
ar
X

iv
:1

81
1.

07
78

0v
1 

 [
cs

.D
S]

  1
9 

N
ov

 2
01

8

A Simple Sublinear-Time Algorithm for Counting Arbitrary

Subgraphs via Edge Sampling

Sepehr Assadi∗ Michael Kapralov† Sanjeev Khanna‡

Abstract

In the subgraph counting problem, we are given a (large) input graph G(V,E) and a (small)
target graph H (e.g., a triangle); the goal is to estimate the number of occurrences of H in G.
Our focus here is on designing sublinear-time algorithms for approximately computing number of
occurrences ofH inG in the setting where the algorithm is given query access toG. This problem
has been studied in several recent papers which primarily focused on specific families of graphs
H such as triangles, cliques, and stars. However, not much is known about approximate counting
of arbitrary graphs H in the literature. This is in sharp contrast to the closely related subgraph
enumeration problem that has received significant attention in the database community as the
database join problem. The AGM bound shows that the maximum number of occurrences of
any arbitrary subgraph H in a graph G with m edges is O(mρ(H)), where ρ(H) is the fractional
edge-cover of H , and enumeration algorithms with matching runtime are known for any H .

In this work, we bridge this gap between the subgraph counting and subgraph enumeration
problems by designing a simple sublinear-time algorithm that can estimate the number of occur-
rences of any arbitrary graph H in G, denoted by #H , to within a (1± ε)-approximation with

high probability in O(m
ρ(H)

#H
) ·poly(logn, 1/ε) time. Our algorithm is allowed the standard set of

queries for general graphs, namely degree queries, pair queries and neighbor queries, plus an ad-
ditional edge-sample query that returns an edge chosen uniformly at random. The performance
of our algorithm matches those of Eden et al. [FOCS 2015, STOC 2018] for counting triangles
and cliques and extend them to all choices of subgraph H under the additional assumption of
edge-sample queries. We further show that our algorithm works for a more general version of
the estimation problem where edges of G and H have colors, which corresponds to the database
join size estimation problem. For this slightly more general setting, we also establish a matching
lower bound for any choice of subgraph H .

∗Department of Computer and Information Science, University of Pennsylvania. Supported in part by the National
Science Foundation grant CCF-1617851. Email: sassadi@cis.upenn.edu.

†School of Computer and Communication Sciences, EPFL. Email: michael.kapralov@epfl.ch.
‡Department of Computer and Information Science, University of Pennsylvania. Supported in part by the National

Science Foundation grants CCF-1617851 and CCF-1763514. Email: sanjeev@cis.upenn.edu.

http://arxiv.org/abs/1811.07780v1


1 Introduction

Counting (small) subgraphs in massive graphs is a fundamental algorithmic problem, with a wide
range of applications in bioinformatics, social network analysis, spam detection and graph databases
(see, e.g. [10, 13,40]). In social network analysis, the ratio of the number of triangles in a network
to the number of length 2 paths (known as the clustering coefficient) as well as subgraph counts for
larger subgraphs H have been proposed as important metrics for analyzing massive networks [47].
Similarly, motif counting are popular method for analyzing protein-protein interaction networks in
bioinformatics (e.g., [40]). In this paper we consider designing efficient algorithms for this task.

Formally, we consider the following problem: Given a (large) graph G(V,E) with m edges and
a (small) subgraph H(VH , EH) (e.g., a triangle) and a precision parameter ε ∈ (0, 1), output a
(1± ε)-approximation1 to the number of occurrences of H in G. Our goal is to design an algorithm
that runs in time sublinear in the number m of edges of G, and in particular makes a sublinear
number of the following types of queries to the graph G:

• Degree query v: the degree dv of any vertex v ∈ V ;

• Neighbor query (v, i): what vertex is the i-th neighbor of the vertex v ∈ V for i ≤ dv;

• Pair query (u, v): test for pair of vertices u, v ∈ V , whether or not (u, v) is an edge in E.

• Edge-sample query: sample an edge e uniformly at random from E.

The first three queries are the standard baseline queries (see Chapter 10 of Goldreich’s book [26])
assumed by nearly all sublinear time algorithms for counting small subgraphs such as triangles or
cliques [19,21] (see [28] for the necessity of using pair queries for counting subgraphs beside stars).
The last query is somewhat less standard but is also considered in the literature prior to our work,
for example in [2] for counting stars in sublinear time, and in [22] in the context of lower bounds
for subgraph counting problems.

1.1 Our Contributions

For the sake of clarity, we suppress any dependencies on the approximation parameter ε, log n-
terms, and the size of graph H, using the O∗(·) notation. Our results are parameterized by the
fractional edge-cover number of the subgraph H (see Section 3 for the formal definition). Our goal
in this paper is to approximately compute the number of occurrences #H of H in G, formally
defined as number of subgraphs H ′ of G such that H and H ′ are isomorphic to each other.

Theorem 1. There exists a randomized algorithm that given a precision parameter ε ∈ (0, 1),
a subgraph H, and a query access to the input graph G, with high probability outputs a (1± ε)
approximation to the number of occurrences of H in G, denoted by #H, using:

O∗
(
min

{
m,

mρ(H)

#H

})
queries and O∗

(mρ(H)

#H

)
time.

The algorithm uses degree queries, neighbor queries, pair queries, and edge-sample queries.

1Throughout, we say that a is a (1± ε) approximation to b iff (1− ε) · b ≤ a ≤ (1 + ε) · b.

1



Since the fractional edge-cover number of any k-clique Kk is k/2, as a corollary of Theorem 1,
we obtain sublinear algorithms for counting triangles, and in general k-cliques using

O∗

(
min

{
m,

m
√
m

#K3

})
and O∗

(
min

{
m,

mk/2

#Kk

})
,

queries respectively. These bounds match the previous results of Eden et al. [19, 21] modulo an
additive term of O∗( n

(#K3)1/3
) for triangles in [19] and O∗( n

(#Kk)1/k
) for arbitrary cliques in [21]

which is needed in the absence of edge-sample queries that are not used by [19, 21]. Our bounds
settle a conjecture of Eden and Rosenbaum [22] in the affirmative by showing that one can avoid
the aforementioned additive terms depending on n in query complexity by allowing edge-sample
queries. We now elaborate more on different aspects of our result in Theorem 1.

AGM Bound and Database Joins. The problem of enumerating all occurrences of a graph
H in a graph G and, more generally, the database join problem, has been considered extensively
in the literature. A fundamental question here is that given a database with m entries (e.g. a
graph G with m edges) and a conjunctive query H (e.g. a small graph H), what is the maximum
possible size of the output of the query (e.g., number of occurrences of H in G)? The AGM bound
of Atserias, Grohe and Marx [4] provides a tight upper bound of mρ(H) (up to constant factors),
where ρ(H) is the fractional edge cover of H. The AGM bound applies to databases with several
relations, and the fractional edge cover in question is weighted according to the sizes of the different
relations. A similar bound on the number of occurrences of a hypergraph H inside a hypergraph
G with m hyperedges was proved earlier by Friedgut and Kahn [25], and the bound for graphs is
due to Alon [3]. Recent work of Ngo et al. [41] gave algorithms for evaluating database joins in
time bounded by worst case output size for a database with the same number of entries. When
instantied for the subgraph enumeration problem, their result gives an algorithm for enumerating
all occurrences of H in a graph G with m edges in time O(mρ(H)).

Our Theorem 1 is directly motivated by the connection between subgraph counting and sub-
graph enumeration problems and the AGM bound. In particular, Theorem 1 provides a natural
analogue of AGM bound for estimation algorithms by stating that if the number of occurrences H

is #H ≤ mρ(H), then a (1 ± ε)-approximation to #H can be obtained in O∗(m
ρ(H)

#H ) time. Addi-
tionally, as we show in Section 4.3, Theorem 1 can be easily extended to the more general problem
of database join size estimation (for binary relations). This problem corresponds to a subgraph
counting problem in which the graphs G and H are both edge-colored and our goal is to count the
number of copies of H in G with the same colors on edges. Our algorithm can solve this problem

also in O∗(m
ρ(H)

#Hc
) time where #Hc denotes the number of copies of H with the same colors in G.

Optimality of Our Bounds. Our algorithm in Theorem 1 is optimal from different points of
view. Firstly, by a lower bound of [22] (building on [19,21]), the bounds achieved by our algorithm
when H is any k-clique is optimal among all algorithms with the same query access (including the
edge-sample query). In Theorem 3, we further prove a lower bound showing that for odd cycles as
well, the bounds achieved by Theorem 1 are optimal. These results hence suggest that Theorem 1
is existentially optimal : there exists several natural choices for H such that Theorem 1 achieves
the optimal bounds. However, there also exist choices of H for which the bounds in Theorem 1 are
suboptimal. In particular, Aliakbarpour et al. [2] presented an algorithm for estimating occurrences
of any star Sℓ for ℓ ≥ 1 usingO∗( m

(#Sℓ)1/ℓ
) queries in our query model (including edge-sample queries)

which is always at least as good as our bound in Theorem 1, but potentially can be better. On

2



the other hand, we show that our current algorithm, with almost no further modification, in fact
achieves this stronger bound using a different analysis (see Remark 4.4 for details).

Additionally, as we pointed out before, our algorithm can solve the more general database join
size estimation for binary relations, or equivalently the subgraph counting problem with colors on
edges. In Theorem 4, we prove that for this more general problem, our algorithm in Theorem 1
indeed achieves optimal bounds for all choices of the subgraph H.

Edge-Sample Queries. The edge-sample query that we assume is not part of the standard
access model for sublinear algorithms, namely the “general graph” query model (see, e.g. [36]).
Nonetheless, we find allowing for this query “natural” owing to the following factors:

Theoretical implementation. Edge sampling queries can be implemented with an Õ(n/
√
m) mul-

tiplicative overhead in query and time using the recent result of [23], or with an O(n) additive
preprocessing time (which is still sublinear in m) by querying degrees of all vertices. Hence, we
can focus on designing algorithms by allowing these queries and later replacing them by either
of the above implementations in a black-box way at a certain additional cost.

Practical implementation. Edge sampling is a common practice in analyzing social networks [37,
38] or biological networks [1]. Another scenario when random edge sampling is possible is when
we can access a random location of the memory that is used to store the graph. To quote [2]:
“because edges normally take most of the space for storing graphs, an access to a random memory
location where the adjacency list is stored, would readily give a random edge.” Hence, assuming
edge sampling queries can be considered valid in many scenarios.

Understanding the power of random edge queries. Edge sampling is a critical component of various
sublinear time algorithms for graph estimation [2, 19–21, 23]. However, except for [2] that also
assumed edge-sample queries, all these other algorithms employ different workarounds to these
queries. As we show in this paper, decoupling these workarounds from the rest of the algorithm
by allowing edge-sample queries results in considerably simpler and more general algorithms for
subgraph counting and is hence worth studying on its own. We also mention that studying the
power of edge-sample queries has been cast as an open question in [22] as well.

Implications to Streaming Algorithms. Subgraph counting is also one of the most studied
problems in the graph streaming model (see, e.g. [6, 7, 11, 12, 16, 30, 31, 35, 39, 46] and references
therein). In this model, the edges of the input graph are presented one by one in a stream; the
algorithm makes a single or a small number of passes over the stream and outputs the answer
after the last pass. The goal in this model is to minimize the memory used by the algorithm
(similar-in-spirit to minimizing the query complexity in our query model).

Our algorithm in Theorem 1 can be directly adapted to the streaming model, resulting in an
algorithm for subgraph counting that makes O(1) passes over the stream and uses a memory of

size O∗
(
min

{
m, m

ρ(H)

#H

})
. For the case of counting triangles and cliques, the space complex-

ity of our algorithm matches the best known algorithms of McGregor et al. [39] and Bera and
Chakrabarti [7] which are known to be optimal [7]. To the best of our knowledge, the only previous
streaming algorithms for counting arbitrary subgraphs H are those of Kane et al. [35] and Bera

and Chakrabarti [7] that use, respectively, one pass and O∗(m
2·|E(H)|

(#H)2
) space, and two passes and

O∗(m
β(H)

#H ) space, where β(H) is the integral edge-cover number of H. As ρ(H) ≤ β(H) ≤ |E(H)|
by definition and #H ≤ mρ(H) by AGM bound, the space complexity of our algorithm is always at
least as good as the ones in [7, 35] but potentially can be much smaller.

3



1.2 Main Ideas in Our Algorithm

Our starting point is the AGM bound which implies that the number of “potential copies” of H
in G is at most mρ(H). Our goal of estimating #H then translates to counting how many of these
potential copies form an actual copy of H in G. A standard approach at this point is the Monte
Carlo method: sample a potential copy of H in G uniformly at random and check whether it forms
an actual copy of H or not; a simple exercise in concentration inequalities then implies that we

only need O(m
ρ(H)

#H ) many independent samples to get a good estimate of #H.

This approach however immediately runs into a technical difficulty. Given only a query access to
G, it is not at all clear how to sample a potential copy of H from the list of all potential copies. Our
first task is then to design a procedure for sampling potential copies of H from G. In order to do so,
we again consider the AGM bound and the optimal fractional edge-cover that is used to derive this
bound. We first prove a simple structural result that states that an optimal fractional edge-cover
of H can be supported only on edges that form a disjoint union of odd cycles and stars (in H).
This allows us to decompose H into a collection of odd cycles and stars and treat any arbitrary
subgraph H as a collection of these simpler subgraphs that are suitably connected together.

The above decomposition reduces the task of sampling a potential copy of H to sampling a
collection of odd cycles and stars. Sampling an odd cycle C2k+1 on 2k + 1 edges is as follows:
sample k edges e1, . . . , ek uniformly at random from G; pick one of the endpoints of e1 and sample
a vertex v from the neighborhood of this endpoint uniformly at random. With some additional
care, one can show that the tuple (e1, . . . , ek, v) sampled here is enough to identify an odd cycle
of length 2k + 1 uniquely. To sample a star Cℓ with ℓ petals, we sample a vertex v from G with
probability proportional to its degree (by sampling a random edge and picking one of the two
endpoints uniformly), and then sample ℓ vertices w1, . . . , wℓ from the neighborhood of v. Again,
with some care, this allows us to sample a potential copy of a star Sℓ. We remark that these
sampling procedures are related to sampling triangles in [19] and stars in [2]. Finally, to sample
a potential copy of H, we simply sample all its odd cycles and stars in the decomposition using
the method above. We should note right away that this however does not result in a uniformly at
random sample of potential copies of H as various parameters of the graph G, in particular degrees
of vertices, alter the probability of sampling each potential copy.

The next and paramount step is then how to use the samples above to estimate the value
of #H. Obtaining an unbiased estimator of #H based on these samples is not hard as we can
identify the probability each potential copy is sampled with in this process (which is a function of
degrees of vertices of the potential copy in G) and reweigh each sample accordingly. Nevertheless,
the variance of a vanilla variant of this sampling and reweighing approach is quite large for our
purpose. To fix this, we use an idea similar to that of [19] for counting triangles: sample a “partial”
potential copy of H first and fix it; sample multiple “extensions” of this partial potential copy
to a complete potential copy and use the average of estimates based on each extension to reduce
the variance. More concretely, this translates to sampling multiple copies of the first cycle for the
decomposition and for each sampled cycle, recursively sampling multiple copies of the remainder of
H as specified by the decomposition. A careful analysis of this recursive process—which is the main
technical part of the paper—allows us to bound the variance of the estimator by O(mρ(H)) · (#H).

Repeating such an estimator O(m
ρ(H)

#H ) times independently and taking the average value then gives
us a (1± ε)-approximation to #H by a simple application of Chebyshev’s inequality.

4



1.3 Further Related Work

In addition to the previous work in [2, 19, 21] that are already discussed above, sublinear-time
algorithms for estimating subgraph counts and related parameters such as average degree and
degree distribution moments have also been studied in [20, 24, 27, 28]. Similarly, sublinear-time
algorithms are also studied for estimating other graph parameters such as weight of the minimum
spanning tree [14,17,18] or size of a maximum matching or a minimum vertex cover [29,42–44,50]
(this is by no means a comprehensive summary of previous results).

Subgraph counting has also been studied extensively in the graph streaming model (see, e.g. [6,
7,11,12,16,30–33,35,39,46] and references therein). In this model, the edges of the input graph are
presented one by one in a stream; the algorithm makes a single or a small number of passes over
the stream and outputs the answer after the last pass. The goal in this model is to minimize the
memory used by the algorithm similar-in-spirit to minimizing the query complexity in our query
model. However, the streaming algorithms typically require reading the entire graph in the stream
which is different from our goal in sublinear-time algorithms.

2 Preliminaries

Notation. For any integer t ≥ 1, we let [t] := {1, . . . , t}. For any event E , I(E) ∈ {0, 1} is an
indicator denoting whether E happened or not. For a graph G(V,E), V (G) := V denotes the
vertices and E(G) := E denotes the edges. For a vertex v ∈ V , N(v) denotes the neighbors of v,
and dv := |N(v)| denotes the degree of v.

To any edge e = {u, v} in G, we assign two directed edges ~e1 = (u, v) and ~e2 = (v, u) called the
directed copies of e and let ~E be the set of all these directed edges. We also fix a total ordering
≺ on vertices whereby for any two vertices u, v ∈ V , u ≺ v iff du < dv, or du = dv and u appears
before v in the lexicographic order. To avoid confusion, we use letters a, b and c to denote the
vertices in the subgraph H, and letters u, v and w to denote the vertices of G.

We use the following standard variant of Chebyshev’s inequality.

Proposition 2.1. For any random variable X and integer t ≥ 1, Pr (|X − E [X]| ≥ t) ≤ Var[X]
t2

.

We also recall the law of total variance that states the for two random variables X and Y ,

Var [Y ] = E
x
(Var [Y | X = x]) + Var

x
[E [Y | X = x]] . (1)

We use the following standard graph theory fact in our proofs (see Appendix A.1 for a proof).

Proposition 2.2 (cf. [15]). For any graph G(V,E),
∑

(u,v)∈E min(du, dv) ≤ 5m
√
m.

Assumption on Size of Subgraph H. Throughout the paper, we assume that the size of the
subgraph H is a fixed constant independent of the size of the graph G and hence we suppress the
dependency on size of H in various bounds in our analysis using O-notation.

3 A Graph Decomposition Using Fractional Edge-Covers

In this section, we give a simple decomposition of the subgraph H using fractional edge-covers. We
start by defining fractional edge-covers formally (see also Figure 1).

5



Definition 1 (Fractional Edge-Cover Number). A fractional edge-cover of H(VH , EH) is a mapping
ψ : EH → [0, 1] such that for each vertex a ∈ VH ,

∑
e∈EH ,a∈e ψ(e) ≥ 1. The fractional edge-cover

number ρ(H) of H is the minimum value of
∑

e∈EH
ψ(e) among all fractional edge-covers ψ.

The fractional edge-cover number of a graph can be computed by the following LP:

ρ(H) = minimize
∑

e∈E(H)

xe

subject to
∑

e∈EH :a∈e

xe ≥ 1 for all vertices a ∈ V (H). (2)

The following lemma is the key to our decomposition. The proof is based on standard ideas in
linear programming and is provided in Appendix A.2 for completeness.

Lemma 3.1. Any subgraph H admits an optimal fractional edge-cover x∗ such that the support of
x∗, denoted by supp(x∗), is a collection of vertex-disjoint odd cycles and star graphs, and,

1. for every odd cycle C ∈ supp(x∗), x∗e = 1/2 for all e ∈ C;

2. for every edge e ∈ supp(x∗) that does not belong to any odd cycle, xe = 1.

3.1 The Decomposition

We now present the decomposition of H using Lemma 3.1. Let x∗ be an optimal fractional edge-
cover in Lemma 3.1 and let C1, . . . , Co be the odd-cycles in the support of x∗ and S1, . . . ,Ss be the
stars. We define D(H) := {C1, . . . , Co,S1, . . . ,Ss} as the decomposition of H (see Figure 1 below
for an illustration).

(a) The subgraph H .

0.5 0.5

0.5

0.5

0.5

1 1

1

(b) An optimal edge-cover of H
with ρ(H) = 5.5.

(c) Decomposition of H .

Figure 1: Illustration of the our decomposition for H based on fractional edge-covers.

For every i ∈ [o], let the length of the odd cycle Ci be 2ki + 1 (i.e., Ci = C2ki+1); we define
ρCi := ki + 1/2. Similarly, for every j ∈ [s], let the number of petals in Sj be ℓj (i.e., Sj = Sℓj); we

define ρSj := ℓj. By Lemma 3.1,

ρ(H) =
o∑

i=1

ρCi +
s∑

j=1

ρSj . (3)

Recall that by AGM bound, the total number of copies of H possible in G is mρ(H). We also use
the following simple lemma which is a direct corollary of the AGM bound.

Lemma 3.2. Let I := {i1, . . . , io} and J := {j1, . . . , js} be subsets of [o] and [s], respectively.
Suppose H̃ is the subgraph of H on vertices of the odd cycles Ci1 , . . . , Cio and stars Sj1 , . . . ,Sjs.
Then the total number of copies of H̃ in G is at most mρ(H̃) for ρ(H̃) ≤∑i∈I ρ

C
i +

∑
j∈J ρ

S
j .

6



Proof. Let x∗ denote the optimal value of LP (2) in the decomposition D(H). Define y∗ as the
projection of x∗ to edges present in H̃. It is easy to see that y∗ is a feasible solution for LP (2) of
H̃ with value

∑
i∈I ρ

C
i +

∑
j∈J ρ

S
j . The lemma now follows from the AGM bound for H̃.

3.2 Profiles of Cycles, Stars, and Subgraphs

We conclude this section by specifying the representation of the potential occurrences of the sub-
graph H in G based on the decomposition D(H).

Odd cycles: We represent a potential occurrence of an odd cycle C2k+1 in G as follows. Let
e = (~e1, . . . , ~ek) ∈ ~Ek be an ordered tuple of k directed copies of edges in G and suppose ~ei := (ui, vi)
for all i ∈ [k]. Define u∗e = u1 and let w be any vertex in N(u∗e). We refer to any such collection
(e, w) as a profile of C2k+1 in G. We say that “the profile (e, w) forms a cycle C2k+1 in G”
iff (i) u1 is the smallest vertex on the cycle according to ≺, (ii) v1 ≺ w, and (iii) the edges
(u1, v1), (v1, u2), . . . , (uk, vk), (vk, w), (w, u1) all exist in G and hence there is a copy of C2k+1 on
vertices {u1, v1, u2, v2, . . . , uk, vk, w} in G. Note that under this definition and our definition of
#C2k+1, each copy of C2k+1 correspond to exactly one profile (e, w) and vice versa. As such,

#C2k+1 =
∑

e∈ ~Ek

∑

w∈N(u∗
e
)

I

(
(e, w) forms a cycle C2k+1 in G

)
. (4)

Stars: We represent a potential occurrence of a star Sℓ in G by (v,w) where v is the center of the
star and w = (w1, . . . , wℓ) are the ℓ petals. We refer to (v,w) as a profile of Sℓ in G. We say
that “the profile (v,w) forms a star Sℓ in G” iff (i) |w| > 1, or (ii) (ℓ =) |w| = 1 and v ≺ w1;
in both cases there is a copy of Sℓ on vertices v,w1, . . . , wℓ. Under this definition, each copy of Sℓ
corresponds to exactly one profile (v,w). As such,

#Sℓ =
∑

v∈V

∑

w∈N(v)ℓ

I

(
(v,w) forms a star Sℓ in G

)
. (5)

Arbitrary subgraphs: We represent a potential occurrence of H in G by an (o + s)-tuple R :=
((e1, w1), . . . , (eo, wo), (v1,w1), . . . , (vs,ws)) where (ei, wi) is a profile of the cycle Ci in D(H) and
(vj ,wj) is a profile of the star Sj . We refer to R as a profile of H and say that “the profile R forms
a copy of H in G” iff (i) each profile forms a corresponding copy of Ci or Sj in D(H), and (ii) the
remaining edges of H between vertices specified by R all are present in G (note that by definition
of the decomposition D(H), all vertices of H are specified by R). As such,

#H =
∑

R

I

(
R forms a copy of H in G

)
· f(H), (6)

for a fixed constant f(H) depending only on H as defined below. Let π : VH → VH be an
automorphism of H. Let C1, . . . , Co, S1, . . . , Ss denote the cycles and stars in the decomposition
of H. We say that π is decomposition preserving if for every i = 1, . . . , o cycle Ci is mapped to a
cycle of the same length and for every i = 1, . . . , s Si is mapped to a star with the same number
of petals. Let the number of decomposition preserving automorphisms of H be denoted by Z,

and define f(H) = 1/Z. Define the quantity #̃H :=
∑

R
I

(
R forms a copy of H in G

)
which is

equal to #H modulo the scaling factor of f(H). It is immediate that estimating #H and #̃H are
equivalent to each other and hence in the rest of the paper, with a slight abuse of notation, we use
#H and #̃H interchangeably.

7



4 A Sublinear-Time Algorithm for Subgraph Counting

We now present our sublinear time algorithm for approximately counting number of any given
arbitrary subgraph H in an underlying graph G and prove Theorem 1. The main component of our
algorithm is an unbiased estimator random variable for #H with low variance. The algorithm in
Theorem 1 is then obtained by simply repeating this unbiased estimator in parallel enough number
of times (based on the variance) and outputting the average value of these estimators.

4.1 A Low-variance Unbiased Estimator for #H

We present a low-variance unbiased estimator for #H in this section. Our algorithm is a sampling
based algorithm. In the following, we first introduce two separate subroutines for sampling odd
cycles (odd-cycle-sampler) and stars (star-sampler), and then use these components in conjunc-
tion with the decomposition we introduced in Section 3, to present our full algorithm. We should
right away clarify that odd-cycle-sampler and star-sampler are not exactly sampling a cycle or
a star, but rather sampling a set of vertices and edges (in a non-uniform way) that can potentially
form a cycle or star in G, i.e., they sample a profile of these subgraphs defined in Section 3.2.

The odd-cycle-sampler Algorithm

We start with the following algorithm for sampling an odd cycle C2k+1 for some k ≥ 1. This
algorithm outputs a simple data structure, named the cycle-sampler tree, that provides a conve-
nient representation of the samples taken by our algorithm (see Definition 2 immediately after the
description of the algorithm). This data structure can be easily avoided when designing a cycle
counting algorithm, but will be quite useful for reasoning about the recursive structure of our
sampling algorithm for general graphs H.

odd-cycle-sampler(G,C2k+1).

1. Sample k directed edges e := (~e1, . . . , ~ek) uniformly at random (with replacement) from G
with the constraint that for ~e1 = (u1, v1), u1 ≺ v1.

2. Let u∗e := u1 and let d∗e := du∗
e

.

3. For i = 1 to te := ⌈d∗e/
√
m⌉: Sample a vertex wi uniformly at random from N(u∗e).

4. Let w := (w1, . . . , wte). Return the cycle-sampler tree T (e,w) (see Definition 2).

Definition 2 (Cycle-Sampler Tree). The cycle-sampler tree T (e,w) for the tuple (e,w) sampled
by odd-cycle-sampler(G,C2k+1) is the following 2-level tree T :

• Each node α of the tree contains two attributes: label[α] which consists of some of the edges
and vertices in (e,w), and an integer value[α].

• For the root αr of T , label[αr] := e and value[αr] := (2m)k/2.

(value[αr] is equal to the inverse of the probability that e is sampled by odd-cycle-sampler).

• The root αr has te child-nodes in T for a parameter te = ⌈d∗e/
√
m⌉ (consistent with line 3 of

odd-cycle-sampler(G,C2k+1) above).

8



• For the i-th child-node αi of root, i ∈ [te], label[αi] := wi and value[αi] := d∗e

(value[αi] is equal to the inverse of the probability that wi is sampled by odd-cycle-sampler,
conditioned on e being sampled).

Moreover, for each root-to-leaf path Pi := (αr, αi) (for i ∈ [te]), define label[Pi] := label[αr]∪label[αi]
and value[Pi] := value[αr]·value[αi] (label[Pi] is a profile of the cycle C2k+1 as defined in Section 3.2).

See Figure 2a for an illustration of a cycle-sampler tree.

odd-cycle-sampler can be implemented in our query model by using k edge-sample queries
(and picking the correct direction for e1 based on ≺ and one of the two directions uniformly at
random for the other edges) in Line (1), two degree queries in Line (2), and one neighbor query
in Line (3). This results in O(k) queries in total for one iteration of the for-loop in Line (3). As
such, the total query complexity of odd-cycle-sampler is O(te) (recall that k is a constant). It
is also straightforward to verify that we can compute the cycle-sampler tree T of an execution of
odd-cycle-sampler with no further queries and in O(te) time. We bound the query complexity
of this algorithm by bounding the expected number of iterations in the for-loop.

Lemma 4.1. For the parameter te in Line (3) of odd-cycle-sampler, E [te] = O(1).

Proof. By definition, te := ⌈d∗e/
√
m⌉ for d∗e = min(du, dv) for an edge e1 = (u, v) chosen uniformly

at random from G. As such, by Proposition 2.2,

E [te] = 1 +O(m−1/2) · 1
m
·
∑

(u,v)∈E

min(du, dv) =
Proposition 2.2

O(m−3/2) · 5m√m = O(1).

We now define a process for estimating the number of odd cycles in a graph using the information
stored in the cycle-sampler tree and the odd-cycle-sampler algorithm. While we do not use this
process in a black-box way in our main algorithm, abstracting it out makes the analysis of our main
algorithm simpler to follow and more transparent, and serves as a warm-up for our main algorithm.

Warm-up: An Estimator for Odd Cycles. Let T := odd-cycle-sampler(G,C2k+1) be the
output of an invocation of odd-cycle-sampler. Note that the cycle-sampler tree T is a random
variable depending on the randomness of odd-cycle-sampler. We define the random variable Xi

such that Xi := label[Pi] for the i-th root-to-leaf path iff label[Pi] forms a copy of C2k+1 in G and
otherwise Xi := 0 (according to the definition of Section 3). We further define Y := 1

te
·∑te

i=1Xi

(note that te is also a random variable). Our estimator algorithm can compute the value of these
random variables using the information stored in the tree T plus additional O(k) = O(1) queries
for each of the te root-to-leaf path Pi to detect whether (e, wi) forms a copy of H or not. Thus,
the query complexity and runtime of the estimator is still O(te) (which in expectation is O(1) by
Lemma 4.1). We now analyze its expectation and variance.

Lemma 4.2. For the random variable Y associated with odd-cycle-sampler(G,C2k+1),

E [Y ] = (#C2k+1), Var [Y ] ≤ (2m)k
√
m · E [Y ] .

Proof. We first analyze the expected value of Xi’s and then use this to bound E [Y ]. For any
i ∈ [te], we have, Xi = value[αr] · value[αi] · I (label[αr] ∪ label[αi] forms a copy of C2k+1), where, as

9



per Definition 2, αr is the root of T . As such,

E [Xi] =
∑

e∈ ~Ek

∑

w∈N(u∗
e
)

Pr (label[αr] = e) · Pr (label[αi] = w)

· I ((e, w) forms a copy of C2k+1) · value[αr] · value[αi]

=
2

(2m)k
·
∑

e

(
1

d∗e
·
∑

w

I ((e, w) forms a copy of C2k+1) ·
(2m)k

2
· d∗e

)

=
∑

e

∑

w

I ((e, w) forms a copy of C2k+1) =
Eq (4)

(#C2k+1).

As E [Y ] = E [Xi] for any i ∈ [t] by linearity of expectation, we obtain the desired bound on E [Y ].

We now bound Var [Y ] using the fact that it is obtained by taking average of te random variables
that are independent after we condition on the choice of e. We formalize this as follows. Note that
for any two i 6= j, the random variables Xi | e and Xj | e are independent of each other (even
though Xi and Xj in general are correlated). By the law of total variance in Eq (1),

Var [Y ] = E [Var [Y | e]] + Var [E [Y | e]] . (7)

We bound each term separately now. Recall that Y := 1
te

∑te
i=1Xi and Xi’s are independent

conditioned on e. As such,

E [Var [Y | e]] = 2

(2m)k

∑

e∈ ~Ek

Var [Y | e] = 2

(2m)k

∑

e

1

t2e
·

te∑

i=1

Var [Xi | e]

(by conditional independence of Xi’s)

≤ 2

(2m)k

∑

e

1

te
E
[
X2

1 | e
]
. (as distribution of all Xi’s are the same)

Hence, it suffices to calculate E
[
X2

1 | e
]
. We have,

E
[
X2

1 | e
]
=

∑

w∈N(u∗)

Pr (label[α1] = w) · I ((e, w) forms a copy of C2k+1) · (value[αr] · value[α1])
2

=
1

d∗e
·
∑

w

I ((e, w) forms a copy of C2k+1) ·
(
(2m)k

2
· d∗e
)2

≤ (2m)2k

4
· d∗e ·

∑

w

I ((e, w) forms a copy of C2k+1)

=
Eq (4)

(2m)2k

4
· d∗e · (#C2k+1 | e),

where (#C2k+1 | e) denotes the number of copies of C2k+1 containing the sub-profile e = (~e1, . . . , ~ek).
By plugging in this bound in the above equation, we have,

E [Var [Y | e]] ≤ 2

(2m)k

∑

e∈ ~Ek

1

te
· (2m)2k

4
· d∗e · (#C2k+1 | e)

≤ (2m)k
√
m

2

∑

e

(#C2k+1 | e) =
(2m)k

√
m

2
· (#C2k+1), (8)

10



by the choice of te ≥ d∗e/
√
m. We now bound the second term in Eq (7). Note that by the by proof

of E [Y ] = (#C2k+1) above, we also have E [Y | e] = (#C2k+1 | e). As such,

Var [E [Y | e]] = Var [(#C2k+1 | e)] ≤ E
[
(#C2k+1 | e)2

]
=

2

(2m)k

∑

e

(#C2k+1 | e)2

≤ 2

(2m)k
·
(
∑

e

(#C2k+1 | e)
)2

=
2

(2m)k
(#C2k+1)

2 ≤ √m · (#C2k+1) ,

where the last inequality is by AGM bound in Lemma 3.2 which states that (#C2k+1) ≤ mk√m
(as ρ(C2k+1) = k+1/2). Plugging in this bound in the second term of Eq (7) and using Eq (8) for
the first term yields:

Var [Y ] = E [Var [Y | e]] + Var [E [Y | e]]

≤ (2m)k
√
m

2
· (#C2k+1) +

√
m · (#C2k+1) ≤ (2m)k

√
m · (#C2k+1) = (2m)k

√
m · E [Y ] ,

where the equality is by the bound on E [Y ] proven in the first part.

The star-sampler Algorithm

We now give an algorithm for sampling a star Sℓ with ℓ petals. Similar to odd-cycle-sampler,
this algorithm also outputs a simple data structure, named the star-sampler tree, that provides
a convenient representation of the samples taken by our algorithm (see Definition 3, immediately
after the description of the algorithm). This data structure can be easily avoided when designing a
star counting algorithm, but will be quite useful for reasoning about the recursive structure of our
sampling algorithm for general graphs H.

star-sampler(G,Sℓ).

1. Sample a vertex v ∈ V chosen with probability proportional to its degree in G (i.e., for any
vertex u ∈ V , Pr (u is chosen as the vertex v) = du/2m).

2. Sample ℓ vertices w := (w1, . . . , wℓ) from N(v) uniformly at random (without replacement).

3. Return the star-sampler tree T (v,w) (see Definition 3).

Definition 3 (Star-Sampler Tree). The star-sampler tree T (v,w) for the tuple (v,w) sampled by
star-sampler(G,Sℓ) is the following 2-level tree T (with the same attributes as in Definition 2)
with only two nodes:

• For the root αr of T , label[αr] := v and value[αr] := 2m/dv.

(value[αr] is equal to the inverse of the probability that v is sampled by star-sampler).

• The root αr has exactly one child-node αl in T with label[αl] = w = (w1, . . . , wℓ) and
value[αl] =

(
dv
ℓ

)
.

(value[αl] is equal to the inverse of the probability that w is sampled by star-sampler, con-
ditioned on v being sampled).

11



Moreover, for the root-to-leaf path P := (αr, αl), we define label[P] := label[αr] ∪ label[αl] and
value[P] := value[αr]·value[αl]. (label[P] is a representation of the star Sℓ as defined in Section 3.2).

See Figures 2b and 2c for an illustration of star-sampler trees.

star-sampler can be implemented in our query model by using one edge-sample query in
Line (1) and then picking one of the endpoints uniformly at random, a degree query to deter-
mine the degree of v, and ℓ neighbor queries in Line (2), resulting in O(ℓ) queries in total. It
is also straightforward to verify that we can compute the star-sampler tree T of an execution of
star-sampler with no further queries and in O(1) time.

We again define a process for estimating the number of stars in a graph using the information
stored in the star-sampler tree and the star-sampler algorithm, as a warm-up to our main result
in the next section.

Warm-up: An Estimator for Stars. The star-sampler tree T is a random variable depending
on the randomness of star-sampler. We define the random variable X such that X := value[P] for
the root-to-leaf path of T iff label[P] forms a copy of Sℓ in G and otherwise X := 0. Our estimator
algorithm can compute the value of this random variable using only the information stored in the
tree T with no further queries to the graph (by simply checking if all wi’s in w are distinct). As
such, the query complexity and runtime of the estimator algorithm is still O(1). We now prove,

Lemma 4.3. For the random variable X associated with star-sampler(G,Sℓ),

E [X] = (#Sℓ), Var [X] ≤ 2mℓ · E [X] .

Proof. Firstly, we have X = value[αr] ·value[αl] ·I (label[αr] ∪ label[αl] forms a copy of Sℓ). As such,

E [X] =
∑

v∈V

∑

w∈N(v)ℓ

Pr (label[αr] = v) · Pr (label[αl] = w)

· I((v,w) forms a copy of Sℓ) · value[αr] · value[αl]

=
∑

v

dv
2m
·
∑

w

1(dv
ℓ

) · I((v,w) forms a copy of Sℓ) · (2m/dv) ·
(
dv
ℓ

)

=
∑

v

∑

w

I((v,w) forms a copy of Sℓ) = (#Sℓ).

This proves the desired bound on the exception. We now bound Var [X].

Var [X] ≤ E
[
X2
]
=
∑

v∈V

∑

w∈N(v)ℓ

Pr (label[αr] = v) · Pr (label[αl] = w)

· I((v,w) forms a copy of Sℓ) · (value[αr] · value[αl])
2

=
∑

v

dv
2m
·
∑

w

1(dv
ℓ

) · I((v,w) forms a copy of Sℓ) ·
(
(2m/dv) ·

(
dv
ℓ

))2

=
∑

v

∑

w

I((v,w) forms a copy of Sℓ) · (2m/dv) ·
(
dv
ℓ

)

≤
∑

v

∑

w

I((v,w) forms a copy of Sℓ) · 2m · dvℓ−1 (since
(
dv
ℓ

)
≤ dℓv)

12



≤ 2mℓ ·
∑

v

∑

w

I((v,w) forms a copy of Sℓ) (since dv ≤ m)

= 2mℓ · (#Sℓ) = 2mℓ · E [X] ,

by the bound on E [X] in the first part.

Remark 4.4. As we pointed out earlier, the bounds achieved by our Theorem 1 for counting stars
are suboptimal in the light of the results in [2]. In Appendix A.3, we show that in fact our estimator
in this section—using a different analysis which is similar to that of [2]—also matches the optimal
bounds achieved by [2]. This suggests that even for the case of stars our algorithm in Theorem 1
is still optimal even though the general bounds in the theorem statement are not. We note that our
main estimator algorithm relies on the particular analysis of the estimator for stars presented in
this section as the alternate analysis does not seem to compose with the rest of the argument.

The Estimator Algorithm for Arbitrary Subgraphs

We now present our main estimator for the number of occurrences of an arbitrary subgraph H in G,
denoted by (#H). Recall the decomposition D(H) := {C1, . . . , Co,S1, . . . ,Ss} of H introduced in
Section 3. Our algorithm creates a subgraph-sampler tree T (a generalization of cycle-sampler and
star-sampler trees in Definitions 2 and 3) and use it to estimate (#H). We define the subgraph-
sampler tree T and the algorithm subgraph-sampler(G,H) that creates it simultaneously:

Subgraph-Sampler Tree. The subgraph-sampler tree T is a z-level tree for z := (2o + 2s)
returned by subgraph-sampler(G,H). The algorithm subgraph-sampler constructs T as follows
(see Figure 2 for an illustration).

Sampling Odd Cycles. In subgraph-sampler(G,H), we first run odd-cycle-sampler(G, C1)
and initiate T to be its output cycle-sampler tree. For every (current) leaf-node α of T , we run
odd-cycle-sampler(G, C2) independently to obtain a cycle-sampler tree Tα (we say that α started
the sampling of Tα). We then extend the tree T with two new layers by connecting each leaf-node
α to the root of Tα that started its sampling. This creates a 4-level tree T . We continue like this
for o steps, each time appending the tree obtained by odd-cycle-sampler(G, Cj) for j ∈ [o], to
the (previous) leaf-node that started this sampling. This results in a (2o)-level tree. Note that the
nodes in the tree T can have different degrees as the number of leaf-nodes in the cycle-sampler tree
is not necessarily the same always (not even for two different trees associated with one single Cj
through different calls to odd-cycle-sampler(G, Cj)).

Sampling Stars. Once we iterated over all odd cycles of D(H), we switch to processing stars
S1, . . . ,Ss. The approach is identical to the previous part. Let α be a (current) leaf-node of T .
We run star-sampler(G,S1) to obtain a star-sampler tree Tα and connect α to Tα to extend the
levels of tree by 2 more. We continue like this for s steps, each time appending the tree obtained by
star-sampler(G,Sj) for j ∈ [s], to the (former) leaf-node that started this sampling. This results
in a z-level tree T . Note that all nodes added when sampling stars have exactly one child-node
(except for the leaf-nodes) as by Definition 3, star-sampler trees always contain only two nodes.

Labels and Values. Each node α of T is again given two attributes, label[α] and value[α],
which are defined to be exactly the same attributes in the corresponding cycle-sampler or star-
sampler tree that was used to define these nodes (recall that each node of T is “copied” from a
node in either a cycle-sampler or a star-sampler tree). Finally, for each root-to-leaf path P in
T , we define label[P] := ⋃

α∈P label[α] and value[P] := ∏
α∈P value[α]. In particular, label[P] :=

((e1, w1), . . . , (eo, wo), (v1,w1), . . . , (vs,ws)) by definition of labels of cycle-sampler and star-sampler

13



e1, e2

w1 w2 w3

(a) A cycle-sampler tree for C5.

v1

w1

(b) A star-sampler tree for S1.

v1

w1, w2

(c) A star-sampler tree for S2.

e1, e2

w1

v1

w2

v2

w3, w4

(d) A subgraph-sampler tree for the sub-
graph H which is decomposed in D(H) to
a C3 cycle (length 3), and two stars S1 (one
petal) and S2 (two petals). The labels of
some nodes are omitted in the figure.

Figure 2: Illustration of the sampler-subgraph T for the subgraph H of Figure 1. The (blue) thick
line in part (d) shows a root-to-leaf path P with value[P] = (m2) · (d∗(e1,e2)) · (

2m
dv1

) ·
(dv1

1

)
· ( 2mdv2 ) ·

(dv2
2

)
.

The variable X of P is equal to value[P] iff the profile ((e1, e2, w1), (v1, w2), (v2, w2, w3)) forms a
copy of H in G.

trees. As such label[P] is a representation of the subgraph H as defined in Section 3.2. By making
O(1) additional pair-queries to query all the remaining edges of this representation of H we can
determine whether label[P] forms a copy of H or not.

This concludes the description of subgraph-sampler(G,H) and its output subgraph-sampler
tree T . We start analyzing this algorithm by bounding its query complexity.

Lemma 4.5. The expected query complexity and running time of subgraph-sampler is O(1).

Proof. As was the case for odd-cycle-sampler and star-sampler, in the subgraph-sampler

also the query complexity of the algorithm is within a constant factor of number of nodes in the
subgraph-sampler tree T that it returns. Hence, we only need to bound the number of nodes in T .

Let L1, . . . ,Lz denote the set of nodes in layers 1 to z of T . L1 contains only the root αr of T .
Let er := label[αr]. By definition of the cycle-sampler tree that forms the first two layers of T , the
number of child-nodes of αr is ter (defined in Line (3) of odd-cycle-sampler). As such |L2| = te1 .
The nodes in any even layer of T have only a single child-node by construction, hence |L3| = |L2|.

14



Now, for each node α in L3 with label eα := label[α], the number of child-nodes is teα (the number
of child-nodes of a node in an even layer is always one by construction). Hence, |L4| =

∑
α∈L3

teα .
By continuing like this, we obtain that for each layer L2i for i ≤ o, |L2i| =

∑
α∈L2i−1

teα . After
this, we reach the layers corresponding to star-sampler subgraphs, in which every non-leaf node has
exactly one child-node, and hence |Lj| = |L2o| for all j ≥ 2o. Moreover note that each odd-layer
node of T independently starts the sampling of its subtree (even independently of its parent-nodes).

Define t1, . . . , to as the random variables denoting the number of leaf-nodes in the cycle-sampler
trees for C1, . . . Co in the decomposition D(H). By Lemma 4.1, E [ti] = O(1) for all i ∈ [o]. By the
above discussion, we have,

E [|L1 ∪ . . . ∪ Lz|] = O(z) · E [t1] · E [t2] · . . . · E [to] +O(z) =
Lemma 4.1

O(1)O(z) = O(1),

as z = O(1) since size of H is constant. Finally, note that running time of the algorithm is at most
a constant factor larger than its query complexity.

We are now ready to present our estimator algorithm using subgraph-sampler and the subgraph-
sampler tree T it outputs.

An Estimator for Arbitrary Subgraphs. Note that as before the subgraph-sampler tree T
itself is a random variable depending on the randomness of subgraph-sampler. For any root-to-
leaf path Pi := α1, . . . , αz of T , we define the random variable Xi such that Xi := value[Pi] iff
label[Pi] forms a copy of H in G and otherwise Xi := 0. We further define Y := (1t

∑t
i=1Xi), where

t is the number of leaf-nodes of T (which itself is a random variable). These random variables
can all be computed from T and subgraph-sampler with at most O(1) further pair-queries per
each root-to-leaf path P of the tree to determine if indeed label[P] forms a copy of H in G or not.
As such, query complexity and runtime of this algorithm is proportional to subgraph-sampler

(which in expectation is O(1) by Lemma 4.5). In the following two lemmas, we show that Y is a
low-variance unbiased estimator of (#H). To continue, we first need some notation.

Notation. For any node α in T , we use Tα to denote the sub-tree of T rooted at α. For a
leaf-node α, we define a random variable Yα which is value[α] iff for the root-to-leaf path P ending
in α, label[P] forms a copy of H in G and otherwise Yα is 0. For an internal node α in T with
t child-nodes α1, . . . , αt, we define Yα = value[α] ·

(
1
t ·
∑t

i=1 Yi
)
. It is easy to verify that Yαr for

the root αr of T is the same as the estimator random variable Y defined earlier. Furthermore, for
a node α in level ℓ of T , we define Lα := (label[α1], label[α2], . . . , label[αℓ−1]), where α1, . . . , αℓ−1

forms the path from the root of T to the parent of α.

We analyze the expected value and the variance of the estimator in the following two lemmas.

Lemma 4.6. For the random variable Y for subgraph-sampler(G,H), E [Y ] = (#H).

Proof. We prove this lemma inductively by showing that for any node α in an odd layer of T ,

E [Yα | Lα] = (#H | Lα),

where (#H | Lα) denotes the number of copies of H in G that contain the vertices and edges
specified by Lα (according to the decomposition D(H)). E [Yα | Lα] measures the value of Yα after
we fix the rest of the tree T and let the sub-tree Tα be chosen randomly as in subgraph-sampler.

The base case of the induction, i.e., for vertices in the last odd layer of T follows exactly as in
the proofs of Lemmas 4.2 and 4.3 (as will also become evident shortly) and hence we do not repeat

15



it here. We now prove the induction hypothesis. Fix a vertex α in an odd layer ℓ. We consider two
cases based on whether ℓ < 2o (hence α is root of a cycle-sampler tree) or ℓ > 2o (hence α is root
of a star-sampler tree).

Case of ℓ < 2o. In this case, the sub-tree Tα in the next two levels is a cycle-sampler tree, hence,

E [Yα | Lα] =
∑

e

Pr (label[α] = e) · value[α] ·
(

1

te

te∑

i=1

E [Yαi | Lα,e]

)

(here, αi’s are child-nodes of α)

=
∑

e

1

te

te∑

i=1

E [Yαi | Lα,e] (as by definition, value[α] = Pr (label[α] = e)−1)

Note that each αi has exactly one child-node, denoted by βi. As such,

E [Yα | Lα] =
∑

e

1

te

te∑

i=1

E [Yαi | Lα,e]

=
∑

e

1

te

te∑

i=1

∑

w

Pr (label[αi] = w) · value[αi] · E [Yβi
| Lα,e, w]

=
∑

e

1

te

te∑

i=1

∑

w

E [Yβi
| Lβi

]

(by definition value[αi] = Pr (label[αi] = w)−1 and Lβi
= Lα, (e, w))

=
∑

e

1

te

te∑

i=1

∑

w

(#H | Lβi
) =

∑

e

1

te

te∑

i=1

∑

w

(#H | Lα, (e, w))

(by induction hypothesis for odd-layer nodes βi’s)

=
∑

e

∑

w

(#H | Lα, (e, w)) = (#H | Lα).

This concludes the proof of induction hypothesis in this case. Note that this proof was basically
the same proof for the expectation bound of the estimator for cycle-sampler tree in Lemma 4.2.

Case of ℓ > 2o. In this case, the sub-tree Tα in the next two levels is a star-sampler tree. By
the same analogy made in the proof of the previous part and Lemma 4.2, the proof of this part also
follows directly from the proof of Lemma 4.3 for star-sampler trees. We hence omit the details.

We can now finalize the proof of Lemma 4.6, by noting that for the root αr of T , Lαr is the
empty-set and hence, E [Y ] = E [Yαr | Lαr ], which by induction is equal to (#H).

Recall that ρ(H) is the fractional edge-cover number of H and it is related to D(H) through Eq (3).

Lemma 4.7. For the random variable Y for subgraph-sampler(G,H), Var [Y ] = O(mρ(H))·E [Y ].

Proof. We bound Var [Y ] using a similar inductive proof as in Lemma 4.6. Recall the parameters
ρC1 , . . . , ρ

C
o and ρS1 , . . . , ρ

S
s associated respectively with the cycles C1, . . . , Co and stars S1, . . . ,Ss of

the decomposition D(H). For simplicity of notation, for any i ∈ [o+ s], we define ρi+ as follows:

for all i ≤ o, ρi+ :=

o∑

j=i

ρCj +

s∑

j=1

ρSj , for all o < i ≤ o+ s, ρi+ :=

s∑

j=i−o

ρSj .

16



We inductively show that, for any node α in an odd layer 2ℓ− 1 of T ,

Var [Yα | Lα] ≤ 22z−2ℓ ·mρℓ+ · (#H | Lα),

where (#H | Lα) denotes the number of copies of H in G that contain the vertices and edges
specified by Lα (according to the decomposition D(H)).

The induction is from the leaf-nodes of the tree to the root. The base case of the induction, i.e.,
for vertices in the last odd layer of T follows exactly as in the proofs of Lemmas 4.2 and 4.3 (as
will also become evident shortly) and hence we do not repeat it here. We now prove the induction
hypothesis. Fix a vertex α in an odd layer 2ℓ− 1. We consider two cases based on whether ℓ ≤ o
(hence α is root of a cycle-sampler tree) or ℓ > o (hence α is root of a star-sampler tree).

Case of ℓ ≤ o. In this case, the sub-tree Tα in the next two levels is a cycle-sampler tree corre-
sponding to the odd cycle Cℓ of D(H). Let the number of edges in Cℓ be (2k+1) (i.e., Cℓ = C2k+1)
Let e denote the label of the α. By the law of total variance in Eq (1)

Var [Yα | Lα] = E [Var [Yα | e] | Lα] + Var [E [Yα | e] | Lα] . (9)

We start by bounding the second term in Eq (9) which is easier. By the inductive proof of
Lemma 4.6, we also have, E [Yα | Lα,e] = (#H | Lα,e). As such,

Var [E [Yα | e] | Lα] = Var [(#H | Lα,e) | Lα] ≤ E
[
(#H | Lα,e)

2 | Lα

]

=
∑

e

Pr (label[α] = e) · (#H | Lα,e)
2 =

1

mk

∑

e

(#H | Lα,e)
2

(Pr (label[α] = e) = 1/mk by definition of odd-cycle-sampler)

≤ 1

mk

(∑

e

(#H | Lα,e)
)2

=
1

mk
(#H | Lα)

2

≤ mρℓ+ · (#H | Lα). (10)

The reason behind the last equality is that (#H | Lα) is at most equal to the number of copies
of the subgraph of H consisting of Cℓ, . . . , Co,S1, . . . ,Ss, which by Lemma 3.2 is at most mρℓ+ by
definition of ρℓ+. We now bound the first and the main term in Eq (9),

E [Var [Yα | e] | Lα] =
∑

e

Pr (label[α] = e) · Var [Yα | e,Lα]

=
∑

e

1

mk
·m2k · 1

t2e
·

te∑

i=1

Var [Yαi | e,Lα] , (here αi’s are child-nodes of α)

where the final equality holds because Yαi ’s are independent conditioned on e,Lα and since Yα is
by definition mk times the average of Yαi ’s. Moreover, note that distribution of all Yαi ’s are the
same. Hence, by canceling the terms,

E [Var [Yα | e] | Lα] = mk ·
∑

e

1

te
· Var [Yα1 | e,Lα] , (11)

We thus only need to bound Var [Yα1 | e,Lα]. Recall that α1 corresponds to a leaf-node in a
cycle-sampler tree and hence its label is a vertex w from the neighborhood of u∗e as defined in
odd-cycle-sampler. We again use the law of total variance in Eq (1) to obtain,

Var [Yα1 | e,Lα] = E [Var [Yα1 | w] | e,Lα] + Var [E [Yα1 | w] | e,Lα] (12)

17



For the first term,

E [Var [Yα1 | w] | e,Lα] =
∑

w∈N(u∗
e
)

Pr (label[α1] = w) · Var [Yα1 | w,e,Lα]

=
∑

w

1

d∗e
· (d∗e)2 · Var [Yβ1 | w,e,Lα] ,

where β1 is the unique child-node of α1 and so Yα1 = value[α1] · Yβ1 , while conditioned on e,
value[α1] = d∗e. Moreover, as Lβ1 = (Lα,e, w), and by canceling the terms,

E [Var [Yα1 | w] | e,Lα] =
∑

w

d∗e · Var [Yβ1 | Lβ1 ]

≤
∑

w

d∗e · 22z−2ℓ−2 ·mρ(ℓ+1)+ · (#H | Lβ1), (13)

where the inequality is by induction hypothesis for the odd-level node β1. We now bound the
second term in Eq (12) as follows,

Var [E [Yα1 | w] | e,Lα] ≤ E

[(
E [Yα1 | w]

)2
| e,Lα

]

=
∑

w

Pr (label[α1] = w) ·
(
E [Yα1 | w,e,Lα]

)2

=
∑

w

1

d∗e
· (d∗e)2 ·

(
E [Yβ1 | w,e,Lα]

)2

=
∑

w

d∗e ·
(
E [Yβ1 | Lβ1 ]

)2
=
∑

w

d∗e · (#H | Lβ1)
2

≤
∑

w

d∗e ·mρ(ℓ+1)+ · (#H | Lβ1). (14)

Here, the second to last equality holds by the inductive proof of Lemma 4.6, and the last equality is
because (#H | Lβ1) ≤ mρ(ℓ+1)+ by Lemma 3.2, as (#H | Lβ1) is at most equal to the total number
of copies of a subgraph of H on Cℓ+1, . . . , Co,S1, . . . ,Ss (and by definition of ρ(ℓ+1)+). We now plug
in Eq (13) and Eq (14) in Eq (12),

Var [Yα1 | e,Lα] ≤
∑

w

d∗e ·
(
22z−2ℓ−2 ·mρ(ℓ+1)+ · (#H | Lβ1) +mρ(ℓ+1)+ · (#H | Lβ1)

)
.

We now in turn plug this in Eq (11),

E [Var [Yα | e] | Lα] ≤ mk
∑

e

1

te

∑

w

d∗e ·
(
22z−2ℓ−2 ·mρ(ℓ+1)+ · (#H | Lβ1) +mρ(ℓ+1)+ · (#H | Lβ1)

)

≤ mk√m ·
∑

e

∑

w

22z−2ℓ−1 ·mρ(ℓ+1)+ · (#H | Lβ1) (as te ≥ d∗e/
√
m)

≤ 22z−2ℓ−1 ·mρℓ+ ·
∑

e

∑

w

(#H | Lβ1)

(as ρCℓ = k + 1/2 and ρℓ+ = ρCℓ + ρ(ℓ+1)+ by definition)

= 22z−2ℓ−1 ·mρℓ+ · (#H | Lα). (as Lβ1 = (Lα,e, w))

18



Finally, by plugging in this and Eq (10) in Eq (9),

Var [Yα | Lα] = 22z−2ℓ−1 ·mρℓ+ · (#H | Lα) +mρℓ+ · (#H | Lα) ≤ 22z−2ℓ ·mρℓ+ · (#H | Lα),

finalizing the proof of induction step in this case. We again remark that this proof closely followed
the proof for the variance of the estimator for cycle-sampler tree in Lemma 4.2.

Case of ℓ > o. In this case, the sub-tree Tα in the next two levels is a star-sampler tree. By the
same analogy made in the proof of the previous case and Lemma 4.2, the proof of this part also
follows the proof of Lemma 4.3 for star-sampler trees. We hence omit the details.

To conclude, we have that Var [Y ] = Var [Yαr | Lαr ] = O(mρ(H)) · (#H) = O(mρ(H)) · E [Y ] as
Y = Yαr for the root αr of T , Lαr = ∅, (#H) = E [Y ] by Lemma 4.6, and z = O(1).

4.2 An Algorithm for Estimating Occurrences of Arbitrary Subgraphs

We now use our estimator algorithm from the previous section to design our algorithm for estimating
the occurrences of an arbitrary subgraph H in G. In the following theorem, we assume that the
algorithm has knowledge of m and also a lower bound on the value of #H; these assumptions can
be lifted easily as we describe afterwards.

Theorem 2. There exists a sublinear time algorithm that uses degree, neighbor, pair, and edge
sample queries and given a precision parameter ε ∈ (0, 1), an explicit access to a constant-size
graph H(VH , EH), a query access to the input graph G(V,E), the number of edges m in G, and a
lower bound h ≤ #H, with high probability outputs a (1± ε)-approximation to #H using:

O
(
min

{
m,

mρ(H)

h
· log n
ε2

})
queries and O

(mρ(H)

h
· log n
ε2

)
time,

in the worst-case.

Proof. Fix a sufficiently large constant c > 0. We run subgraph-sampler(G,H) for k := c·mρ(H)

ε2·h

time independently in parallel to obtain estimates Y1, . . . , Yk and let Z := 1
k

∑k
i=1 Yi. By Lemma 4.6,

E [Z] = (#H). Since Yi’s are independent, we also have

Var [Z] =
1

k2

k∑

i=1

Var [Yi] ≤
1

k
·O(mρ(H)) · E [Z] ≤ ε2

10
· E [Z]2 ,

by Lemma 4.7, and by choosing the constant c sufficiently larger than the constant in the O-
notation of this lemma, together with the fact that h ≤ (#H) = E [Z]. By Chebyshev’s inequality
(Proposition 2.1),

Pr (|Z − E [Z]| ≥ ε · E [Z]) ≤ Var [Z]

ε2 · E [Z]2
≤ 1

10
,

by the bound above on the variance. This means that with probability 0.9, this algorithm outputs
a (1 ± ε)-approximation of #H. Moreover, the expected query complexity and running time of

this algorithm is O(k) by Lemma 4.5, which is O(m
ρ(H)

ε2
) (if k ≥ m, we simply query all edges of

the graph and solve the problem using an offline enumeration algorithm). To extend this result to
a high probability bound and also making the guarantee of query complexity and run-time in the
worst-case, we simply run this algorithm O(log n) times in parallel and stop each execution that
uses more than 10 times queries than the expected query complexity of the above algorithm.

19



The algorithm in Theorem 2 assumes the knowledge of h which is a lower bound on (#H).
However, this assumption can be easily removed by making a geometric search on h starting from
mρ(H)/2 which is (approximately) the largest value for (#H) all the way down to 1 in factors of
2, and stopping the search once the estimates returned for a guess of h became consistent with h
itself. This only increases the query complexity and runtime of the algorithm by polylog(n) factors.
As this part is quite standard, we omit the details and instead refer the interested reader to [19,21].
This concludes the proof of our main result in Theorem 1 from the introduction.

4.3 Extension to the Database Join Size Estimation Problem

As pointed out earlier in the paper, the database join size estimation for binary relations can be
modeled by the subgraph estimation problem where the subgraph H and the underlying graph
G are additionally edge-colored and we are only interested in counting the copies of H in G with
matching colors on the edges. In this abstraction, the edges of the graph G correspond to the
entries of the database, and the color of edges determine the relation of the entry.

We formalize this variant of the subgraph counting problem in the following. In the colorful
subgraph estimation problem, we are given a subgraph H(VH , EH) with a coloring function cH :
EH → N and query access to a graph G(V,E) along with a coloring function cG : E → N. The set
of allowed queries to G contains the degree queries, pair queries, neighbor queries, and edge-sample
queries as before, with a simple change that whenever we query an edge (through the last three
types of queries), the color of the edge according to cG is also revealed to the algorithm. Our goal
is to estimate the number of copies of H in G with matching colors, i.e., the colorful copies of H.

It is immediate to verify that our algorithm in this section can be directly applied to the colorful
subgraph estimation problem with the only difference that when testing whether a subgraph forms
a copy of H in G, we in fact check whether this subgraph forms a colorful copy of H in G instead.
The analysis of this new algorithm is exactly as in the case of the original algorithm with the only
difference that we switch the parameter #H to #Hc that only counts the number of copies of H

with the same colors in G. To summarize, we obtain an algorithm with O∗(m
ρ(H)

#Hc
) query and time

complexity for the colorful subgraph counting problem, which can in turn solves the database join
size estimation problem for binary relations.

5 Lower Bounds

In this section, we prove two separate lower bounds that demonstrate the optimality of Theorem 1
in different scenarios. Our first lower bound in Section 5.1 establishes tight bounds for estimating
the number of odd cycles. This result implies that in addition to cliques (that were previously
proved [22]; see also in [19, 21]), our algorithm in Theorem 1 also achieve optimal bounds for odd
cycles. Next, in Section 5.2, we target the more general problem of database join size estimation
for which we argued that our Theorem 1 continues to hold. We show that for this more general
problem, our algorithm in Theorem 1 is in fact optimal for all choices of the subgraph H.

5.1 A Lower Bound for Counting Odd Cycles

We prove that the bound achieved by Theorem 1 for any odd cycle C2k+1 is optimal.

Theorem 3. For any k ≥ 1, any algorithm A that can output any multiplicative-approximation to
the number of copies of the odd cycle C2k+1 in a given graph G(V,E) with probability at least 2/3

requires Ω( mk+1
2

#C2k+1
) queries to G.

20



Our proof of Theorem 3 uses communication complexity in the two player communication model of
Yao [48]. Proving query complexity lower bounds using communication complexity tools in different
scenarios has a rich history (see, e.g. [8,9,22] and references therein), and was nicely formulated by
Eden and Rosenbaum in a recent work [22] for graph estimation problems.

We prove Theorem 3 using a reduction from the set disjointness problem in communication
complexity. In the set disjointness problem, there are two players Alice and Bob that are given
a bit-string X ∈ {0, 1}N and Y ∈ {0, 1}N , respectively; their goal is to determine whether there
exists an index i ∈ [N ] such that Xi ∧ Yi = 1, by communicating a small number of bits between
each other (the players have access to a shared source of random bits, called the public random-
ness). A celebrated result in communication complexity, first proved by [34] and further refined
in [5, 45], states that communication complexity of this problem, the minimum number of bits of
communication needed to solve this problem with probability at least 2/3, is Ω(N). This lower
bound continues to hold even for the special case where we are promised that there exists at most
one index i such that Xi ∧ Yi = 1.

The Reduction from Set Disjointness

For simplicity of exposition, we consider the following variant of set disjointness in which the input
to Alice and Bob are two-dimensional arrays Xi,j and Yi,j for (i, j) ∈ ([K]× [K]) \⋃i′∈[K]{(i′, i′)};
the goal now is to determine whether there exists (i, j) such that Xi,j ∧ Yi,j = 1 under the promise
that at most one such index may exist. We refer to this problem as Disj(X,Y ). It is immediate to
verify that communication complexity of Disj is Ω(K2) using a straightforward reduction from the
original set disjointness problem (under the aformentioned promise) with N := K · (K − 1).

Fix any algorithm A for counting the number of copies of C2k+1 to within any multiplicative-
approximation factor. We use A to design a communication protocol ΠA for solving Disj(X,Y ) for
an appropriately chosen value of K such that communication cost of the new protocol is within a
constant factor of the query complexity of A. To do this, the players construct a graph GX,Y (V,E)
(corresponding to inputs X,Y of Alice and Bob) implicitly and run A on GX,Y by answering the
queries of A on GX,Y through communicating with each together. The graph GX,Y is (implicitly)
constructed as follows (see Figure 3 for an illustration):

1. Partition the set of vertices V into (k + 1) layers V 1, . . . , V k+1 each of size K.

2. For every 1 < i < k + 1, connect every vertex in layer V i to every vertex in layer V i+1.

3. For every (i, j) ∈ ([K]× [K]) \⋃i′∈[K] {(i′, i′)}, if Xi,j ∧ Yi,j = 1, there exists an edge (u1i , v
1
j )

for u1i , v
1
j ∈ V 1 and another edge (u2i , v

2
j ) for u

2
i , v

2
j ∈ V 2.

4. For every (i, j) ∈ (i, j) ∈ ([K] × [K]) \⋃i∈[K]{(i, i)}, if Xi,j ∧ Yi,j = 0, there exists an edge

(u1i , v
2
j ) for u

1
i ∈ V 1 and v2j ∈ V 2 and another edge (u1j , v

2
i ) for u

1
j ∈ V 1 and v2i ∈ V 2.

The following figure illustrates the graph GX,Y for the case of C7.

Proposition 5.1. For any X,Y with the promise that at most one index (i, j) have Xi,j ∧Yi,j = 1,
in the graph GX,Y (V,E) constructed above:

(i) The degrees of all vertices are fixed independent of the choice of X,Y .

(ii) If for all indices (i, j), Xi,j ∧ Yi,j = 0, then #C2k+1 = 0.

21



V 1 V 2 V 2 V 4

u1i

v1j

u2i

v2j

(a) When Xi,j ∧ Yi,j = 1.

V 1 V 2 V 2 V 4

u1i

v1j

u2i

v2j

(b) When Xi,j ∧ Yi,j = 0.

Figure 3: Illustration of the graph GX,Y for the odd cycle C7 and the role of Xi,j and Yi,j for some
index (i, j) in the choice of edges in GX,Y .

(iii) If there exists a unique index (i, j) such that Xi,j ∧ Yi,j = 1, then #C2k+1 = Ω
(
K2k−1

)
.

Proof. We prove each part separately:

(i) Follows immediately from the construction (see also Figure 3).

(ii) In this case, all edges of the graph are between V i and V i+1 for some 1 ≤ i < k+1. As such,
GX,Y is a bipartite graph with vertices in even layers in one side of the bipartition and the
vertices in odd layers in the other side. This means that in this case GX,Y has no odd cycle.

(iii) In this case, there exists a single edge (u1i , v
1
j ) inside V 1. By picking any pair of distinct

vertices from V 2 \
{
u2i , v

2
j

}
, any pair of distinct vertices from V 3, . . . , V k, a single vertex from

V k+1, and the vertices u1i , v
1
i incident on this edge, we obtain a unique copy of C2k+1 in GX,Y

(here, we used the assumption that the only edges missing between V 1 and V 2 are (u1i , v
2
j )

and (u1j , v
2
i ) by the assumption that at most one index (i, j) has Xi,j ∧ Yi,j = 1). As such,

#C2k+1 = 1 ·
(
K − 2

2

)
·
(
K

2

)k−2

·K ≥
(
K

4

)2

·
(
K

2

)2k−4

·K = Ω(K2k−1),

as k is a constant.

This concludes the proof of Proposition 5.1.

Now let A be a query algorithm for finding any multiplicative-approximation to C2k+1 on
graphs GX,Y constructed above. By the first part of Proposition 5.1, we can safely assume that A
knows degrees of all vertices in GX,Y as degrees of all vertices are always the same. Moreover, any
edge-sample query performed by A can be instead performed by first sampling one of the vertices
proportional to its degree (as all degrees are known to A) and then making a random neighbor
query on this vertex. As such, we assume without loss of generality that A only performs neighbor
and pair queries. We now show how to design the protocol ΠA by simulating A on the graph GX,Y .

22



The protocol ΠA.

1. Alice and Bob use public randomness as the random bits needed by A.

2. For every query performed by A, the players determine the answer to the query on GX,Y as
follows, update the state of A consistently, and continue to the next query.

• Pair query (u, v): If u = u1i ∈ V 1 and v = v2j ∈ V 2 (or vice versa), Alice communicates
Xi,j to Bob and Bob sends Yi,j to Alice. After this both players can determine the answer
to this query by checking whether Xi,j ∧Yi,j = 1 or not. They do the same when both u, v
are in V 1 or are in V 2. In any other case, the answer to the query is independent of the
input to players and they can answer the query with no communication.

• Neighbor query (u, j): Suppose u = u1i ∈ V 1. If i = j, then the answer to the query is
v2j ∈ V 2. Otherwise, Alice and Bob communicate Xi,j and Yi,j and both players determine

Xi,j ∧ Yi,j. If Xi,j ∧ Yi,j = 0, the answer to the query is v2j ∈ V 2 and otherwise it is v1j
in V 1. This is done similarly for when u = u2i ∈ V 2. In any other case, the answer to
the query is independent of the input to players and they can answer the query with no
communication.

3. At the end, if the answer returned by A is non-zero, they return that there exists some index
(i, j) such that Xi,j ∧ Yi,j = 1 and otherwise they output no such index exists.

Proof of Theorem 3

We now prove the correctness of the protocol ΠA in the previous part and establish Theorem 3.

Proof of Theorem 3. Let A be any query algorithm for counting C2k+1 with probability of success
at least 2/3, and let ΠA be the protocol created based on A. By Proposition 5.1, for any input
X,Y to Disj(X,Y ) that satisfies the required promise, the graph G(X,Y ) contains a copy of C2k+1

iff there exists an index (i, j) such that Xi,j ∧Yi,j = 1. As such, the output of A on GX,Y (whenever
correct) is non-zero iff there exists an index (i, j) such that Xi,j ∧ Yi,j = 1. As the answer returned
to each query of A in the protocol ΠA is consistent with the underlying graph GX,Y , Alice and
Bob can simulate A on GX,Y correctly and hence their output would be correct with probability at
least 2/3. Additionally, simulating each query access of A requires O(1) communication by players
hence communication cost of ΠA is within constant factor of query complexity of A.

Note that the number of edges in the graph GX,Y is m = Θ(K2). By the lower bound of Ω(K2)
on the communication complexity of Disj, we obtain that query cost ofA needs to be Ω(K2) = Ω(m).
On the other hand, the last part of Proposition 5.1 implies that the number of copies of C2k+1 in

G is Ω(mk− 1
2 ). By re-parametrizing the lower bound of Ω(m) on the query complexity of A, we

obtain that A needs to make at least Ω( mk+1
2

#C2k+1
), finalizing the proof.

5.2 A Lower Bound for Database Join Size Estimation

Recall the colorful subgraph counting problem (the abstraction of database join size estimation
problem) from Section 4.3. We prove the following theorem in this section.

23



Theorem 4. For any subgraph H(VH , EH) which contains at least one edge, suppose A is an
algorithm for the colorful subgraph estimation problem that given H, a coloring cH : EH → N, and
query access to G(V,E) with m edges and coloring function cG : E → N, can output a multiplicative-
approximation to the number of colorful copies of H in G with probability at least 2/3. Then, A
requires Ω(m

ρ(H)

#Hc
) queries, where #Hc is the number of colorful copies of H in G. The lower bound

continues to hold even if the number of colors used by cH and cG is at most two.

Recall the fractional edge-cover LP in of Section 3 (see LP (2)). The following linear program
for fractional independent-set is the dual to the edge-cover LP (and hence by LP duality has the
same optimal value):

ρ(H) = maximize
∑

a∈V (H)

ya

subject to ya + yb ≤ 1 for all edges (a, b) ∈ E(H). (15)

Throughout this section, we fix an optimal solution y∗ of LP (15). We use y∗ to design two
distributions G0 and G1 on graphs G with O(m) edges2 such that any graph G sampled from G0,
denoted by G ∼ G0, contains no colorful copy of H (for a specific coloring of H to be described
later), while any G ∼ G1 contains many colorful copies of H. We then prove that any algorithm
that makes only a small number of queries to the underlying graph cannot distinguish between
graphs sampled from G0 and G1, concluding the proof.

Distributions G0 and G1
We first define the coloring cH of H. Let f∗ := (a, b) be any arbitrary edge in H such that
y∗a + y∗b = 1, i.e., is a tight constraint for y∗ in LP (15). By optimality of y∗ and as H is not a
singleton vertex, such an edge f∗ always exists. We now define cH(f∗) := 1 and cH(f) := 0 for any
other edge f ∈ E(H) \ {f∗}.

We now define the distribution G0. In fact, distribution G0 has all its mass on a single graph
G0 with coloring cG0 which contains no colorful copy of H (under the coloring cH defined above).
Suppose H has k ≥ 2 vertices denoted by V (H) := {a1, . . . , ak}. The graph G0 is constructed as
follows. Firstly, the vertices of G0 are partitioned into k sets V (G0) := V1∪. . .∪Vk with |Vi| = my∗ai .
Then for any edge (ai, aj) ∈ E(H), we connect all vertices in Vi to all vertices in Vj in G0. Finally,
the coloring cG0 of G0 simply assigns the color 0 to all edges in G0. See Figure 4 for an illustration.

The distribution G1 is constructed similarly (but on a larger support). Let G0 be the single
graph constructed by G0. Any graph G ∼ G1 is constructed as follows: we first let G = G0 and then
choose a single edge e∗ uniformly at random from the edges between Vi and Vj where (i, j) is chosen
such that f∗ = (ai, aj) (recall the definition of edge f∗ above). We then change the color cG(e

∗) = 1
(all other edges are still assigned the color 0). This concludes the description of distributions G0
and G1. We now present basic properties of these distributions.

Proposition 5.2. For the two distributions G0 and G1:

(i) Every graph G sampled from G0 or G1 contains Θ(m) edges.

2For simplicity of exposition, we let the graphs contain O(m) edges instead of exactly m edges (but provide the
algorithm with the exact number of edges in the graph); a simple rescaling of the bound immediately proves the lower
bound for the case of graphs with exactly m edges as well.

24



0.5

0.5 0.5

0.5 0.5

0

0 1

1 1

(a) The subgraph H . The number
next to each vertex a denotes y∗a.

√
m

√
m

√
m

√
m

√
m

1

1 m

m m

(b) The graph G0 of G0. The number next to each block of
vertices denotes the size of the block.

Figure 4: Illustration of the graph G0 in distribution G0.

(ii) The graph G0 ∼ G0 contains no colorful copies of H, while any graph G ∼ G1 contains
mρ(H)−1 colorful copies of H.

(iii) For a graph G ∼ G1, the edge e∗ is chosen uniformly at random among the m edges between
Vi and Vj.

Proof. We prove each part separately below.

(i) The number of edges sampled from the distributions G0 and G1 is the same, hence it only
suffices to prove the bound for the (unique) graph G0 in the support of G0. For any edge
(ai, aj) in H, we have a bipartite clique between Vi and Vj in G0, hence resulting in |Vi| · |Vj | =
my∗ai ·my∗aj ≤ m edges in G, where the final inequality is because y∗ is a feasible solution of
LP (15). As such, the number of edges in G0 is O(m) as size of H is constant.

(ii) There is no edge with color 1 in G0 ∼ G0, while H has an edge with color 1 and hence G0

contains no colorful copy of H. On the other hand, in any graph G ∼ G1, we can create a
copy of H by mapping each vertex ai of V (H) which is not incident to f∗ to any arbitrary
vertex in Vi and then maping the edge f∗ of H to e∗ in G. Suppose f∗ = (a, b). The total

number of colorful copies of H in G is then
∏

ai∈V (H)\{a,b} |Vi| = m
∑

ai∈V (H)\{a,b} y
∗
ai = mρ(H)−1

as
∑

ai∈V (H) y
∗
ai = ρ(H) and y∗a + y∗b = 1.

(iii) The fact that e∗ is chosen uniformly at random is by definition of distribution G1. The total

number of edges between Vi and Vj where e∗ is chosen from is |Vi| · |Vj | = m
y∗ai+y∗aj = m by

the choice of f∗ = (ai, aj).

This concludes the proof of Proposition 5.2.

Query Complexity of Distinguishing G0 and G1
We now prove that any query algorithm that can distinguish between instances sampled from G0
and G1 requires Ω(m) queries, proving the following lemma.

Lemma 5.3. Define the distribution G := 1
2 · G0 + 1

2 · G1. Suppose A is any algorithm that given a
graph G ∼ G with probability at least 2/3 determines whether it belongs to (the support of) G0 or
G1. Then A needs to make Ω(m) queries to the graph.

25



Proof. We assume that A knows the partitioning of vertices of G into V1, . . . , V|V (H)| and is hence
even aware of the set of edges in G (but not their colors); this can only strengthen our lower bound.

Assume f∗ = (ai, aj) and note that the only difference between the graphs in G0 and G1 is that
the latter graphs have an edge e∗ between Vi and Vj that is colored 1 instead of 0. This implies
that the only “useful” queries performed by A are pair queries between vertices u ∈ Vi and v ∈ Vj
(degree queries can be answered without querying the graph; neighbor queries can be simulated
by a pair query as the set of neighbors are all known in advance; edge-sample queries can also
be performed by pair queries by sampling one of the known edges uniformly at random and then
querying the edge to determine its color).

Suppose towards a contradiction that A is an algorithm (possibly randomized) that given a
graph G ∼ G uses o(m) queries and can determine whether G belongs to G0 or G1 with probability
at least 2/3. By fixing the randomness of this algorithm and an averaging argument (namely, the
easy direction of Yao’s minimax principle [49]), we obtain a deterministic algorithm A′ that uses
the same number of queries as A and output the correct answer with probability 2/3, where the
probability is now only taken over the randomness of the distribution G.

Let Q := (q1, q2, . . . , qℓ) for ℓ = o(m) determines the (potentially adaptively chosen) set of
queries performed by A′ before it outputs the answer. Since the set of edges in the graph are
already known to A, the only interesting part of the answer to each query qi is whether the color
of the edge queried by qi is 0 or 1. With a slight abuse of notation, we write qi = 1 if the color of
the edge queried by qi is 1 and qi = 0 otherwise.

Notice that since A′ is a deterministic algorithm, the next query qi is determined solely based
on the answer to queries q1, . . . , qi−1. Let 0k denote the vector of all zeros of length k. As a result,

Pr
G∼G1

[
qi = 1 | (q1, . . . , qi−1) = 0i−1

]
=

1

m− i+ 1
.

This is because, conditioned on all (q1, . . . , qi−1) = 0i−1, the next query chosen by A′ is fixed
beforehand and is only based on the knowledge that the i − 1 edges queried so far cannot be e∗.
As e∗ is chosen uniformly at random from a set of m edges (by Part (iii) of Proposition 5.2), the
bound above holds (note that we assumed without loss of generality that A′ does not query an
edge more than once). As a result of this, we have,

Pr
G∼G1

[
(q1, . . . , qℓ) = 0ℓ

]
=
m− 1

m
· m− 2

m− 1
· . . . · m− ℓ

m− ℓ− 1
= 1− ℓ

m
. (16)

Let O(q1, . . . , qℓ) ∈ {0, 1} denote the output of A′ based on the answers given to the queries
q1, . . . , qℓ. We have,

Pr
G∼G

[
A′ is correct on G

]
=

1

2
· Pr
G∼G0

[
O(q1, . . . , qℓ) = 0

]
+

1

2
· Pr
G∼G1

[
O(q1, . . . , qℓ) = 1

]
(17)

The second term in RHS above can be upper bounded by,

Pr
G∼G1

[
O(q1, . . . , qℓ) = 1

]
≤ Pr

G∼G1

[
(q1, . . . , qℓ) = 0ℓ

]
· Pr
G∼G1

[
O(q1, . . . , qℓ) = 1 | (q1, . . . , qℓ) = 0ℓ

]

+
(
1− Pr

G∼G1

[
(q1, . . . , qℓ) = 0ℓ

])

=

(
1− ℓ

m

)
· Pr
G∼G1

[
O(q1, . . . , qℓ) = 1 | (q1, . . . , qℓ) = 0ℓ

]
+

ℓ

m
,

26



by Eq (16). Plugging in this bound in Eq (17) implies that,

Pr
G∼G

[
A′ is correct on G

]
≤ 1

2
· Pr
G∼G0

[
O(q1, . . . , qℓ) = 0

]

+
1

2
· Pr
G∼G1

[
O(q1, . . . , qℓ) = 1 | (q1, . . . , qℓ) = 0ℓ

]
+

ℓ

2m
.

We argue that either PrG∼G1

[
O(q1, . . . , qℓ) = 1 | (q1, . . . , qℓ) = 0ℓ

]
or PrG∼G0

[
O(q1, . . . , qℓ) = 0

]

must be 0. This is because in both cases, (q1, . . . , qℓ) = 0ℓ and hence O(q1, . . . , qℓ) is fixed to be
either 0 or 1 at this point. As a result,

Pr
G∼G

[
A′ is correct on G

]
≤ 1

2
+

ℓ

2m
=

1

2
+ o(1).

This contradicts the fact that A′ outputs the correct answer with probability at least 2/3, implying
that ℓ needs to be Ω(m).

Proof of Theorem 4

We can now finalize the proof of Theorem 4 using Proposition 5.2 and Lemma 5.3.

Proof of Theorem 4. Firstly, any algorithm that can provide any multiplicative-approximation to
the number of colorful copies of H in graphs G must necessarily distinguish between the graphs
chosen from distributions G0 and G1 because by Part (i) of Proposition 5.2, graphs in G0 contain
no colorful copies of H while graphs in G1 contain mρ(H)−1 colorful copies of H. Moreover, in
the graphs chosen from G1, #Hc = mρ(H)−1. The lower bound of Ω(mρ(H)/#Hc) on the query
complexity of algorithms now follows from the Ω(m) lower bound of Lemma 5.3.

Acknowledgements

We are thankful to the anonymous reviewers of ITCS 2019 for many valuable comments.

References

[1] N. K. Ahmed, J. Neville, and R. R. Kompella. Network sampling: From static to streaming
graphs. TKDD, 8(2):7:1–7:56, 2013.

[2] M. Aliakbarpour, A. S. Biswas, T. Gouleakis, J. Peebles, R. Rubinfeld, and A. Yodpinya-
nee. Sublinear-time algorithms for counting star subgraphs via edge sampling. Algorithmica,
80(2):668–697, 2018.

[3] N. Alon. On the number of subgraphs of prescribed type of graphs with a given number of
edges. Israel Journal of Mathematics, 1981.

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA, pages 739–748. IEEE Computer Society, 2008.

[5] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. Information theory methods in
communication complexity. In Proceedings of the 17th Annual IEEE Conference on Compu-
tational Complexity, Montréal, Québec, Canada, May 21-24, 2002, pages 93–102, 2002.

27



[6] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an
application to counting triangles in graphs. In Proceedings of the Thirteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA., pages
623–632, 2002.

[7] S. K. Bera and A. Chakrabarti. Towards tighter space bounds for counting triangles and
other substructures in graph streams. In 34th Symposium on Theoretical Aspects of Computer
Science, STACS 2017, March 8-11, 2017, Hannover, Germany, pages 11:1–11:14, 2017.

[8] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication com-
plexity. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity,
CCC 2011, San Jose, California, USA, June 8-10, 2011, pages 210–220, 2011.

[9] E. Blais, C. L. Canonne, and T. Gur. Distribution testing lower bounds via reductions from
communication complexity. In 32nd Computational Complexity Conference, CCC 2017, July
6-9, 2017, Riga, Latvia, pages 28:1–28:40, 2017.

[10] E. Bloedorn, N. Rothleder, D. DeBarr, and L. Rosen. Relational Graph Analysis with Real-
World Constraints: An Application in IRS Tax Fraud Detection. In AAAI, 2005.

[11] V. Braverman, R. Ostrovsky, and D. Vilenchik. How hard is counting triangles in the streaming
model? In Automata, Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 244–254, 2013.

[12] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler. Counting tri-
angles in data streams. In Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 26-28, 2006, Chicago, Illinois, USA,
pages 253–262, 2006.

[13] S. Burt. Structural Holes and Good Ideas. The American Journal of Sociology, 110(2):349–399,
2004.

[14] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight
in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005.

[15] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput.,
14(1):210–223, 1985.

[16] G. Cormode and H. Jowhari. A second look at counting triangles in graph streams (corrected).
Theor. Comput. Sci., 683:22–30, 2017.

[17] A. Czumaj, F. Ergün, L. Fortnow, A. Magen, I. Newman, R. Rubinfeld, and C. Sohler. Ap-
proximating the weight of the euclidean minimum spanning tree in sublinear time. SIAM J.
Comput., 35(1):91–109, 2005.

[18] A. Czumaj and C. Sohler. Estimating the weight of metric minimum spanning trees in
sublinear-time. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 175–183, 2004.

[19] T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately counting triangles in sublinear
time. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 614–633, 2015.

28



[20] T. Eden, D. Ron, and C. Seshadhri. Sublinear time estimation of degree distribution moments:
The degeneracy connection. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 7:1–7:13, 2017.

[21] T. Eden, D. Ron, and C. Seshadhri. On approximating the number of k-cliques in sublinear
time. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 722–734, 2018.

[22] T. Eden and W. Rosenbaum. Lower bounds for approximating graph parameters via com-
munication complexity. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ,
USA, pages 11:1–11:18, 2018.

[23] T. Eden and W. Rosenbaum. On sampling edges almost uniformly. In 1st Symposium on
Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, pages
7:1–7:9, 2018.

[24] U. Feige. On sums of independent random variables with unbounded variance, and estimating
the average degree in a graph. In Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, Chicago, IL, USA, June 13-16, 2004, pages 594–603, 2004.

[25] E. Friedgut and J. Kahn. On the number of copies of one hypergraph in another. Israel Journal
of Mathematics, 1998.

[26] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[27] O. Goldreich and D. Ron. Approximating average parameters of graphs. Random Struct.
Algorithms, 32(4):473–493, 2008.

[28] M. Gonen, D. Ron, and Y. Shavitt. Counting stars and other small subgraphs in sublinear time.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 99–116, 2010.

[29] A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak. Local graph partitions for approxi-
mation and testing. In 50th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 22–31, 2009.

[30] M. Jha, C. Seshadhri, and A. Pinar. A space efficient streaming algorithm for triangle counting
using the birthday paradox. In The 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages
589–597, 2013.

[31] H. Jowhari and M. Ghodsi. New streaming algorithms for counting triangles in graphs. In
Computing and Combinatorics, 11th Annual International Conference, COCOON 2005, Kun-
ming, China, August 16-29, 2005, Proceedings, pages 710–716, 2005.

[32] J. Kallaugher, M. Kapralov, and E. Price. The sketching complexity of graph and hypergraph
counting. To appear in FOCS, 2018.

[33] J. Kallaugher and E. Price. A hybrid sampling scheme for triangle counting. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1778–1797, 2017.

29



[34] B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set
intersection. SIAM J. Discrete Math., 5(4):545–557, 1992.

[35] D. M. Kane, K. Mehlhorn, T. Sauerwald, and H. Sun. Counting arbitrary subgraphs in data
streams. In Automata, Languages, and Programming - 39th International Colloquium, ICALP
2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, pages 598–609, 2012.

[36] T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness in general
graphs. SIAM J. Comput., 33(6):1441–1483, 2004.

[37] J. Lee and J. Pfeffer. Estimating centrality statistics for complete and sampled networks: Some
approaches and complications. In 48th Hawaii International Conference on System Sciences,
HICSS 2015, Kauai, Hawaii, USA, January 5-8, 2015, pages 1686–1695, 2015.

[38] J. Leskovec and C. Faloutsos. Sampling from large graphs. In Proceedings of the Twelfth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia,
PA, USA, August 20-23, 2006, pages 631–636, 2006.

[39] A. McGregor, S. Vorotnikova, and H. T. Vu. Better algorithms for counting triangles in data
streams. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
401–411, 2016.

[40] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs:
simple building blocks of complex networks. Science, 298(5594):824–827, October 2002.

[41] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms. J. ACM,
65(3):16:1–16:40, 2018.

[42] H. N. Nguyen and K. Onak. Constant-time approximation algorithms via local improvements.
In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October
25-28, 2008, Philadelphia, PA, USA, pages 327–336, 2008.

[43] K. Onak, D. Ron, M. Rosen, and R. Rubinfeld. A near-optimal sublinear-time algorithm for
approximating the minimum vertex cover size. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 1123–1131, 2012.

[44] M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear time and a
connection to distributed algorithms. Theor. Comput. Sci., 381(1-3):183–196, 2007.

[45] A. A. Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci.,
106(2):385–390, 1992.

[46] O. Simpson, C. Seshadhri, and A. McGregor. Catching the head, tail, and everything in
between: A streaming algorithm for the degree distribution. In 2015 IEEE International
Conference on Data Mining, ICDM 2015, Atlantic City, NJ, USA, November 14-17, 2015,
pages 979–984, 2015.

[47] J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping the empirical and
extremal geography of large graph collections. In Proceedings of the 22Nd International Con-
ference on World Wide Web, WWW ’13, pages 1307–1318, Republic and Canton of Geneva,
Switzerland, 2013. International World Wide Web Conferences Steering Committee.

30



[48] A. C. Yao. Some complexity questions related to distributive computing (preliminary report).
In Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30 - May
2, 1979, Atlanta, Georgia, USA, pages 209–213, 1979.

[49] A. C. Yao. Lower bounds by probabilistic arguments (extended abstract). In 24th Annual
Symposium on Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983,
pages 420–428, 1983.

[50] Y. Yoshida, M. Yamamoto, and H. Ito. An improved constant-time approximation algorithm
for maximum matchings. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 225–234, 2009.

A Missing Details and Proofs

A.1 Proof of Proposition 2.2

Proposition 2.2 (restated here for convenience of the reader) follows from standard graph theory
facts (see, e.g. Lemma 2 in [15]). We give a self-contained proof here for completeness.

Proposition (Proposition 2.2 in Section 2). For any graph G,
∑

(u,v)∈E min(du, dv) ≤ 5m
√
m.

Proof. Let V + be the set of vertices with degree more than
√
m and V − := V \ V +.

∑

(u,v)∈E

min(du, dv) =
1

2
·
∑

u∈V

∑

v∈N(u)

min(du, dv) ≤
1

2
·


 ∑

u∈V −

∑

v∈N(u)

√
m+

∑

u∈V +

∑

v∈N(u)

min(du, dv)




≤ m√m+
1

2
·
∑

u∈V +


 ∑

v∈N(u):dv<du

dv +
∑

v∈N(u):dv≥du

du




≤ m√m+
1

2
·
∑

u∈V +

(
2m+

2m

du
· du
)
≤ m√m+

√
m · 4m,

where the second last inequality is because, sum of degrees of vertices in N(u) is ≤ 2m, and number
of vertices with degree more than du is ≤ 2m/du and the last inequality is by |V +| ≤ 2

√
m.

A.2 Proof of Lemma 3.1

We now provide a self-contained proof of Lemma 3.1 (restated below) for completeness.

Lemma (Lemma 3.1 in Section 3). Any subgraph H admits an optimal fractional edge-cover x∗

such that the support of x∗, denoted by supp(x∗), is a collection of vertex-disjoint odd cycles and
star graphs, and,

1. for every odd cycle C ∈ supp(x∗), x∗e = 1/2 for all e ∈ C;

2. for every edge e ∈ supp(x∗) that does not belong to any odd cycle, xe = 1.

To prove Lemma 3.1, we first state a basic property of LP (2).

31



Proposition A.1. LP (2) admits a half-integral optimum solution x∗ ∈
{
0, 12 , 1

}|E(H)|
. Moreover,

if H is bipartite, then LP (2) admits an integral optimum solution.

Proof. Suppose first that H is bipartite and x ∈ [0, 1]|E(H)| is some optimal solution of LP (2). We
perform a simple cycle-canceling on x to make it integral. In particular, let e1, . . . , e2k for some
integer k ≥ 2 be a cycle in the support of x (as H is bipartite length of this cycle is necessarily
even). We can alternatively increase the value on one edge and decrease the value on the next one
by the same amount and continue along the cycle until the value on an edge drops to zero. This
operation clearly preserves the feasibility as well as the value of the solution. By doing this, we can
cancel all cycles in the support of x without changing the value of LP or violating the feasibility.
At this point, support of x is a forest and can be turned into an integral solution using a standard
deterministic rounding in a bottom up approach from the leaf-nodes of the forest (see the proof of
Lemma 3.1 for more details on this standard procedure).

Now suppose H is a non-bipartite graph. Create the following bipartite graph H ′ where V (H ′)
consists of two copies of vertices in H, i.e., for any vertex a ∈ V (H), there are two copies, say, aL

and aR in V (H ′). Moreover, for any edge e := (a, b) ∈ E(H) there are two edges e1 := (aL, bR)
and e2 := (aR, bL) in E(H ′). It is easy to see that any edge cover y of H ′ can be translated to an

edge cover x of H by setting xe =
ye1+ye2

2 . As by the first part, H ′ admits an integral optimum
solution, we immediately have that H admits a half-integral optimum solution.

Proof of Lemma 3.1. Let x∗ be a half-integral optimum solution for the graph H that is guaranteed
to exist by Proposition A.1. Let C be any cycle (odd or even length) in supp(x∗). For any edge
e ∈ C, x∗e = 1/2 as otherwise by decreasing x∗e from 1 to 1/2 (recall that x∗ is half-integral and
x∗e 6= 0), we can reduce the optimal solution without violating the feasibility. Moreover, if C is of
even length, then we can perform a standard cycle canceling (by adding and subtracting 1/2 to the
value of x∗ on the alternate edges of C) and remove the cycle. Now suppose C is of odd length; we
argue that for each vertex a ∈ C, the only edges in supp(x∗) that are incident on a are edges in C.

Suppose by contradiction that there exists an edge e with x∗e ≥ 1/2 which is incident on a vertex
a in an odd cycle C (in supp(x∗)). Perform a cycle canceling as follows: subtract 1/2 from every
other edge starting from an edge incident to a and add 1/2 to every other edge plus the edge e.
As C is an odd cycle, the total number of addition and subtractions are equal and hence does not
change the value of x∗. It is also easy to verify that the new x∗ is still feasible as x∗e ≥ 1 now and
hence a is covered still. Thus, by repeatedly applying the above argument, we can change x∗ so
that supp(x∗) consists of a vertex-disjoint union of odd cycles (with x∗e = 1/2) and forests. We
now turn the forests into a collection of starts using a simple deterministic rounding.

For each tree T in this forest, we root the tree arbitrarily at some degree one vertex. Any edge
e incident on leaf-nodes of this tree clearly has x∗e = 1. Let f be a parent edge e and z be a parent
of f (if these edges do not exist, e belongs to a cycle and we are already done). Let x∗z ← x∗z + x∗f
and x∗f ← 0. This preserves both the value of x∗ and its feasibility, and further partition this tree
into a forest and a star. By repeatedly applying this argument, we can decompose every forest into
a collection of stars, finalizing the proof of Lemma 3.1.

A.3 An Alternate Analysis of the Variance of the Estimator for Stars

Recall that in Lemma 4.3, we upper bounded the variance of the random variable X associated
with star-sampler(G,Sℓ) with Var [X] ≤ 2mℓ ·E [X]. Using this analysis in our Theorem 2 results

32



in an upper bound of O( mℓ

#Sℓ
) on the query complexity of counting stars which is suboptimal. We

now show that a slightly improved analysis of the variance in fact results in an algorithm with
O∗( m

(#Sℓ)1/ℓ
) query complexity which is optimal by a result of [2].

Lemma A.2. For the random variable X associated with star-sampler(G,Sℓ),

E [X] = (#Sℓ), Var [X] ≤ 4m · ℓ2ℓ · (#Sℓ)2−1/ℓ.

Proof. The bound on the expectation is already establish in Lemma 4.3. We now prove the bound
on variance. This proves the desired bound on the exception. We now bound Var [X].

Var [X] ≤ E
[
X2
]
=
∑

v∈V

∑

w∈N(v)ℓ

Pr (label[αr] = v) · Pr (label[αl] = w)

· I((v,w) forms a copy of Sℓ) · (value[αr] · value[αl])
2

=
∑

v

dv
2m
·
∑

w

1(dv
ℓ

) · I((v,w) forms a copy of Sℓ) ·
(
(2m/dv) ·

(
dv
ℓ

))2

=
∑

v

∑

w

I((v,w) forms a copy of Sℓ) · (2m/dv) ·
(
dv
ℓ

)

≤ 2m ·
∑

v

∑

w

I((v,w) forms a copy of Sℓ) · dvℓ−1 (since
(dv
ℓ

)
≤ dvℓ)

= 2m ·
∑

v:dv≥ℓ

(
dv
ℓ

)
· dvℓ−1

(since
∑

w
I((v,w) forms a copy of Sℓ) =

(dv
ℓ

)
for any v with dv ≥ ℓ and is 0 otherwise)

= 2m ·
∑

v:dv≥ℓ

(
dv

ℓ
)2−1/ℓ

(since
(dv
ℓ

)
≤ dvℓ)

≤ 2m ·
( ∑

v:dv≥ℓ

dv
ℓ
)2−1/ℓ

(since
∑

a a
b ≤ (

∑
a a)

b for b ≥ 1)

≤ 2m ·
( ∑

v:dv≥ℓ

ℓℓ ·
(
dv
ℓ

))2−1/ℓ
(since

(
dv
ℓ

)
· ℓℓ ≥ dvℓ)

≤ 4m · ℓ2ℓ · (#Sℓ)2−1/ℓ,

where the last inequality is because
∑

v:dv≥ℓ

(
dv
ℓ

)
is equal to #Sℓ when ℓ > 1 and is equal to 2·(#Sℓ)

when ℓ = 1.

Using this lemma, the only change we need to do with our algorithm in Theorem 2 for improving
its performance when counting stars is that instead of taking average of O( mℓ

#Sℓ
) estimators, we only

need to take average of O( m

#S
1/ℓ
ℓ

) many of them. The proof of correctness now follows exactly as

before by Chebyshev’s inequality (Proposition 2.1) as ℓ is a constant. With this minor modification,
our algorithm then needs O( m

#S
1/ℓ
ℓ

) queries to compute a (1 ± ε)-approximation of the number of

occurrences of the star Sℓ in any given graph G.

33


	1 Introduction
	1.1 Our Contributions
	1.2 Main Ideas in Our Algorithm
	1.3 Further Related Work

	2 Preliminaries
	3 A Graph Decomposition Using Fractional Edge-Covers
	3.1 The Decomposition
	3.2 Profiles of Cycles, Stars, and Subgraphs

	4 A Sublinear-Time Algorithm for Subgraph Counting
	4.1 A Low-variance Unbiased Estimator for # H
	4.2 An Algorithm for Estimating Occurrences of Arbitrary Subgraphs
	4.3 Extension to the Database Join Size Estimation Problem

	5 Lower Bounds
	5.1 A Lower Bound for Counting Odd Cycles
	5.2 A Lower Bound for Database Join Size Estimation

	A Missing Details and Proofs
	A.1 Proof of Proposition ??
	A.2 Proof of Lemma ??
	A.3 An Alternate Analysis of the Variance of the Estimator for Stars


