)
b

gives the random permutation π(i). Observe that the

three components π
(i)
pos, π

(i)
b , and π

(i)
g are independent

of each other, and hence events defined on different com-
ponents are independent, which significantly simplifies
the analysis. Moreover, we should note that, of course,
each player does not know which vertices are good or
bad, and hence the decomposition is only for the sake of
analysis. We are now ready to prove that Prand achieves
an O(α)-approximation.

Proof. (Proof of Theorem 1.3) Define E∗i to be the

event (on π
(i)
b ) that, between Li and the first n/α

(bad) vertices in π
(i)
b , the maximum matching size is

at least
opt

i
·k

3α2 . We partition the players into two types
based probability of this event: Type 1 are players with
Pr (E∗i ) ≥ 1/2 and Type 2 are the rest. Let T1 (resp.
T2) be the set of players that are Type 1 (resp. Type 2).



Note that the type of each player only depends on the
structure of his input graph and not the protocol.

In the following, we consider the case where players
in T1 contain at least opt/2 edges of M∗ (Lemma 4.1)
and the complement case where players in T2 contain at
least opt/2 edges of M∗ (Lemma 4.3), separately.

Lemma 4.1. If
∑
i∈T1

opti ≥ opt/2, then E [|M |] =
Ω(opt/α).

Proof. Let k1 = |T1|. Without loss of generality, assume
that the Type 1 players are P (1), P (2), . . . , P (k1) and the
protocol Prand is executed for these k1 players following
this specific order. Define Si (for any i ∈ [k1]) to be
the set of the distinct vertices in R that are matched
(and sent) by at least one of the first i players. To
simplify the presentation, we further define S0 = ∅.
Then E [|M |] ≥ E [|Sk1 |] since each vertex in Sk1 is
matched with a distinct vertex in L. We will prove

that for any i ∈ [k1], if the size of Si−1 is at most
opt
30α ,

then the i-th player will match a large number of new
vertices in R in expectation. Formally,

Lemma 4.2. For any integer i ∈ [k1] we have,

E
[
|Si \ Si−1|

∣∣∣|Si−1| ≤ opt
30α

]
≥ 0.49 · (opti·k6α2 − opt

15α2 ).

Suppose we have Lemma 4.2 and define E ′ as the

event that there exists an i ∈ [k1] where |Si−1| > opt
30α .

Note that if E ′ happens then |Sk1 | >
opt
30α . Hence,

E [|Sk1 |] = E
[
|Sk1 |

∣∣E ′] · Pr (E ′) + E
[
|Sk1 |

∣∣Ē ′] · Pr
(
Ē ′
)

≥ opt

30α
· Pr (E ′)

+
∑
i∈[k1]

E
[
|Si \ Si−1|

∣∣∣|Si−1| ≤
opt

30α

]
· Pr

(
Ē ′
)

≥ opt

30α
· Pr (E ′) + 0.49

∑
i∈[k1]

(
opti · k

6α2
− opt

15α2

)
· Pr

(
Ē ′
)(by Lemma 4.2)

≥ opt

30α
· Pr (E ′) + 0.49

(
opt · k
12α2

− opt · k
15α2

)
· Pr

(
Ē ′
)(since

∑
i∈[k1] opti ≥ opt/2)

=
opt

30α
· Pr (E ′) + Ω

(opt
α

)
Pr
(
Ē ′
)

= Ω
(opt
α

)(since k ≥ α)

Hence E [|M |] = Ω(opt/α). We now prove
Lemma 4.2.

Proof. (Proof of Lemma 4.2) We need to lower bound
the expected number of new vertices in R that are
matched by P (i) compare to Si−1. For any β ≥ 1,

define g
(i)
β to be the random variable (on π

(i)
pos) counting

the number of good positions that appear in the first
1/β fraction of [n]. We will consider the joint event
that E∗i happens and the number of good positions that
appear in the first 2/α fraction is at most n/α (i.e.,

g
(i)
α/2 ≤ n/α).

E
[
|Si \ Si−1|

∣∣∣|Si−1| ≤
opt

30α

]
≥ E

[
|Si \ Si−1|

∣∣∣|Si−1| ≤
opt

30α
, E∗i , g

(i)
α/2 ≤ n/α

]
· Pr

(
E∗i , g

(i)
α/2 ≤ n/α

)
Since E∗i is defined on π

(i)
b and g

(i)
α/2 is defined on π

(i)
pos,

they are independent (due to the decomposition of π(i)).
We know that Type 1 players have Pr (E∗i ) ≥ 1/2, so

we only need to bound Pr
(
g

(i)
α/2 ≤ n/α

)
. Since opti <

n/100 (by Remark 4.1(b)), E
[
g

(i)
α/2

]
< (2/α)·(n/100) =

n/50α. By Markov inequality, Pr
(
g

(i)
α/2 ≥ n/α

)
≤

1/50. Hence,

Pr
(
E∗i , g

(i)
α/2 ≤ n/α

)
= Pr (E∗i ) · Pr

(
g

(i)
α/2 ≤ n/α

)
≥ 1/2 · 49/50 = 0.49

It remains to lower bound

E
[
|Si \ Si−1|

∣∣∣|Si−1| ≤
opt

30α
, E∗i , g

(i)
α/2 ≤ n/α

]
We only consider the first 2n/α vertices of π(i), denoted
by π(i)[2n/α], and analyze two quantities. x: the
expected number of vertices in π(i)[2n/α] that are
matched, and y: the expected number of vertices in
π(i)[2n/α] that belong to Si−1. We will show that

x ≥ opt
i
·k

6α2 and y ≤ opt
15α2 . Since x− y is a lower bound

of the expected number of new vertices in R that are
matched in P (i), this will complete the proof.

For the quantity x, g
(i)
α/2 ≤ n/α implies that there

are at least n/α bad vertices in π(i)[2n/α], and by E∗i ,

there is a matching of size at least
opt

i
·k

3α2 between Li and
the first n/α bad vertices (and hence between Li and
π(i)[2n/α]). Since P (i) will find a maximal matching, at

least
opt

i
·k

6α2 vertices in π(i)[2n/α] will be matched.

For the quantity y, since |Si−1| ≤ opt
30α , and each

vertex in Si−1 belongs to π(i)[2n/α] with probability
2/α, the expected number of vertices in Si−1 that belong

to π(i)[2n/α] is at most
opt
15α2 . Therefore,

E
[
|Si \ Si−1|

∣∣|Si−1| ≤
opt

30α

]
≥ 0.49 · (opti · k

6α2
− opt

15α2
)

�



We now analyze the case where opt/2 edges of M∗

belong to the players in T2.

Lemma 4.3. If
∑
i∈T2

opti ≥ opt/2, then E [|M |] =
Ω(opt/α).

Proof. We will show for the Type 2 players that Ω(1/α)
fraction of the good vertices will be matched in expec-

tation. Recall that for any β ≥ 1, g
(i)
β is the random

variable (on π
(i)
pos) counting the number of good posi-

tions that appear in the first 1/β fraction of [n]. Then

E
[
g

(i)
β

]
= opti/β. Define gm(i) to be the random vari-

able (on π(i)) for the number of good vertices that are
matched and sent to the coordinator by P (i). Since the
size of M is at least the sum of gm(i), our goal is to
lower bound E

[
gm(i)

]
. We establish the following key

lemma.

Lemma 4.4. For any player P (i) in T2, any integer

r ≥ 1, and any π
(i)
pos with g

(i)
α = r, E

[
gm(i)

∣∣g(i)
α = r

]
≥

1
4 min

{
r,
⌈
opt

i
·k

6α2

⌉}
, where the expectation is taken over

π
(i)
b and π

(i)
g .

Note that 1
4 min

{
r,
⌈
opt

i
·k

6α2

⌉}
≥ 1

4 , and sometimes,

we will directly use 1
4 as a lower bound of the tar-

get expectation when applying Lemma 4.4. We first
demonstrate how to use Lemma 4.4 to prove E [|M |] =
Ω(opt/α). To see this, we need to further partition the
Type 2 players into two sub-types, where for Type 2a:
opti/α ≥ 1, and for Type 2b: opti/α < 1. Let the set
of players that are in Type 2a (resp. Type 2b) be T2a

(resp. T2b). We consider these two sub-types separately.

Lemma 4.5. If
∑
i∈T2a

opti ≥ opt/4, then E [|M |] =
Ω(opt/α).

Proof. Fix any player P (i) in T2a. We can lower bound
the expectation of gm(i) as follows.

E
[
gm(i)

]
≥ E

[
gm(i)

∣∣∣g(i)
α ≥

opti
2α

]
· Pr

(
g(i)
α ≥

opti
2α

)
Since a good position appearing in the first n/α fraction
of [n] is negatively correlated to other good position
appearing in the first n/α fraction of [n], by Chernoff

bounds, Pr
(
g

(i)
α <

opt
i

2α

)
≤ 1

e1/12
. Denote by c the

constant
(
1− 1

e1/12

)
. Hence

E
[
gm(i)

]
≥ E

[
gm(i)

∣∣∣g(i)
α ≥

opti
2α

]
· c

By Lemma 4.4,

E
[
gm(i)

∣∣∣g(i)
α ≥

opti
2α

]
· c ≥ 1

4
min

{
opti
2α

,

⌈
opti · k

6α2

⌉}
· c

≥ c

4

opti
6α

= Ω
(opti

α

)

Therefore, summing over all players in T2a,

E

[ ∑
i∈T2a

gm(i)

]
=
∑
i∈T2a

E
[
gm(i)

]
= Ω

(∑
i∈T2a

opti
α

)
= Ω

(opt
α

)
�

Lemma 4.6. If
∑
i∈T2b

opti ≥ opt/4, then E [|M |] =
Ω(opt/α).

Proof. For any player P (i) in T2b,

E
[
gm(i)

]
≥ E

[
gm(i)

∣∣∣g(i)
α ≥ 1

]
· Pr

(
g(i)
α ≥ 1

)
Since opti/α < 1, the probability that no good position
appears in the first n/α is

Pr
(
g(i)
α = 0

)
=

(
n− n/α
opti

)
/

(
n

opti

)
=

(n− n/α)! · (n− opti)!

n! · (n− n/α− opti)!

=

n/α−1∏
j=0

n− opti − j
n− j

≤
(
n− opti

n

)n/α
≤ exp(−opti

n
· n
α

)

= e−opti/α ≤ 1− opti
2α

where the last inequality is because e−x ≤ 1 − x/2 for
any x ∈ [0, 1]. Therefore,

E
[
gm(i)

∣∣∣g(i)
α ≥ 1

]
· Pr

(
g(i)
α ≥ 1

)
≥ E

[
gm(i)

∣∣∣g(i)
α ≥ 1

]
· opti

2α

By Lemma 4.4,

E
[
gm(i)

∣∣∣g(i)
α ≥ 1

]
· opti

2α
≥ 1

4
· opti

2α
= Ω

(opti
α

)
Summing over all players in T2b,

E

[∑
i∈T2b

gm(i)

]
≥ Ω

(∑
i∈T2b

opti
α

)
= Ω

(opt
α

)
�

Proof. (Proof of Lemma 4.4) We need to lower bound
the expected number of good vertices that are matched.
It suffices for us to only consider this expectation when



the event E∗i does not happen, i.e., the first n/α bad

vertices only have a matching of size less than
opt

i
·k

3α2 to
Li.

E
[
gm(i)

∣∣g(i)
α = r

]
≥ E

[
gm(i)

∣∣g(i)
α = r, Ē∗i

]
· Pr

(
Ē∗i
)

≥ E
[
gm(i)

∣∣g(i)
α = r, Ē∗i

]
· 1

2

In the following, we claim that when enumerating each

of the first min
{⌈

opt
i
·k

6α2

⌉
, r
}

good positions in the first

n/α, (a) P (i) still has the budget to send one more edge,

and moreover, (b) with probability at least 1/2, π
(i)
g

picks a good vertex that has an unmatched neighbor.
To see property (a), when enumerating any of

these good positions, the number of vertices in R that

are matched is strictly less than
opt

i
·k

3α2 (which is an
upper bound of the number of matched bad vertices)

plus
⌈
opt

i
·k

6α2

⌉
− 1 (which is an upper bound of the

number of good vertices that have appeared). Since⌈
opt

i
·k

6α2

⌉
− 1 ≤ opt

i
·k

6α2 , the total number of vertices in

R that are matched is strictly less than
opt

i
·k

2α2 . Since

P (i) can send at least
⌈
opt

i
·k

2α2

⌉
edges, the number of

matching edges is strictly less than the budget, and
hence P (i) can send at least one more edge.

To see property (b), since, again, at most optik/3α
2

bad vertices are matched, and optik/6α
2 good vertices

have appeared, at least opti/2 good vertices that have
not appeared have the property that the vertices they
are matched with in M∗ are still unmatched. Hence
π

(i)
g assign a good vertex that can be matched with

probability at least 1/2. Therefore,

E
[
gm(i)

∣∣g(i)
α = r, Ē∗i

]
· 1

2
≥ 1

4
·min

{⌈
opti · k

6α2

⌉
, r

}
�

4.1.2 A protocol with O(n/α) communication
for α ≥ k We introduce the following protocol Prand2 .

Protocol Prand2 . A randomized O(α)-approximation
simultaneous protocol (for α ≥ k).

1. For each player P (i) independently,

(a) Let li be the number of vertices in L that are in
P (i).

(b) Guess the size of a maximum matching, de-
noted by opt, in the input graph G from
{n/α, n/(2α), n/(4α), . . . , n}.

(c) For each guessed value of opt, denoted by

˜opt, toss a biased coin and with probability
min {2li log n/ ˜opt, 1}, find a maximum match-
ing Mi and send the first (at most) ˜opt/α edges
of Mi to the coordinator.

2. The coordinator finds a maximum matching
among all received edges.

Claim 4.1. The protocol Prand2 uses Õ(n/α) communi-
cation.

Proof. Since there are only O(log n) different guesses
of opt, we only need to show that for each guess,
˜opt, the total communication is Õ(n/α). Fix an ˜opt,

since a player will send at most ˜opt/α edges to the
coordinator, we only need to show that only Õ(n/ ˜opt)
players will pass the coin toss and send a matching to
the coordinator. The expected number of players that
passed the coin toss is∑

i∈[k]

2li log n/ ˜opt = 2n log n/ ˜opt ≥ 2 log n

By Chernoff bounds, with high probability, at most
Õ(n/ ˜opt) players passes the coin toss, and hence the
total communication is Õ(n/α). �

Claim 4.2. The protocol Prand2 outputs a matching of
size Ω(opt/α).

Proof. If opt ≤ n/α, since at least one player (say P (i))
contains a matching of size at least opt/k (which is
at least opt/α), it suffices to show that P (i) will send
a matching of size at least n/α2 (which is ≥ opt/α).
When P (i) guesses ˜opt = n/α, the probability that P (i)

passes the coin toss is at least 2li log n/ ˜opt ≥ 1, and
P (i) will send a matching of size ˜opt/α = n/α2.

If opt > n/α, we argue that when every player
guesses an ˜opt ∈ [opt/2, opt], a matching of size
Ω( ˜opt/α) (which is also Ω(opt/α)) will be sent to the
coordinator. Fix a matching M∗ in G of size ˜opt and
consider the vertices in M that belong to L, denoted
by LM∗ . LM∗ is partitioned across k players. We
refer to any player that contains more than ˜opt/(2α)
vertices in LM∗ as good. Since the size of a maximum
matching in any good player P (i) is at least the number
of vertices in LM that belong to P (i), any good player
that passes the coin toss will send a matching of size
at least ˜opt/(2α) to the coordinator, and Prand2 would
then output a matching of size Ω( ˜opt/α). We only need
to show at least one good player will pass the coin toss.

Since the total number of vertices in LM∗ that
belong to the players that are not good is at most



k · ˜opt/(2α) ≤ ˜opt/2, at least ˜opt/2 vertices in LM∗

belongs to the good players. The expected number of
good players that passed the coin toss is at least∑
P (i) is good

2li log n/ ˜opt ≥ ( ˜opt/2)2 log n/ ˜opt = log n

By Chernoff bounds, with high probability, at least one
of the good players will pass the coin toss. �

4.2 A lower bound for randomized protocols
when α = o(

√
k) In this section, we provide a lower

bound on the per-player communication required for
any α-approximation protocol when α = o(

√
k) in the

k-party simultaneous vertex partition model. Our lower
bound construction is based on lopsided RS graphs
defined in Section 2. We will prove the following general
lemma, which will leave Theorem 1.4 as a corollary.
Recall that U(δ, γ, n) denotes the maximum number
of edges a (δ, γ, t)-lopsided RS graph G(L,R,E) with
|L| = Θ(n) can have. Since typically γ is much larger
than δ, for simplicity, in the following we will assume
that γ is an integer multiple of δ.

Lemma 4.7. For any 0 < δ < 1/2 and γ > 1, let
α = 1

12δ and k = γ
δ . There exists a sufficiently large

n such that any protocol that outputs an α-approximate
matching in the k-party simultaneous vertex partition
model has to communicate:

Ω

(
U(δ, γ,Θ(n/k))

α · log n

)
bits from at least one player.

Before proving Lemma 4.7, we show how it implies
Theorem 1.4. Recall that by Lemma 2.3, for any
sufficiently small constant δ > 0, there exists a γ =

Θ(1/δ) such that U(δ, γ, n) = n1+Ωδ(
1

log logn ). Suppose
γ = c/δ (for some constant c ≥ 1) and let k = γ/δ.

Consequently, δ =
√

c
k and hence α = 1

12δ =
√
k
c′ (for

some other constant c′ > 1). By Lemma 4.7, any

protocol that computes an
√
k
c′ -approximate matching

in the vertex partition model with k players, has to
communicate:(

(nk )
1+Ωk( 1

log logn )

α · log n

)
= n1+Ωk( 1

log logn )

bits from at least one player. Note that in the above
equality, we used the fact that n is chosen sufficiently
large, after fixing the value of k. We now prove
Lemma 4.7.

Similar to the proof of Theorem 3.1, in order to
prove Lemma 4.7, it suffices to provide a hard input dis-
tribution for deterministic protocols that approximate
the maximum matching to within a factor of α.

A hard input distribution (for any δ, γ > 0, and
sufficiently large integer N)

Parameters:

α =
1

12δ
k = γ/δ r = (1− δ)N

n = 2rk + γN t = U(δ, γ,N)/r

• Fix a lopsided (δ, γ, t)-RS graph GRS(L,R,E) with
|L| = N .
• For each player P (i) independently:

1. Let Gi be the input graph of P (i), initialized as a
copy of GRS with vertices Vi = Li ∪ Ri such that
Li = [N ] and Ri = [γ ·N ].

2. Pick λi ∈ [t] uniformly at random and let V ∗i =
L∗i ∪R∗i be the set of vertices matched in the λi-th
induced matching of Gi.

3. For each of the t induced matchings of Gi, drop
half of the edges uniformly at random.

• Pick two random permutations πL and πR of [n].
For every player P (i):

1. For each vertex u ∈ Li with label j, relabel u with
πL((i− 1) ·N + j).

2. For each vertex v ∈ Ri \ R∗i , with label j, relabel
v with πR(j).

3. Enumerate the vertices in R∗i (from the one with
the smallest label to the largest) and relabel the j-
th enumerate vertex with πR(γN +(i−1) ·2r+ j).

The vertices with the same label correspond to the
same vertex in the final graph. Note that the vertices
in Li’s are pairwise disjoint.

Denote by G(L,R,E) the final graph. Similar to
the Section 3.2, we define good vertices as vertices in
V ∗i for some i ∈ [k] and trivial matchings as matchings
which match no more than γN good vertices (instead
of N as chosen in Section 3.2). The following claim is
analogous to Claim 3.3 for this new distribution.

Claim 4.3. Let M∗ be a maximum matching in G and
M be any trivial matching, then

|M |
|M∗|

<
1

α

Proof. Since M∗ is a maximum matching, it contains at
least k·r

2 edges (just using the induced matching between
the good vertices of each player). On the other hand,



since M is a trivial matching, its size is at most:

γN + k · δN + γN

where the terms respectively correspond to the number
of vertices in R shared by all players, the number of
vertices in L that are not good, and the number of good
vertices matched in M . Since k = γ/δ,

|M |
|M∗|

≤ γN + k · δN + γN

k · r/2

≤ 2γN + k · δN
k · (1− δ)N/2

=
4δ

1− δ
+

2δ

1− δ
< 12δ = 1/α

where the last inequality is by δ < 1/2. �

We are now ready to prove Lemma 4.7.

Proof. (Proof of Lemma 4.7) Similar to the analysis in
proof of Theorem 3.1, we can define the input to each
player as a pair (Hi, σi) ∈ G ×Σi where G is the family
of graphs obtained from GRS (this time a lopsided RS
graph) and Σi is the set of all relabeling functions
(defined as before, this time using permutation πL and
πR). As stated, Lemma 3.4 and Lemma 3.5 hold for
any family of graph obtained from a fixed RS graph, and
hence we can apply Lemma 3.5 with parameter a = 12α,
to obtain that if no player communicates a message of
size:

Ω

(
r.t

a log n

)
= Ω

(
U(δ, γ,Θ(n/k))

α log n

)
bits, then the expected number of good vertices matched
by the coordinator is kr

2a = γ
δ ·

r
2 ·

1
12α ≤

Nγ
2 . Conse-

quently, with probability at least 1/2, the coordinator
is only able to output a trivial matching which does not
achieve an α-approximation (by Claim 4.3). �

4.3 An O(nk/α) upper bound for deterministic
protocols When α ≥ k, a simple protocol where every
player finds a maximum matching and send the first
n/α edges will achieve the required approximation and
communication. Hence, here we consider the α < k case
and introduce the following deterministic protocol Pdet.

Protocol Pdet. A deterministic simultaneous proto-
col for an O(α)-approximation.

1. For each player P (i) independently:

(a) Find a maximum matching M1 and remove the
vertices in R that are matched in M1; find a
maximum matching M2 in the remaining graph
and remove the vertices in R that are matched in

M2; repeat for dk/αe times. We refer to the set
of the edges found in this process as a matching-
cover.

(b) Send the matching-cover to the coordinator.

2. The coordinator outputs a maximum matching of
all received edges.

If we denote by Li the set of vertices in L that
belong to the player P (i) and by li the size of Li,
P (i) will send at most dk/αe · li edges to the coordi-
nator. Hence the total amount of communication is
(
∑
i∈[k] li)dk/αe = O(nk/α). We now show that the

protocol Pdet outputs an O(α)-approximate matching
and hence proving part (i) in Theorem 1.5.

Proof. (Proof of Theorem 1.5, part (i)) Let M be
a maximum matching of the edges received by the
coordinator and opt be the size of a maximum matching
in G. Denote the sets of vertices matched in M by A (in
L) and B (in R). No edge between L\A (denoted by Ā)
and R\B (denoted by B̄) is received by the coordinator.
We argue that size of M is at least opt/(12α). Suppose,
by contradiction, that |M | = |A| = |B| < opt/(12α).

Let M∗ be a maximum matching between Ā and B̄
in G. Since G has a matching of size opt while A and B
each only have at most opt/(12α) vertices, the size of

M∗ is at least opt−|A|−|B| ≥ opt−2
opt
12α > 5opt/6 >

3opt/4. Denote the sets of vertices matched in M∗

by A∗ (in L) and B∗ (in R). The vertices in A∗ are
partitioned between the k players. Denote the vertices
in A∗ that belong to the player P (i) by A∗i , and denote
by ni the size of A∗i . Hence

∑
i∈[k] ni = |A∗| ≥ 3opt/4.

Denote the number of vertices in A that belong to P (i)

by ai. To simplify the presentation, we further assume
for each player P (i), if ai 6= 0, ni is an integer multiple
of ai

3. Let B∗i be the set of vertices matched to A∗i in
M∗. We first make the following observation.

Claim 4.4. For any player P (i), the j-th maximum
matching found by P (i), for any 1 ≤ j ≤ dk/αe, must
match at least (ni − jai) vertices in A∗(i).

Proof. Fix a player P (i). Since no edge between A∗i
and B∗i is sent to the coordinator, if a vertex v ∈ B∗i
is matched by the matching-cover of P (i), v must be
matched to a vertex in A. Since the number of vertices
in A that belong to P (i) is ai, each maximum matching

3This can be achieved by removing at most ai vertices from

A∗i for each player P (i). Since
∑
i∈[k] ai ≤ |A|, the size of the

remaining matching in M∗ is still at least opt − 2|A| − |B| >
3opt/4.



found by P (i) can only match at most ai of the vertices
in B∗i . Hence when P (i) is finding a maximum matching
for the j-th time, at least (ni − jai) vertices in B∗i
are unmatched. Consider the corresponding (ni − jai)
vertices in A∗i that are matched with these (ni − jai)
vertices in B∗i in the matching M∗ (denoted by A′′).
Since A′′ is not matched with any vertex in B̄, P (i)

must match A′′ with a set of (ni− jai) vertices in B. �

As an immediate consequence of Claim 4.4, we can
establish the following connection between ni and ai for
each player.

Lemma 4.8. For each player P (i), min {ni/ai, dk/αe} ·
(ni − ai)/2 ≤ |B|.

Proof. In the rest of the proof we assume that ni ≥ 1
since otherwise the inequality holds trivially. Using
Claim 4.4, P (i) matches at least (ni − jai) vertices in
A∗(i) in the j-th matching. Since once a vertex v in
B is matched, v will be deleted from the graph, these
(ni − jai) vertices in B must be distinct for each j.

Let β = min {ni/ai, dk/αe}. Then for the first β
times of finding maximum matching,

|B| ≥
∑
j∈[β]

(ni − jai)

=
((ni − ai) + (ni − βai))β

2

≥ (ni − ai)β
2

where the last inequality is due to β ≤ ni/ai. �

To use Lemma 4.8, we partition the players into
two groups. The group G1 contains players P (i) where
ni/ai ≤ dk/αe, and the group G2 contains the players
where ni/ai > dk/αe. Since at least one of the two
groups contains at least half of the edges in M∗, we
consider G1 containing half of M∗ and G2 containing
half of M∗ separately and show that for either case
|M | ≥ opt/(12α).

If G1 contains half of the edges in M∗, i.e.,∑
i∈G1 ni ≥ |M∗|/2 ≥ 3opt/8 > opt/4, using

Lemma 4.8, we have

(ni/ai)(ni − ai)/2 ≤ |B|(= |A|)

which implies ai ≥ n2
i /(2|A| + ni). Note that ni ≤ |A|

since otherwise the player P (i) contains a matching
of size larger than |A|, and the edges sent by P (i)

alone must contain a matching of size larger than |A|,
which contradicts the fact that the coordinator outputs
a maximum matching of size |A|. Therefore, ai ≥

n2
i /(3|A|). Summing over all players in G1, we have

(|A| ≥)
∑
i∈G1

ai ≥
∑
n2
i

3|A|
=

∑
n2
i |G1|

3|A||G1|

≥ (
∑
ni)

2

3k|A|
≥ opt2

48k|A|

where the second inequality is by the Cauchy-Schwarz.
Hence, |A| ≥ opt/(

√
48k) ≥ opt/(4

√
3α) > opt/(12α),

a contradiction.
If G2 contains half of the edges in M∗, i.e.,∑

i∈G2 ni ≥ |M
∗|/2 ≥ 3opt/8, Using Lemma 4.8, we

have:
dk/αe(ni − ai)/2 ≤ |B|(= |A|)

which implies ai ≥ ni − 2α|A|/k. Summing over all
players in G2, we have

(|A| ≥)
∑
i∈G2

ai ≥
∑
i∈G2

(ni − 2α|A|/k) ≥ 3opt/8− 2α|A|

which implies |A|(1 + 2α) ≥ 3opt/8, and hence |A| ≥
opt/(8α), a contradiction. �

4.4 An Ω(nk/α) lower bound for determinis-
tic protocols In this section, we establish the lower
bound part of Theorem 1.5 which shows that any si-
multaneous deterministic protocol that achieves an α-
approximation to the maximum matching must commu-
nicate Ω(nk/α) bits in total.

To simplify the presentation, we prove that achiev-
ing an α/c-approximation (for some fixed constant c >
0), requires Ω(nk/α) bits of communication. For an α-
approximation, one can simply use α′ = c · α to replace
α in the following presentation.

Let ` = n/α and define F to be the family of all
sets S ⊆ [n] with |S| = `. Suppose the vertices on
each side of the input graph are labeled by [n]. For any
tuple T = (S1, . . . , Sk) where each Si ∈ F , define GT to
be a bipartite graph partitioned between the k players
in a way that the i-th player P (i) is given a complete
bipartite graph between a set of distinct vertices Li of
size n/k on the left, and a set of vertices Ri represented
by Si on the right.

The intuition behind the proof is the following.
Consider the graph GT for T = (S, S, . . . , S), for some
S ∈ F . The maximum matching size in this graph is
O(n/α) since all edges are incident on the same set
of vertices of size n/α in R. Now, since a “typical”
message sent by each player is small (significantly less
than log |F|), each player will send the same message
for lots of different subsets S′ ∈ F . Consequently, the
coordinator would receive the same exact message for
graph GT and graph GT ′ for some T ′ = (S1, . . . , Sk)



and hence is forced to output a matching of size O(n/α)
also for GT ′ . The goal now is to create a graph GT ′

where each player P (i) would send the same message
for S and Si, and GT ′ has a matching of size Ω(n). In
the remainder of this section, we make this intuition
formal.

Suppose each player P (i) uses a function φi : F 7→
{0, 1}s (for some s = O(nk/α)) to compute the message
to send to the coordinator. We define Γi(S) for any
S ∈ F to be the set of all subsets S′ ∈ F where
φi maps S and S′ to the same message, i.e., Γi(S) =
{S′ ∈ F | φi(S′) = φi(S)}. We say that a set S ∈ F is
heavy for the player P (i) iff:

|Γi(S)| ≥
(
n
`

)
2`

If a set is not heavy, we call it light. The following
lemma states the main property of heavy sets that we
use in our proof.

Lemma 4.9. Suppose S ∈ F is such that S is heavy
for at least p players; then there exists a tuple T =
(S1, . . . , Sk) such that each Si ∈ Γi(S) and the graph
GT has a matching of size p·n

4ek .

Proof. Without loss of generality assume S is heavy for
the players P (1), . . . , P (p). For any graph G, let opt(G)
be the size of the maximum matching in G. Consider
a sequence of tuples T (0), . . . , T (p)(= T ), where T (0) =
(S, . . . , S) and each T (i) is obtained by changing only
the i-th index of T (i−1) to be the set Si ∈ Γi(S) that
maximizes opt(GT (i)).

We argue that at each step i ∈ [p], if opt(GT (i−1)) ≤
pn
ck ≤

n
c (for some constant c > 0 to be determined

later), then opt(GT (i)) ≥ opt(GT (i−1)) + n
ck . Conse-

quently, the maximum matching size increases by at
least n

ck at each step and hence would be at least pn
ck

after p steps, proving the lemma. We now prove this
claim.

Suppose by contradiction, at some step i ∈ [p], no
set S′ ∈ Γi(S) can be added to the tuple T (i−1) that
increases the matching size in the new graph by n

ck . It

implies that for P (i), every set S′ ∈ Γi(S) intersects
the set of vertices that are already matched in GT (i−1)

(whose size is at most n/c) by at least `− n
ck . Therefore,

we can bound the size of Γi(S) as follows:

|Γi(S)| ≤
n
ck∑
t=0

(
(1− 1

c )n

t

)
·
( n

c

`− t

)
≤ n

ck

(
n
n
ck

)
·
(n
c

`

)
Since α = o

(
k

log k

)
, we have:

n

ck

(
n
n
ck

)
≤
(
n
n
ck

)2

≤ (e · ck)
n
ck = 2log (e·ck) nck < 2`

Moreover, by choosing c = 4e we have,

|Γi(S)| < 2` ·
(n
c

`

)
< 2` ·

( en
c · `

)`
=

2`

4`

(n
`

)`
≤ 2`

4`

(
n

`

)
=

(
n
`

)
2`

contradicting the fact that S was heavy for the
player P (i). �

We now show that under the given constraint on
the total communication of the protocol, there exists a
heavy set for a sufficiently large number of players.

Lemma 4.10. Suppose that the total communication of
the players to the coordinator is at most

s =
nk

8α

bits; then there exists a set Sh ∈ F that is heavy for at
least k/6 players.

Proof. We prove this lemma using a simple probabilistic
argument. For any i ∈ [k], let Xi be a random variable
indicating the number of bits sent by P (i) when its input
set S is chosen uniformly at random from F . Let K
be a subset of the players such that for any i ∈ K,
E[Xi] ≤ n/4α. We first claim that |K| is at least k/2.
Otherwise, more than k/2 players are not in K; define
X :=

∑
i/∈K Xi, and we have E[X] > nk/8α = s. Hence

there exists an input where the total communication is
more than s; a contradiction.

Now, fix any player i ∈ K. We partition the sets in
F into 2s groups w.r.t. the outputs of φi. We call these
groups buckets and for any x ∈ {0, 1}s, we use Bx to
denote the bucket where for every S ∈ Bx, φi(S) = x.
We say that a bucket Bx is light iff the number of sets

in Bx is at most
(n`)
2`

(i.e., all sets in Bx are light).
For any set S ∈ F , define ES as the event that

Xi > n/2α = `/2. Since E[Xi] ≤ n/4α, by Markov
inequality, Pr (ES) ≤ 1/2. If we pick a set S ∈ F
uniformly at random, then

Pr(S is light for P (i)) = Pr(S is light | ES) · Pr(ES)

+ Pr(S is light | ES) · Pr(ES)

≤ Pr(ES) + Pr(S is light | ES)

≤ 1

2
+

∑
Bj is light

Pr(S ∈ Bj | ES)

If the player P (i) is communicating only `/2 bits (event
ES), S could only be chosen from 2`/2 different possible

buckets. Since the size of a light bucket is at most
(n`)
2`

,

even if all of the 2`/2 buckets are light, we have



Pr(S is light for P (i)) ≤ 1

2
+

∑
Bj is light

Pr(S ∈ Bj | ES)

≤ 1

2
+

∑
Bj is light

Pr(S ∈ Bj)
Pr(ES)

≤ 1

2
+ 2`/2

((
n
`

)
2`

2(
n
`

)) ≤ 2

3

Therefore, a uniformly at random chosen set S is
heavy for a player i ∈ K with probability at least 1/3.
Since the number of player in K is at least k/2, the
expected number of players that S is heavy for is at
least k/6. Consequently, there exists a set that is heavy
for at least k/6 players. �

Proof. (Proof of Theorem 1.5, part (ii)) Suppose the
total communication of the protocol is o(nk/α); then
by Lemma 4.10, there exists a set Sh ∈ F such that
Sh is heavy for at least k/6 players. Consider the
graph GT defined by the k-tuple T = (Sh, . . . , Sh); all
edges are incident on the vertices in Sh and hence the
matching size in GT is at most |Sh| = n

α . Therefore, the
coordinator, given the message 〈φ1(Sh), . . . , φk(Sh)〉,
should only output a matching of size no more than
n
α .

However, by Lemma 4.9, there is a tuple T ′ =
(S1, . . . , Sk), where each Si ∈ Γi(Sh) and the size of the
maximum matching in GT ′ is at least p·n

4ek = n
24e (here

p = k/6). Since Si ∈ Γi(Sh) for each i, the messages
that the coordinator receives for the graph G′T is the
same as the messages for GT . Hence the coordinator
again can only output a matching of size n

α , which is an
α

24e -approximation to the maximum matching in G′T . �

5 Conclusions

In this paper, we resolved the space complexity of single-
pass turnstile algorithms for approximating matchings
by showing that for any ε > 0, Θ(n2−3ε) space is both
sufficient and necessary (up to polylogarithmic factors)
to compute an nε-approximate matching.

Our results for dynamic graph streams also resolve
the per-player simultaneous communication complex-
ity for approximating matchings in the edge partition
model. For the vertex partition model, we established
tight bound of Θ(nk/α2) (resp. Θ(nk/α)) total com-
munication for simultaneous randomized (resp. deter-
ministic) protocols for k players to compute an O(α)-
approximate matching, in the regime where α ≥

√
k.

We showed that fundamentally new techniques are
required to achieve an o(

√
k)-approximation with lim-

ited communication since in this regime, any simulta-

neous protocol must use communication that is super-
linear in n, even when k is a constant. We should note
that protocols with improved performance in this regime
would have immediate implications on the density of
lopsided RS graphs.

Acknowledgments

We would like to thank Michael Kapralov and David
Woodruff for helpful discussions.

References

[1] Bertinoro workshop 2014, problem 64. http://

sublinear.info/index.php?title=Open_Problems:

64. Accessed: 2015-05-1.
[2] Kook Jin Ahn and Sudipto Guha. Access to data

and number of iterations: Dual primal algorithms
for maximum matching under resource constraints.
CoRR, abs/1307.4359, 2013.

[3] Kook Jin Ahn and Sudipto Guha. Linear programming
in the semi-streaming model with application to the
maximum matching problem. Inf. Comput., 222:59–
79, 2013.

[4] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor.
Analyzing graph structure via linear measurements. In
Proceedings of the Twenty-third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 459–
467, 2012.

[5] Kook Jin Ahn, Sudipto Guha, and Andrew Mc-
Gregor. Graph sketches: sparsification, spanners,
and subgraphs. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS, pages 5–14, 2012.

[6] Yuqing Ai, Wei Hu, and David P. Woodruff. Additive
error norm approximation and new characterizations
in turnstile streams. Personal communication, 2015.

[7] Noga Alon, Yossi Matias, and Mario Szegedy. The
space complexity of approximating the frequency mo-
ments. In STOC, pages 20–29. ACM, 1996.

[8] Noga Alon, Ankur Moitra, and Benny Sudakov. Nearly
complete graphs decomposable into large induced
matchings and their applications. In Proceedings of the
44th Symposium on Theory of Computing Conference,
STOC, pages 1079–1090, 2012.

[9] Noga Alon, Noam Nisan, Ran Raz, and Omri Wein-
stein. Welfare maximization with limited interaction.
CoRR, abs/1504.01780. To appear in Symposium on
Foundations of Computer Science (FOCS), 2015.

[10] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory
Yaroslavtsev. Tight bounds for linear sketches of
approximate matchings. CoRR, abs/1505.01467, 2015.

[11] Rajesh Hemant Chitnis, Graham Cormode, Hossein
Esfandiari, MohammadTaghi Hajiaghayi, Andrew Mc-
Gregor, Morteza Monemizadeh, and Sofya Vorot-
nikova. Kernelization via sampling with applications to
dynamic graph streams. CoRR, abs/1505.01731, 2015.



[12] Rajesh Hemant Chitnis, Graham Cormode, Moham-
mad Taghi Hajiaghayi, and Morteza Monemizadeh.
Parameterized streaming: Maximal matching and ver-
tex cover. In Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 1234–1251, 2015.

[13] Michael Crouch and Daniel S. Stubbs. Improved
streaming algorithms for weighted matching, via un-
weighted matching. In Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM, pages 96–104, 2014.

[14] Shahar Dobzinski, Noam Nisan, and Sigal Oren. Eco-
nomic efficiency requires interaction. In Symposium on
Theory of Computing, STOC, pages 233–242, 2014.

[15] Sebastian Eggert, Lasse Kliemann, and Anand Srivas-
tav. Bipartite graph matchings in the semi-streaming
model. In Algorithms - ESA 2009, 17th Annual Euro-
pean Symposium, pages 492–503, 2009.

[16] Leah Epstein, Asaf Levin, Julián Mestre, and Danny
Segev. Improved approximation guarantees for
weighted matching in the semi-streaming model. SIAM
J. Discrete Math., 25(3):1251–1265, 2011.

[17] Hossein Esfandiari, Mohammad Taghi Hajiaghayi,
Vahid Liaghat, Morteza Monemizadeh, and Krzysztof
Onak. Streaming algorithms for estimating the match-
ing size in planar graphs and beyond. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 1217–1233, 2015.

[18] Joan Feigenbaum, Sampath Kannan, Andrew McGre-
gor, Siddharth Suri, and Jian Zhang. On graph prob-
lems in a semi-streaming model. Theor. Comput. Sci.,
348(2-3):207–216, 2005.

[19] Gereon Frahling, Piotr Indyk, and Christian Sohler.
Sampling in dynamic data streams and applications.
International Journal of Computational Geometry &
Applications, 18(01n02):3–28, 2008.

[20] Ashish Goel, Michael Kapralov, and Sanjeev Khanna.
On the communication and streaming complexity of
maximum bipartite matching. In Proceedings of the
Twenty-third Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA, pages 468–485. SIAM, 2012.

[21] Venkatesan Guruswami and Krzysztof Onak. Super-
linear lower bounds for multipass graph processing. In
Proceedings of the 28th Conference on Computational
Complexity, CCC, pages 287–298, 2013.

[22] Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic,
and Qin Zhang. Communication complexity of approx-
imate matching in distributed graphs. In 32nd Interna-
tional Symposium on Theoretical Aspects of Computer
Science, STACS, pages 460–473, 2015.

[23] Hossein Jowhari, Mert Sağlam, and Gábor Tardos.
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