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Abstract. The ease with which one can copy and transform data on
the Web, has made it increasingly difficult to determine the origins of a
piece of data. We use the term data provenance to refer to the process
of tracing and recording the origins of data and its movement between
databases. Provenance is now an acute issue in scientific databases where
it central to the validation of data. In this paper we discuss some of the
technical issues that have emerged in an initial exploration of the topic.

1 Introduction

When you find some data on the Web, do you have any information about how
it got there? It is quite possible that it was copied from somewhere else on the
Web, which, in turn may have also been copied; and in this process it may well
have been transformed and edited. Of course, when we are looking for a best
buy, a news story, or a movie rating, we know that what we are getting may be
inaccurate, and we have learned not to put too much faith in what we extract
from the Web. However, if you are a scientist, or any kind of scholar, you would
like to have confidence in the accuracy and timeliness of the data that you are
working with. In particular, you would like to know how it got there.

In its brief existence, the Web has completely changed the way in which data
is circulated. We have moved very rapidly from a world of paper documents
to a world of on-line documents and databases. In particular, this is having a
profound effect on how scientific research is conducted. Let us list some aspects
of this transformation:

— A paper document is essentially unmodifiable. To “change” it one issues a
new edition, and this is a costly and slow process. On-line documents, by
contrast, can be (and often are) frequently updated.

— On-line documents are often databases, which means that they have explicit
structure. The development of XML has blurred the distinction between
documents and databases.

— On-line documents/databases typically contain data extracted from other
documents/databases through the use of query languages or “screen-scrapers”.

Among the sciences, the field of Molecular Biology is possibly one of the
most sophisticated consumers of modern database technology and has generated
a wealth of new database issues [15]. A substantial fraction of research in ge-
netics is conducted in “dry” laboratories using in silico experiments — analysis



of data in the available databases. Figure 1 shows how data flows through a
very small fraction of the available molecular biology databases!. In all but one
case, there is a Lit — for literature — input to a a database indicating that this
is database is curated. The database is not simply obtained by a database query
or by on-line submission, but involves human intervention in the form of addi-
tional classification, annotation and error correction. An interesting property of
this flow diagram is that there is a cycle in it. This does not mean that there is
perpetual loop of possibly inaccurate data flowing through the system (though
this might happen); it means that the two databases overlap in some area and
borrow on the expertise of their respective curators. The point is that it may
now be very difficult to determine where a specific piece of data comes from.
We use the term data provenance broadly to refer to a description of the origins
of a piece of data and the process by which it arrived in a database. Most im-
plementors and curators of scientific databases would like to record provenance,
but current database technology does not provide much help in this process for
databases are typically rather rigid structures and do not allow the kinds of ad
hoc annotations that are often needed for recording provenance.

Lit

Fig.1. The Flow of Data in Bioinformatics

The databases used in molecular biology form just one example of why data
provenance is an important issue. There are other areas in which it is equally
acute [5]. It is an issue that is certainly broader than computer science, with legal
and ethical aspects. The question that computer scientists, especially theoretical
computer scientists, may want to ask is what are the technical issues involved

! Thanks to Susan Davidson, Chris Stoeckert and Fidel Salas of the Bioinformatics
Center at Penn for providing this information.



in the study of data provenance. As in most areas of computer science, the hard
part is to formulate the problem in a concise and applicable fashion. Once that is
done, it often happens that interesting technical problems emerge. This abstract
reviews some of the technical issues that have emerged in an initial exploration.

2 Computing Provenance: Query Inversion

Perhaps the only area of data provenance to receive any substantial attention
is that of provenance of data obtained via query operations on some input
databases. Even in this restricted setting, a formalization of the notion of data
provenance turns out to be a challenging problem. Specifically, given a tuple ¢
in the output of a database query () applied on some source data D, we want to
understand which tuples in D contributed to the output tuple ¢, and if there is a
compact mechanism for identifying these input tuples. A natural approach is to
generate a new query @', determined by @, D and t, such that when the query
Q' is applied to D, it generates a collection of input tuples that “contributed
to” the output tuple ¢t. In other words, we would like to identify the provenance
by inverting the original query. Of course, we have to ask what we mean by con-
tributed to? This problem has been studied under various names including “data
pedigree” and “data lineage” in [1,9,7]. One way we might answer this question
is to say that a tuple in the input database “contributes to” an output tuple if
changing the input tuple causes the output tuple to change or to disappear from
the output. This definition breaks down on the simplest queries (a projection or
union). A better approach is to use a simple proof-theoretic definition. If we are
dealing with queries that are expressible in positive relational algebra (SPJU)
or more generally in positive datalog, we can say that an input tuple (a fact)
“contributes to” an output tuple if it is used in some minimal derivation of that
tuple. This simple definition works well, and has the expected properties: it is
invariant under query rewriting, and it is compositional in the expected way.
Unfortunately, these desirable properties break down in the presence of negation
or any form of aggregation. To see this consider a simple SQL query:

SELECT name, telephone
FROM employee
WHERE salary > SELECT AVERAGE salary FROM employee

Here, modifying any tuple in the employee relation could affect the presence of
any given output tuple. Indeed, for this query, the definition of “contributes to”
given in [9] makes the whole of the employee relation contribute to each tuple
in the output. While this is a perfectly reasonable definition, the properties of
invariance under query rewriting and compositionality break down, indicating
that a more sophisticated definition may be needed.

Before going further it is worth remarking that this characterization of prove-
nance is related to the topics of truth maintenance [10] and view maintenance
[12]. The problem in view maintenance is as follows. Suppose a database (a view)
is generated by an expensive query on some other database. When the source



database changes, we would like to recompute the view without recomputing
the whole query. Truth maintenance is the same problem in the terminology of
deductive systems. What may make query inversion simpler is that we are only
interested in what is in the database; we are not interested in updates that would
add tuples to the database.

In [7] another notion of provenance is introduced. Consider the SQL query
above, and suppose we see the tuple ("John Doe", 12345) in the output. What
the previous discussion tells us is why that tuple is in the output. However, we
might ask an apparently simpler question: given that the tuple appears in the
output, where does the telephone number 12345 come from? The answer to this
seems easy — from the "John Doe" tuple in the input. This seems to imply that
as long as there is some means of identifying tuples in the employee relation,
one can compute where-provenance by tracing the variable (that emits 12345)
of the query. However, this intuition is fragile and a general characterization is
not obvious as discussed in [7].

We remark that (where) provenance is also related to the view update prob-
lem [3]: if John Doe decides to change his telephone number at the view, which
data should be modified in the employee relation? Again, where provenance
seems simpler because we are only interested in what is in the view and not in
what is not.

Another issue in query inversion is to capture other query languages and
other data models. For example, we would like to describe the problem in object-
oriented [11] or semistructured data models [2] (XML). What makes these models
interesting is that we are no longer operating at the fixed level of tuples in the
relational model. We may want to ask for the why- or where-provenance of some
deeply nested component of some structure. To this end, [7] studies the issue
of data provenance in a “deterministic” model of semistructured data in which
every element has a canonical path or identifier. Work on view maintainence
based on this model has also been studied in [14]. This leads us to our next
topics, those of citing and archiving data.

3 Data Citation

A digital library is typically a large and heterogeneous collection of on-line docu-
ments and databases with sophisticated software for exploring the collection [13].
However many digital libraries are also being organized so that they serve as
scholarly resources. This being the case, how do we cite a component of a digital
library. Surprisingly, this topic has received very little attention. There appear
to be no generally useful standards for citations. Well organized databases are
constructed with keys that allow us uniquely to identify a tuple in a relation.
By giving the attribute name we can identify a component of a tuple, so there
is usually a canonical path to any component of the database.

How we cite portions of documents, especially XML documents is not so
clear. A URL provides us with a universal locator for a document, but how
are we to proceed once we are inside the document? Page numbers and line



numbers — if they exist — are friable, and we have to remember that an XML
document may now represent a database for which the linear document structure
is irrelevant. There are some initial notions of keys in the XML standard [4]
and in the XML Schema proposals [16]. In the XML Document Type Descriptor
(DTD) one can declare an ID attribute. Values for this attribute are to be unique
in the document and can be used to locate elements of the document. However
the ID attribute has nothing to do with the structure of the document — it is
simply a user-defined identifier.

In XML-Schema the definition of a key relies on XPath [8], a path description
language for XML. Roughly speaking a key consists of two paths through the
data. The first is a path, for example Department/Employee, that describes the
set of nodes upon which a key constraint is to be imposed. This is called the
target set. The second is another path, for example IdCard/Number that uniquely
identifies nodes in the target set. This second part is called the key path, and
the rule is that two distinct nodes in the target set must have different values
at the end of their key paths. Apart from some details and the fact that XPath
is probably too complex a language for key specification, this definition is quite
serviceable, but it does not take into account the hierarchical structure of keys
that are common in well-organized databases and documents.

To give an example of what is needed, consider the problem of citing a
part of a bible, organized by chapter, book and verse. We might start with
the idea that books in the bible are keyed by name, so we use the pair of paths
(Bible/Book, Name). We are assuming here that Bible is the unique root. Now
we may want to indicate that chapters are specified by number, but it would
be incorrect to write (Bible/Book/Chapter, Number) because this says that
that chapter numbers are unique within the bible. Instead we need to specify a
relative key which consists of a triple, (Bible/Book, Chapter, Number). What
this means is that the (Chapter, Number) key is to hold at every node specified
by by the path Bible/Book.

A more detailed description of relative keys is given in [6]. While some basic
inference results are known, there is a litany of open questions surrounding
them: What are appropriate path languages for the various components of a
key? What inference results can be established for these languages? How do
we specify foreign keys, and what results hold for them? What interactions are
there between keys and DTDs. These are practical questions that will need to
be answered if, as we do in databases, use keys as the basis for indexing and
query optimization.

4 Archiving and Other Problems Associated with
Provenance

Let us suppose that we have a good formulation, or even a standard, for data
citation, and that document A cites a (component of a) document B. Whose
responsibility is it to maintain the integrity of B? The owner of B may wish to
update it, thereby invalidating the citation in A. This is a serious problem in



scientific databases, and what is commonly done is to release successive versions
of a database as separate documents. Since one version is — more or less — an
extension the previous version, this is wasteful of space and the space overhead
limits the rate at which one can release versions. Also, it is difficult when the
history of a database is kept in this form to trace the history of components
of the database as defined by the key structure. There are a number of open
questions :

— Can we compress versions so that it the history of A can be efficiently
recorded?

— Should keeping the cited data be the responsibility of A rather than B?

— Should B figure out what is being cited and keep only those portions?

In this context it is worth noting that, when we cite a URL, we hardly ever give
a date for the citation. If we did this, at least the person who follows the citation
will know whether to question the validity of the citation by comparing it with
the timestamp on the URL.

Again, let us suppose that we have an agreed standard for citations and
that, rather than computing provenance by query inversion (which is only possi-
ble when the data of interest is created by a query,) we decide to annotate each
element in the database with one or more citations that describes its provenance.
What is the space overhead for doing this? Given that the citations have struc-
ture and that the structure of the data will, in part, be related to the structure
of the data, one assumes that some form of compression is possible.

Finally, one is tempted to speculate that we may need a completely different
model of data exchange and databases to characterize and to capture provenance.
One could imagine that data is exchanged in packages that are “self aware”? and
somehow contain a complete history of how they moved through the system of
databases, of how they were constructed, and of how they were changed. The
idea is obviously appealing, but whether it can be formulated clearly, let alone
be implemented, is an open question.
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