The Stochastic Matching Problem with (Very) Few Queries

SEPEHR ASSADI, University of Pennsylvania
SANJEEV KHANNA, University of Pennsylvania
YANG LI, University of Pennsylvania

Motivated by an application in kidney exchange, we study the following stochastic matching problem: we
are given a graph G(V, E) (not necessarily bipartite), where each edge in F is realized with some constant
probability p > 0 and the goal is to find a maximum matching in the realized graph. An algorithm in this
setting is allowed to make queries to edges in F in order to determine whether or not they are realized.

We design an adaptive algorithm for this problem that, for any graph G, computes a (1 — ¢)-approximate

maximum matching in the realized graph G, with high probability, while making O(W) queries

per vertex, where the edges to query are chosen adaptively in O (W) rounds. We further present a

non-adaptive algorithm that makes O log(sﬂ queries per vertex and computes a (% — ¢)-approximate
maximum matching in G, with high probability.

Both our adaptive and non-adaptive algorithms achieve the same approximation factor as the previous
best algorithms of Blum et al. (EC 2015) for this problem, while requiring exponentially smaller number
of per-vertex queries (and rounds of adaptive queries for the adaptive algorithm). Our results settle an
open problem raised by Blum et al. by achieving only a polynomial dependency on both £ and p. Moreover,
the approximation guarantee of our algorithms is instance-wise as opposed to only being competitive in
expectation as is the case for Blum et al. . This is of particular relevance to the key application of stochastic
matching in kidney exchange. We obtain our results via two main techniques, namely matching-covers and

vertex sparsification that may be of independent interest.
General Terms: Algorithms, Economics

Additional Key Words and Phrases: Stochastic matching, Kidney exchange

1. INTRODUCTION

We study the problem of finding a maximum matching in presence of uncertainty in
the input graph. Specifically, we consider the stochastic matching problem in which
we are given an undirected graph G(V, FE) where each edge e € E is realized with
some constant probability p > 0 and the goal is to find a maximum matching in the
realized graph. To find a large matching, an algorithm is allowed to query edges in F
to determine whether or not they are realized.

There is a trivial solution for the stochastic matching problem: simply query all
edges in £ and compute a maximum matching over the realized graph. However, in
many applications, determining whether or not an edge is realized could be both costly
and time consuming (we will elaborate more on this in the next section). Consequently,
to minimize cost, it is preferable that an algorithm queries as few edges as possible,
and to minimize the time consumed in the query process, an algorithm should have

Authors’ addresses: Department of Computer and Information Science, University of Pennsylvania. Email:
{sassadi,sanjeev,yangli2}@cis.upenn.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

EC’16, July 24-28, 2016, Maastricht, The Netherlands. ACM 978-1-4503-3936-0/16/07 ...$15.00.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
http://dx.doi.org/10.1145/2940716.2940769

only a few rounds of adaptivity whenever possible (or minimize the degree of adaptiv-
ity), meaning that it is preferable if the decision of “which edges to query next” does
not depend on the outcome of previous queries since in this case, many edges can be
queried in parallel. The formal definition of this model is presented in Section 1.2.

1.1. Kidney Exchange

A canonical and arguably the most important application of the stochastic matching
problem appears in kidney exchange. Typically, organ donation comes from deceased
donors since many organs cannot be harvested from a living donor without jeopardiz-
ing the health of the donor. Fortunately, kidney is an exception, and a healthy living
donor is able to donate one of his/her two kidneys without facing major life threatening
consequences.

The possibility of having living donors triggers the idea of kidney exchange: often
patients have a family member who is willing to donate his/her kidney, but this kidney
might not be a suitable match for the patient due to reasons like incompatible blood-
type etc. To solve this problem, a kidney exchange is performed in which patients swap
their incompatible donors to each get a compatible donor.

This setting can be modeled as a maximum matching problem as follows. Create
a graph G(V, E) where each patient-donor pair is a vertex and there is an edge be-
tween two vertices iff the two patient-donor pairs can perform a kidney exchange.
Consequently, a maximum matching in this graph identifies the maximum number of
patient-donor pairs that are able to perform an exchange.

To construct such a graph for kidney exchange, typically we only have access to
the medical record of the patients and the donors, which contains information like
blood type, tissue type, etc. This information can be used to rule out the patient-donor
pairs where donation is impossible (e.g., different blood types), but does not provide a
conclusive answer for whether or not a donation is indeed feasible. In order to be (more)
certain that a donor can donate to a patient, more accurate tests must be performed
before the transplant, that includes crossmatching, antibody screen, etc!, which are
both costly and time consuming.

The stochastic matching problem captures the essence of the need of extra tests
for kidney exchange: an algorithm selects a set of patient-donor pairs to perform the
extra costly and time consuming tests (i.e., query the edges), while making sure that
w.h.p. there is a large matching among the pairs that pass the extra tests (i.e., in the
realized graph). The objective of querying as few edges as possible captures the essence
of minimizing the total cost and the objective of having small degree of adaptivity
captures the essence of minimizing patient’s waiting time by performing the extra
exams between many patient-donor pairs in parallel.

The kidney exchange problem has been extensively studied in the literature, par-
ticularly under stochastic settings (see, e.g., [Akbarpour et al. 2014; Anderson et al.
2015a,b; Awasthi and Sandholm 2009; Dickerson et al. 2012, 2013; Dickerson and
Sandholm 2015; Manlove and O’Malley 2014; Unver 2010]); we refer the interested
reader to [Blum et al. 2015] for a more detailed discussion.

1.2. Model

We now formally define the model for the stochastic matching problem. For any graph
G(V,E), let OPT(G) denote the maximum matching size in G. With a slight abuse of
notation, we sometimes also use OPT(X) := OPT(G(V, X)) for X C E,i.e., X is a set of
edges instead of a graph. Throughout, we use n to denote |V]|.

I American Transplant Foundation, http:/www.americantransplantfoundation.org/.

In the stochastic setting, for the input graph G(V, E), each edge in E is realized in-
dependently w.p.? p. When sampling each edge w.p. p, for any set of edges X C E, we
slightly abuse the notation and use X, to denote both a random variable that corre-
sponds to sampling edges in X w.p. p, as well as a specific realization of the random
variable X,,. We call each possible realized graph G(V, E,) a realization of G.

In the stochastic matching problem, we are given a graph G(V, E) and our goal is to
compute a matching M in G(V, E,), such that wh.p. (taken over both the randomness
of the algorithm and the randomness of the realization F, C E), the size of M is close
to OPT(E,). An algorithm is allowed to query any edge e € E to determine whether or
not e € E,, and we consider the following two classes of algorithms.

— Non-adaptive algorithms. A non-adaptive algorithm specifies a subset of edges
Q C E, queries all edges in () in parallel, and outputs a matching among the edges
realized in Q.

— Adaptive algorithms. An adaptive algorithm proceeds in rounds where in each
round, based on the edges queried and realized thus far, the algorithm chooses a new
set of edges to query in parallel. We say the degree of adaptivity of an algorithm is d
if the algorithm makes at most d rounds of adaptive queries.

In general, the goal is to design algorithms where the number of per-vertex queries is
independent of n. For adaptive algorithms, the degree of adaptivity is further required
to be independent of n.

We remark that throughout, we always assume OPT(G) = w(1/p) to obtain the de-
sired concentration bounds. This assumption essentially says that the expected match-
ing size in the realized graph is bounded from below by a sufficiently large constant.

1.3. Related Work

Prior to our work, the state of the art adaptive and non-adaptive algorithms for
stochastic matching are that of [Blum et al. 2015], which is an adaptive (resp. non-
adaptive) algorithm that achieves a (1 — ¢)-approximate (resp. (1 — ¢)-approximate)
matching in expectation, while both the number of per-vertex queries and the degree
of adaptivity (for the adaptive algorithm) is ,,c)(% Note that while in these algorithms,

the number of per-vertex queries and degree of adaptivity is independent of n, the ex-
ponential dependence on %, limits the practical appeal of the algorithm. [Blum et al.
2015] raised an open problem regarding the possibility of avoiding the exponential de-
pendency on % for both the number of per-vertex queries and the degree of adaptivity.

Other variants of the stochastic matching setting have also been studied in the lit-
erature. [Blum et al. 2013] considered the setting where each vertex can only pick two
incident edges to query and the goal is to find the optimal set of edges to query. An-
other well studied setting is the query-commit model, whereby if an algorithm decides
to query an edge ¢, then e must be part of the matching the algorithm outputs in case
e is realized [Adamczyk 2011; Bansal et al. 2012; Chen et al. 2009; Costello et al. 2012;
Gupta and Nagarajan 2013].

1.4. Our Results

We provide algorithms for the stochastic matching problem with exponentially smaller
number of queries and degree of adaptivity (for the adaptive algorithm) compared to
the best previous bounds of [Blum et al. 2015]. In particular,

2Throughout, we use w.p. and w.h.p. to abbreviate “with probability” and “with high probability”, respec-
tively.

THEOREM 1.1 (INFORMAL). For any ¢ > 0, there exists a poly-time adaptive
(1 — e)-approximation algorithm for the stochastic matching problem which queries

(0] (M> edges per vertex and has degree O <10g(aw) of adaptivity.

Ep p
The formal statement of Theorem 1.1 is presented in Section 4 (as Theorem 4.1).

THEOREM 1.2 (INFORMAL). For any ¢ > 0, there exists a poly-time non-adaptive
(% — ¢)-approximation algorithm for the stochastic matching problem which queries
9] (log (1/ep)

=) edges per vertex.

The formal statement of Theorem 1.2 is presented in Section 5 (as Theorem 5.1).

These results provide an affirmative answer to an open question raised by [Blum
et al. 2015] regarding the possibility of avoiding the exponential dependency on 1/¢ for
both the number of per-vertex queries and the degree of adaptivity.

One of the key property of our results is that we provide instance-wise approximation
guarantees, i.e., for 1 — o(1) fraction of the realizations of G, the algorithm outputs a
competitive solution. This is a stronger guarantee than the expectation guarantee pro-
vided in [Blum et al. 2015] which states that expected size of the matching output by
the algorithm is competitive with the expected size of the maximum matching among
all realizations. We remark that our instance-wise guarantee is of particular interest
to the key application of the kidney exchange problem.

Finally, it is worth mentioning that even when the input graph is a complete graph,
one needs to query Q(log(1/¢)/p) edges per each vertex to simply ensure that the num-
ber of isolated vertices in the realized graph is at most en. This is due to the fact that if
one queries less than In(1/¢)/2p edges per vertex, the probability that no edge incident
on a vertex is realized is (1 — p)™(1/¢)/2P > exp(—2p-In(1/)/2p) = . On the other hand,
it is easy to see that for any constant p > 0, any realization of a complete graph has a
perfect matching w.h.p. Hence, Q(log(1/¢)/p) is a simple lower bound on the number of
per-vertex queries for any (1 — ¢)-approximation algorithm even on complete graphs.
Our per-vertex query bounds in Theorem 1.1 and Theorem 1.2 only ask for slightly
more than this simple lower bound.

1.5. Our Techniques

To explain the high-level idea underlying our algorithms, it will be convenient to fo-
cus on the case when G, has a perfect matching; however, we emphasize that our
algorithms do not require this property. The idea behind both of our algorithms is to
construct a matching-cover of the input graph G and query the edges of the cover in the
algorithm. Roughly speaking, a y-matching-cover of a graph G(V, E) is a collection of
matchings of G of size v - (|[V| /2) that are essentially edge-disjoint (see Section 3.1 for
a formal definition). One of the main technical ingredient of our work is a structural
result proving that: for any algorithm that outputs a y-matching cover with ©(1/ep)
matchings, w.h.p. the set of realized edges in the cover contains a matching of size
(I1—¢)-v-(]V]/2). We prove this result through a constructive argument based on the
Tutte-Berge formula (see Section 2 for more detail on Tutte-Berge formula).

Next, we show that there is a simple adaptive (resp. non-adaptive) algorithm
that computes a 1-matching-cover (resp. 1/2-matching-cover) with ©(1/sp) matchings,
which immediately implies that w.h.p. the algorithm achieves a (1 — ¢)-approximation
(resp. (1 — ¢)-approximation).

Finally, to eliminate the assumption that G, has a perfect matching, we establish
a vertex sparsification lemma (see Section 3.2) which allows us to reduce the number
of vertices in any instance G from |V| to O(OPT(G)/c), while w.h.p. preserving the

maximum matching size to within a factor of (1 — ¢). In the sparsified graph G(V, &),
although we only have OPT(G,) = Q(]V|) instead of having a perfect matching, we can
show that, with some more care in the analysis, the constant gap between OPT(G))
and |V| is enough for us to establish the approximation ratios of our algorithms.

Comparison with [Blum et al. 2015]. The adaptive algorithm of [Blum et al. 2015]
can be summarized as follows: maintain a matching M, and at each round find a col-
lection of vertex-disjoint augmenting paths of length O(1/¢) in the input graph G(V, E)
with respect to M; query the edges of the augmenting paths and augment M if pos-
sible. Using the well-known fact that a matching with no augmenting path of length
O(1/e) is a (1 — ¢)-approximate matching, the authors show that the found matching
of the algorithm is a (1 — ¢)-approximation in expectation.

In this process, the probability that an augmenting path of length O(1/¢) “survives”
the querying process is only p®(1/¢); hence, one needs to repeat the whole process
roughly W times, which leads to the same degree of adaptivity and per-vertex

queries. The non-adaptive algorithm of [Blum et al. 2015] is designed based on similar
framework of using augmenting paths.

On the other hand, our algorithms exploit the structure of matchings in a global
way (using the Tutte-Berge formula) instead of locally searching for short augment-
ing paths. In particular, through the use of matching covers, we completely eliminate
the need of searching for the augmenting paths and hence avoid the exponential de-
pendency on %, which is essentially the length of the augmenting paths. It is worth
mentioning that however most of these differences only appear in the analysis; the
description of our algorithms and algorithms of [Blum et al. 2015] are both simple and
similar (modulo the extra sparsification part of our algorithm).

2. PRELIMINARIES

Notation. Throughout we use n to denote |V|, where V is the set of vertices in the
input graph G(V, E). For any set of edges X C FE, V(X) denotes the set of vertices
incident on X. For two integers a < b, [a, b] denotes the set {a,...,b} and [b] :=[1,].

Tutte-Berge formula. In our proofs, we crucially rely on the Tutte-Berge formula
which generalizes the Hall’s marriage theorem for characterizing perfect matchings in
bipartite graphs to maximum matchings in general graphs. For any graph G(V, F) and
any U C V, odd(V — U) denotes the number of connected components with odd number
of vertices in G(V \ U, E). We have,

LEMMA 2.1 (TUTTE-BERGE FORMULA). The size of a maximum matching in a
graph G(V, E) is equal to

1
5 min (\U| V] - odd(V — U))

See, e.g., [Lovasz and Plummer 2009] (Chapter 3) for a proof of this lemma.
Finally, we have the following simple concentration result on the size of a maximum
matching in G,; the proofis a standard application of the Chernoff bound.

CLAIM 2.2. For any graph G(V, E) with OPT(G) = w(1/p),
Pr (oPT(G,) > p- OPT(G)/2) =1 —o(1)
3. MATCHING COVERS AND VERTEX SPARSIFICATION FOR STOCHASTIC MATCHING

In this section, we present our main technical results, namely the matching-cover
lemma and the vertex sparsification lemma, which lie in the core of both our adap-
tive and non-adaptive algorithms. We start by describing the matching-cover lemma.

As explained earlier in Section 1.5, the matching-cover lemma is already sufficient for
establishing the approximation guarantee of the algorithms as long as OPT(G) = Q(n).
To tackle the case where OPT(G) is much smaller than the number of vertices, we next
introduce a simple vertex sparsification lemma that provides a way of reducing the
number of vertices in any graph G(V, E) from |V| to O(OPT(G)) while preserving the
maximum matching size approximately, for any realization of G(V, E,)).

3.1. Matching-Cover Lemma

We start by defining the following process which takes any graph as an input, and
outputs a list of matchings (i.e., a matching-cover).

Definition 3.1 (Incremental Matching Selection Process). We say an algorithm is
an incremental matching selection process (IMSP) iff for any input graph G, the al-
gorithm selects a sequence of matchings M;, Ms, ..., M, one by one from G such that
for any i € [r], for any edge e selected in the i-th matching M; where e also appears in
M; for some j < i, the edge e must be realized.

We refer to the matchings an IMSP outputs as a matching-cover, and we say that
an IMSP outputs a y-matching-cover iff for all i € [r], |M;| > 5. The following claim
states the key property of any IMSP, which will be used in our proofs.

CLAaIM 3.2. For any IMSP A and any graph G, denote by My, Ms,,..., M, the
matching-cover that A outputs on G; then for any i € [r], conditioned on any realization
of My, M, ..., M;_1, and any choice of the matching M, each edge ¢ € M; is realized
w.p. at least p, independent of any other edges in M;.

PROOF. For the edges e € M; that appear in previous matchings, by the definition
of IMSP, e is realized w.p. 1(> p), which is trivially independent of any other edges in
M;. For the set of edges E’ that do not appear in any previous matching, E’ is disjoint
with My, Ms, ..., M;_ 1 and the set of realized edges in M, Ms, ..., M; ; is independent
of realization of edges in E’. Therefore, by the definition of the stochastic setting, each
edge in F’ is realized w.p. p, independent of other edges. DO

We are now ready to state the matching-cover lemma, which is the main result of
this section.

LEMMA 3.3 (MATCHING-COVER LEMMA). For any parameter 0 < e,p < 1, any
graph G, and any IMSP A, denote by M,,..., M, the ~v-matching-cover of G that A

outputs. If r > %fem and v-n = w(l), then, w.p. 1 — o(1), there is a matching of size
at least (1 — €)%* among the realized edges in the matching-cover.

We remark that Lemma 3.3 holds even for multi-graphs, which is a property re-
quired by our algorithms (due to the usage of vertex sparsification). We first provide
a high-level summary of the proof. Suppose by contradiction that the output of IMSP
A does not contain a large matching; then, by Tutte-Berge formula, there should exist
a set of vertices U C V where removing U from the graph results in many connected
components (CC) with odd number of vertices, namely U is an odd-sets-witness (see
Fig 1.a for an example of an odd-sets-witness). Our strategy is to show that, for any
fixed set U, the probability that U ends up being an odd-sets-witness is sufficiently
small, and then use a union bound over all possible choices of U to argue that w.h.p. no
such odd-sets-witness can arise.

To see that w.h.p, each U does not lead to an odd-sets-witness, we again use the
Tutte-Berge formula: if the edges realized in the first i matchings leave many odd-size
CC’s, then the large matching M;,; must eliminate most of them. Note that this is
not enough to show that the number of odd-size CC’s will decrease w.h.p. since it is

O]
Odd-size Even-size Odd-size
Connected Connected Connected
Components: O Components: Components: @ -
more than |U|. any number. more than |U|.

(a) A candidate odd-sets-witness U. (b) Thick (red) edges are matching M;. Solid edges
are realized while dashed edges are not.

Even-size
Connected
Components:

any number.

Fig. 1: An example of adding a large matching M; to an odd-sets-witness (the red/thick
edges). The number of odd components does not decrease but the total number of con-
nected components indeed decreases.

possible that M., eliminates two odd-size CC’s by connecting them through a chain of
even-size CC’s (see the long chain in Fig 1.b for an illustration). The length of the chain
could be arbitrarily long and even if one edge on the chain is not realized, the two odd-
size CC’s will still end up being disconnected. A key observation here is that though
the number of odd-size CC’s might not decrease (requiring all edges on the chain to be
realized), but the total number of CC’s will decrease w.h.p. (any realized edge on the
chain reduces the number of CC’s). Using this fact, we show that after enough number
of rounds, the total number of CC’s will drop significantly and even if all of them are
odd-size CC’s, it is not enough for being a odd-sets-witness.

PrROOF OF LEMMA 3.3. If the edges realized in the matching-cover do not contain
a matching of size more than (1 — ¢)%*, then, by Lemma 2.1, there exists a set of
vertices U where the number of odd-size connected components after removing U, i.e.,
odd(V —U), satisfies

yn 1
S P _ _
(-5 = (1] + V| - odd(v - 1))
which implies that odd(V — U) > |U| + (1 — v + ey)n. In this case, we say U leads to
an odd-sets-witness and denote this event by Ey;. Using this fact, we only need to prove
the following lemma.

LEMMA 3.4. Forany U CV, Pr(Ey) < 272ymlos(2e/7),

We first show that Lemma 3.4 implies Lemma 3.3. We will apply a union bound over all
candidate sets U to show that probability that there exists some U where Ey happens
is o(1). In order to so, we argue that the number of different choices of U’s that need
to be considered is at most 271°8(2¢/7) To see this, note that every odd-size set must
contain at least one vertex, and there are only n vertices that could be part of the odd-
size sets. Thus, we have n > odd(V — U). On the other hand, as we just established,
odd(V —U) > |U| + (1 — v + €y)n, and combining the two inequalities, we have

Ul <n—(1—-y+ey)n<n (1

Therefore, it suffices to consider the sets U with cardinality at most vn, and only

<n+7n> < (6(1 +,-y)n>'yn < (%)’yn _ 2~/nlog(26/'y)
mn N mn e

such choices of U exists. Now, we can apply a union bound over all such choices of U,
and by Lemma 3.4 w.p. at least 1 — 2777108(2¢/7) = 1 — o(1) (recall that yn = w(1)),
there is no odd-sets-witness, proving Lemma 3.3. It remains to prove Lemma 3.4, and
as stated in Eq (1) we can assume, wlog, that |U| < yn.

PrOOF OF LEMMA 3.4. Recall that the goal is to show that w.h.p., U does not lead
to an odd-sets-witness (i.e., Ey does not happen). We first define some notation. For
any i € [r], Mp(i) denotes the set of edges in A/; that are realized and are not incident
on vertices in U, and G; denotes the graph after realizing the edges in the first i match-
ings. We use cc(G;) to denote the number of connected components in G; and use E; to
denote the event that the number of odd-size connected components in G; is at least
U]+ (1=~ +ey)n.

Let Y; be a random binary variable where Y; = 1 iff cc(G;—1) — cc(G;) < ep - yn/16
(and Y, = 0 otherwise), which is the event that the edges of M, (i) do not reduce the
number of connected components in G;_; by more than ep - yn/16. Suppose for at least
half of the rounds, Y; = 0; then, the number of connected components after the IMSP
selects the r matchings is less than
roepyn 32log(2e/7) 1 ep-n

2 16 ep 2 16

On the other hand, since having |U|+ (1 — v +¢7)n odd-size connected components (i.e.,
Ey happens) implies that there are more than (1 — +v)n connected components,

Pr(Ey) = Pr (EU, SV > g) @)

i€[r]

<1 -9y)n

Hence, we can focus on upper bounding the probability that E;; happens and for more
than half of the rounds, Y; = 1. In the following, we first establish a key property
regarding the probability that Y; = 1 (Lemma 3.5) and then show how to use this
property to bound the probability of the target event in Eq (2) (Lemma 3.7). To simplify
the presentation, we use M, (i;,i2,...,%;) to denote the set of edges realized in the
matchings M, (i1), Mp(i2), ..., My(i;), and, with a slight abuse of notation, use Y; to
denote the event that Y; = 1. In particular, we show that

LEMMA 3.5. Forany M,(1,...,i—1),

16

PROOF. Recall that E;_; is the event that the number of odd-size connected compo-
nents in G;_; is at least |U| + (1 — v + ey)n. We have,

Pr (Y“ Ei,1 | Mp(l, AN ,i — 1))
=Pr(Y; | M,(1,...,i—1),E;_1) -Pr(E;_1 | My(1,...,i—1)) (Chain rule)

< Pr (Yz ‘ Mp(]., e ,i —].)7 Eifl)
hence, we only need to show that Pr(Y; | M,(1,...,i —1),E;_1) < exp (—222"),
which is, roughly speaking, the probability that the i-th matching M; does not re-
duce the number of connected components by a lot, given that the graph G;_; contains
many odd-size connected components.

Pr(Yi,Eioy | My(L,...,i— 1)) < exp (—3“"””)

To proceed, we need the following definition. For any graph H, we say a set of edges
E’ form a component-based spanning forest of H, if E’ is a spanning forest of the graph
obtained by contracting each connected component in H into a single vertex (and any
edge (u,v) € E’ becomes an edge between the connected components that v and v
respectively resides in). It is straightforward to verify that if we add any component-
based spanning forest £’ C F to H, the number of connected components in H would
reduce by |E’|. The following claim is the key to obtain the target upper bound on
Pr (Yl | Mp(l, . ,7; — 1)7 Eifl).

CLAIM 3.6. Whenever E;_ happens, there exist at least =3 edges of M; that form a
component-based spanning forest of G;_1.

PROOF. Since the matching M; has size at least vn/2 (by definition of being in a -
matching-cover), the edges of M; can reduce the number of odd-size sets from at least
U]+ (1 — v+ ey)n (e, E;—; happens) down to at most |U| + (1 — v)n (by Lemma 2.1).
Therefore, after adding edges of M; to G;_1, at least eyn odd-size sets will disappear.
For each odd-size set S that disappears, M; must contain at least one edge between S
and another connected component. Therefore, for the largest component-based span-
ning forest obtained by the edges in M;, at least eyn vertices (i.e., connected compo-
nents) have degree at least one, which implies the number of edges in the forest is at
least =%*. O

Let T; C M; be the the set of (at least) =I* edges promised by Claim 3.6 (conditioned
on E;_1) and t; be the number of edges realized in T;. By Claim 3.2, each edge in T; is
realized w.p. at least p independent of each other, hence, E [t;|E;_1] > ep - yn/2. Note
that ¢; is a lower bound on cc(G;—1) — cc(G;) (i.e., the decrement of the number of
connected components from G,_; to G;), and Y; = 1 iff cc(G;-1) — cc(G;) < ep - yn/16,
which implies that no more than ep - yn/16 edges is realized in T; (which is 1/8 of the
expectation). Hence, by Chernoff bound,

Pr (Yz | Mp(l,. .. ,i — 1)7 Eifl) < Pr (ti < Epign | Eifl)

<exp e 2.€p~'yn = exp 2 em

- 2 \8 2 64 4
48 ep-yn 3ep - yn

< - < o=y

—eXp< 64 4 > —eXp< 16

which concludes the proof of Lemma 3.5. 0O

Having Lemma 3.5, we are now ready to upper bound the probability that Y; hap-
pens in more than half of the rounds.

LEMMA 3.7. For any collection of r/2 rounds i, iz, ..., i,/2,
Pr (YilaYi27 - 7Yir/27 EU) < 2*3’Yn log(?e/’Y).

PROOF. Assume wlog that i; < iy < ... < i,/. First of all, Ey happening implies
that E;,_1,E;,_1,...,E; ,_1 should all happen?; therefore,

ir/2

Pr (Yil,YiQ,...7Y EU) SPr(Yi17Yi27"'7Yi,r/27Ei1—17Ei2—17"')EiT/z—l) (3)

ir/29

31t is straightforward to very that the number of odd-size connected components is monotonically decreasing.

After reorganizing the terms, we have,

Pr(Yi,,Yiy, -, Yi 0, Eiy—1,Eiy 1, Eip 1)
_PI‘ (Y“, E,Ll 1,Y72, Ezz Tyeoo 7Yi,,/27 Elr/z—l)
:HjE[T’/Z] Pr (Yi]., ij—1 | Yi1; Eil—la YZ2, Ezz Tyeo- 7Yi_7_17 Ei_j_l—l) (Cham rule)
We will upper bound each of the r/2 terms separately. Fix a j € [r/2], denote
the event (Y;,,E; _ 1,Y12,E22 1,5 Y, s B 1) by E*. Note that E* 1s completely
determined by My(1,...,i;_1), which is afso determined by M,(1, i — 1) since

ij—1>14;_1. We have
Pr(Yi,,Ei,—1 | Yi,Eii—1,Yis, Eis1, ..., Vs, By, 1) =Pr(Y,,,E;,—1 | EY)

IJ?
= Y Pr(My(1,...,i; — 1) | E) - Pr(Yi, B,y | E5, Mp(1,... 05 — 1))
Mp(1,...05—1)
= > Pr(My(1,...,i; — 1) | E*) - Pr (Y, Es,—1 | My(1,...,i; — 1))
My(1,...,i;—1) s.t. E*happens
(E* is determined by M, (1,...,i; — 1))

IN

3 Pr(My(1,....i; — 1) | E*) - exp < 3ep- 7”) (By Lemma 3.5)

16
Mp(1,...,i;—1) s.t. E*happens

3ep - yn
P T T 16

Therefore

3ep - o
6 2

where the second equality is by the choice of r. O

Pr (Y“,Y227 v Y, EU) < exp (-) < exp(—3ynlog(2¢e/7)) < 9—3yn log(2¢/7)

By Lemma 3.7, for each collection of § rounds, Y; happens to all of them w.p. at most

2-37nlog(2¢/7) There are at most 2" (which is independent of n) choices of different
(at least) § rounds, hence using union bounds, for » sufficiently large, the prob. that

T

Y; happens in more than 4 rounds is at most 2-27"1°¢(2¢/7) proving Lemma 3.4. As
discussed earlier, Lemma 3.4 implies Lemma 3.3, which completes the proof. O

3.2. Vertex Sparsification Lemma

In the following, we give an algorithm that for any 0 < ¢ < 1, reduces the number
of vertices in any graph G from |V| to O(OPT(G)/e), while preserving the maximum
matching size to within a factor of (1 — ¢) for any realization G, of G w.h.p.

For inputs G and ¢ and a sparsification parameter 7 to be determined later,
SPARSIFY(G, 7, ¢) works as follows. We create and output a multi-graph G(V, £) where:
(7) |V| = 7, (ii) each vertex v in G is mapped to a vertex V(v) in G chosen uniformly at
random from V, and (iii) for each edge (u,v), there is a corresponding edge between
V(u) and V(v). A pseudo-code of the SPARSIFY algorithm is presented in Algorithm 1.
We point out that similar ideas of randomly grouping vertices for matchings have been
also recently used in [Assadi et al. 2016; Chitnis et al. 2016] for the purpose of reducing
space requirement of algorithms in graph streams.

The following lemma states the main property of the SPARSIFY algorithm.

LEMMA 3.8. For any graph G(V, E), suppose G(V,&) := SPARSIFY (G, 1,¢) for the

parameter T > M)L and let M be any fixed matching in G with |M| = w(1); then,

ALGORITHM 1: SPARSIFY(G, 7, ¢). A Matching-Preserving Sparsification Algorithm

Input: Graph G(V, E), sparsification parameter 7, and input parameter £ > 0.

Output: A multi-graph G(V, &) with |V| = 7.

(1) Partition the vertices in V into 7 groups V := (V1,...,V,), by assigning each vertex
independently to one of the 7 groups chosen uniformly at random.

(2) For any edge (u,v) € E, add an edge ¢,,,, between the vertices V(u) and V(v) in £.

(3) Return the multi-graph G(V, £).

w.p. 1 — o(1), there exists a matching M of size (1 —¢) - |M| in G. Moreover, the edges of
M correspond to a unique matching M’ in G of the same size.

PROOF. Let ¢’ := ¢/4, and let s denote the number of vertices matched in M (i.e.,
s = 2|M|). Note that 7 > 40PT(G)/e > 4s/e = s/e’. For the sake of analysis, we first
merge the 7 groups V into s/&’ super-groups in the following manner. Fix any partition
that evenly breaks [7] into s/¢’ non-empty parts P, P, ..., Py, (i.e., |P;| = % for any
i € [s/€']). For each partition P;, define a super-group S; := Uj¢p,]V;. Then, since in
Algorithm 1 each vertex v € V is assigned to exactly one group chosen uniformly at
random, the probability that v € S; is %

We say a super-group S; is good iff S; contains at least one vertex in V' (M), and is
otherwise bad. For each super-group S;, let X; be a random variable where X; = 1 iff
S; is bad (otherwise, X; = 0). Let X = Zie[s /e X, be the number of bad super-groups.
In the following, we first show that X is small w.h.p., which implies that there are
many good super-groups, and then show that there is a large matching between the
good super-groups.

To see that X =}, |, /. X; is small wh.p., first notice that

e\ s , 5/2

Pr(X;=1)= (1— ;) <e < 1—5’—1—7 Vx>0, * <1—a+2%/2)
Therefore, we have E [X] =", E[X;] < (1-¢+ §)§ On the other hand, since
at most |V(M)| (= s) super-groups could contain a vertex from V(M) (i.e., could be
good), X > s/¢’ — s = Q(s) = w(1), and hence E [X] = w(1). To continue, observe that
our setting can be viewed as a standard balls and bins experiment: each vertex in
V(M) is a ball; each super-group is a bin; and X; denotes the event that the i-th bin
is empty. Therefore, the random variables X;’s are negatively correlated, and we can
apply Chernoff bound [Panconesi and Srinivasan 1997]:

Pr(X > (1+&?)E[X]) < e %= EXD =o(1) (E [X] = w(1))

Since E[X]| < (1—-¢+ §)?S’ (as shown above), we further have

/2
Pr (X >(1+?)(1 -+ 2)5/) <Pr(X>01+?)E[X]) =0(1)

Hence, w.p. 1 — o(1), the number of bad super-groups is at most (1 — &’ + 2¢"?) 5, which
implies that the number of good super-groups is at least 5 — (1 — &’ + 25’2)5 = (e —
2e%) % = (1 —2¢')s.

It remains to show that if at least (1 — 2¢’)s super-groups are good (i.e., contain
a vertex from V(M)), then the edges in M form a matching M in G of size at least
(1—4¢")|M| (= (1 —¢)|M]). To see this, for each good super-group S;, we fix one vertex
v € V(M) NS; and remove all other vertices in S;. For the matching M, at most 2¢'s

vertices in V(M) are removed and hence at least s/2 — 2¢’s = (1 — 4¢’) | M| edges in M
remain. Since all endpoints of these edges are assigned to distinct super-groups, these
edges form a matching M of size at least (1 —4¢’) |M|=(1—-¢)|M|inG .

To see the second part of the lemma, simply note that each edge of M comes from a
distinct edge in M. O

For any G, := G(V, E,), define G, as the graph obtained from G by considering only
the edges that correspond to edges in E,. We are now ready to prove our vertex sparsi-
fication lemma.

LEMMA 3.9 (VERTEX SPARSIFICATION LEMMA). Let G(V, E) be a graph with max-
imum matching size w(1/p) and let G = SPARSIFY (G, ,¢) for 7 = %; then,

Pr (opT(g,,) >(1-¢)- opT(G,,)) =1-0(1)

where the probability is taken over both the inner randomness of SPARSIFY algorithm
as well as the realization E, C E.

PRrROOF. By Claim 2.2, the maximum matching size in G, is w(1) w.p. 1 — o(1). Now,
for any realization G, with maximum matching size of w(1), by construction, G, =
SPARSIFY(G,, 7,¢). Hence, by applying Lemma 3.8 on any maximum matching M in
G, we have that G, has a matching of size (1 —¢) [M| w.p. 1 —o(1). O

4. A (1 — ¢)-APPROXIMATION ADAPTIVE ALGORITHM

We now present our adaptive algorithm and prove Theorem 1.1. The following is a
formal restatement of Theorem 1.1.

THEOREM 4.1. There is an adaptive algorithm that for any input graph G(V, E),
and any input parameter € > 0, outputs a matching of size ALG := ALG(G),) such that,

Pr (ALG >(1—-¢)- OPT) =1-o0(1)

where OPT := OPT(G,) is the maximum matching size in G,(V, E,). The probability is
taken over both the inner randomness of the algorithm and the realization E, C E.

Moreover, the algorithm makes only O(%) rounds of adaptive queries, and

log (1/ep)
Tp) edges per vertex.

queries only O(

Our adaptive algorithm in Theorem 4.1 works as follows. We first use our vertex
sparsification lemma (Lemma 3.9) to compute a graph G(V,€&) := SPARSIFY (G, ,¢)
where OPT(G) = Q(|V]). Next, we repeat for O(%) rounds the following operation.
Pick a maximum matching M from G, query the edges of M, and remove the edges that
are not realized. Finally, return a maximum matching among the realized edges. The
pseudo-code of this algorithm is presented as Algorithm 2.

It is straightforward to verify the number of queries and the degree of adaptivity
used in Algorithm 2: each round of the algorithm queries edges of a matching and
hence each vertex is queried at most once in each round. We now prove the bound on
the approximation ratio of the algorithm.

PROOF OF THEOREM 4.1. Let OPT := OPT(G,) denote the maximum matching size
in the graph G,. By Lemma 3.9, w.p. 1 — o(1), OPT > (1 — £)OPT(G,,). Now, it suffices
to show that w.p. 1 — o(1), Algorithm 2 outputs a matching of size at least (1 — £)OPT,

ALGORITHM 2: A (1 — ¢)-Approximation Adaptive Algorithm for Stochastic Matching

Input: Graph G(V, E) and input parameters 0 < ¢,p < 1.
Output: A matching M in G(V, E,).

(1) Let G(V,€) := SPARSIFY(G, 7,¢) for 7 := [%]

(2) Let R = [2s8e/en] and g* « ¢,

3) Fori=1,...,R,do:

(a) Pick a maximum matching M; in G(V,E™).

(b) Query the edges in M; and remove the non-realized edges from £*.
(4) Output a maximum matching among realized edges in M, Ma, ..., Mg.

since, with a union bound, it would imply w.p. 1 — o(1),
ALG(G,) > (1 —¢)-OPT > (1 —¢)? - OPT(G,) > (1 — 2¢) - OPT(G,)
and we can replace € with /2 in Algorithm 2 to obtain a (1 — ¢)-approximation.

To see that ALG(G,) > (1 — £)OPT w.h.p., let L := min,¢(g) |M;|, i.e., the minimum
size of a matching chosen by Algorithm 2. Since all M;’s are maximum matchings in £*
while £ always contains all edges of the optimum matching in G,, we have L > OPT
and we can focus on showing ALG(G,) > (1 —¢)L.

It is straightforward to verify that the way Algorithm 2 selects the matchings
My, M, ..., Mg satisfies the condition of IMSP (Definition 3.1). Moreover, by Claim 2.2

and Lemma 3.9, we have, Pr (O/P\T >p- OPT(G)/2) = 1 — o(1). Therefore, we can use
Lemma 3.3 with parameters:
Y= 2L > e-p R 32log (2¢/7) < 321og (8e/ep) <
v~ 4 ep ep
which states that w.p. 1 —o(1), the realized edges in matchings M;, Mo, ..., Mg contain
a matching of size at least (1 — 6)@ = (1 — ¢)L, which completes the proof. O

R

5. A (1 — £)-APPROXIMATION NON-ADAPTIVE ALGORITHM

In this section, we present our non-adaptive algorithm and prove Theorem 1.2. The
following is a formal restatement of Theorem 1.2.

THEOREM 5.1. There is a non-adaptive algorithm that for any input graph G(V, E),
any input parameter € > 0, outputs a matching of size ALG := ALG(G,) such that,

Pr (ALG > (% —e)- OPT) =1-o0(1)

where OPT := OPT(G,) is the maximum matching size in G,(V, E,). The probability is
taken over both the inner randomness of the algorithm and the realization E, C E.

log (1/ep)

=) edges per vertex.

Moreover, the algorithm non-adaptively queries O(

Note that any non-adaptive algorithm works in the following framework:

(1) Compute a subgraph H(V, Q) of the input graph G(V, E) for some Q C E.
(2) Query all edges in @ and compute a maximum matching in H(V, Q,).

Therefore, the main task of any non-adaptive algorithm is to choose a “good” sub-
graph H. Our non-adaptive algorithm chooses a subgraph H as follows. We first use our
vertex sparsification lemma to compute a graph G(V,€&) := SPARSIFY(G, 7,¢) where

OPT(G) = Q(|V|). Next, we repeat for O(%) times the process of picking a maxi-
mum matching from G(V, £) and removing the edges of the matching from £. Let Q be
the set of edges in these matchings; the algorithm returns H(V, Q) as the subgraph H.
A pseudo-code of this algorithm is presented as Algorithm 3.

ALGORITHM 3: A Non-Adaptive (3 — ¢)-Approximation Algorithm for Stochastic Matching

Input: Graph G(V, E) and input parameters 0 < ¢,p < 1.
Output: A matching M in G(V, E,,).

(1) Let G(V,€) := SPARSIFY(G, 7,¢) for 7 := [%]
32log(16e/e
(2) Let R i= |22kslioe/en) |,
(8) Initially Q <+ 0. Fori=1,..., R, do:
(a) Pick a maximum matching M; in G(V, €\ Q).
(b) Let Q < QU M,.
(4) Query all edges in Q and return a maximum matching in My, Mo, ..., Mg.

We now briefly provide the intuition behind Algorithm 3. Similar to the adaptive
case, using the vertex sparsification lemma (Lemma 3.9), our task reduces to approx-
imating the maximum matching in G, (as opposed to G,). For the adaptive case, our
algorithm guarantees that every selected matching is of size at least OPT(G,), which
allows us to use the matching-cover lemma directly to complete the argument. How-
ever, Algorithm 3 does not have such a strong guarantee since it is non-adaptive.
To address this issue, we establish a weaker guarantee which allows us to obtain a
1/2-approximation. The idea is as follows. On one hand, if the smallest matching se-
lected by the algorithm is of size at least OPT(G,)/2, we can still invoke the matching-
cover lemma (Lemma 3.3) and have that Algorithm 3 outputs a matching of size
(1 —)OPT(G,)/2. On the other hand, we show that if the smallest selected matching
has size less than OPT(G,)/2, then for any maximum matching M* in G, we must have
selected in @ at least half the edges of M*, which immediately results in a matching of
size OPT(G,)/2.

We now present the formal proof. In the following, let L := min;cz) |M;], i.e., the
minimum size of a matching chosen by Algorithm 3. Note that L = |Mp| since the size
of matchings chosen by the algorithm is a non-increasing sequence by construction.

LEMMA 5.2. IfL > p- OPT(G)/4, then, Pr (ALG >(1-¢)- L) =1-o(1).
PROOF. Since M;,..., My are edge disjoint matchings, the process of choosing
M, ..., Mg is an IMSP (Definition 3.1). Hence, by Lemma 3.3 with parameters:

2L S Ep . 32log (2¢/7) < 32log (16¢/ep)

et , —R
v — 8 ep ep

Y
there exists a matching of size (1 —¢) - @ =(1—-¢)-Lin @, w.p. 1 —o(1). Noting that
any matching of G, in @, corresponds to a matching in G, completes the proof. O

We define OPT := O/Pﬁ‘(gp) as the maximum matching size in G,.
LEMMA 5.3. Pr (ALG > (1 —¢)-OPT | OPT > 2L) = 1.

PROOF. Let M be any arbitrary matching in G. We have, |M| — |Q N M| < L since
otherwise, for the matching M’ := M \ @, we have |[M'| = |M|— |QN M| > L > |Mg|,
contradicting the fact that My is a maximum matching in the remaining graph.

Now let M be any maximum matching in G,. Since OPT > 2L, we have |M| > 2L.
Consequently, |[Q N M| > |[M| - L > |M| — |M] /2 = |M]| /2. Hence at le least half of the

edges in M are also present in @, implying that in this case, ALG > OPT/2 w.p. 1. O

We now prove the bound on the approximation ratio of Algorithm 3.
LEMMA 5.4. Pr (ALG > (3 —2¢)- OPT) =1-o(1).
PROOF. Recall that OPT := OPT(G,). By Claim 2.2 and Lemma 3.9, we have,
Pr (O/P\T >p- OPT(G)/Q) =1-o0(1) 4)

Let E,;n be the event that ALG > (4 —¢) - OPT. We argue that Pr (E,;,) = 1 — o(1).

This, together with the fact that w.p. 1—o(1), OPT > (1—¢)-OPT (Lemma 3.9) completes
the proof.
Consider two cases, (i) L < p- OPT(G)/4, and (it) L > p - OPT(G)/4. For case (i),

Pr (Eyin) > Pr (OPT > 2L) - Pr (Eyy, | OPT > 2L)
> Pr (OPT > p- OPT(G)/2) - Pr (Eyin | OPT > 2L) = (1 —o(1)) - 1
where the last equality is by Eq (4) and Lemma 5.3. For case (i7),

Pr(Eyin) =Pr
=Pr
>Pr
>Pr (0

)
OPT > 2L) - Pr (Eyi, | OPT > 2L) + Pr (OPT < 2L) - Pr (Eyy | OPT < 2L)
OPT > 2L) + Pr (OPT < 2L) - Pr (Eyn | OPT < 2L) (By Lemma 5.3)
OPT > 2L) + Pr (OPT < 2L) - Pr (ALG > (1 —¢) - L | OPT < 2L)
OPT > 2L) - Pr (ALG > (1 —¢)- L | OPT > 2L)
+Pr (OPT < 2L) - Pr (ALG > (1 —¢) - L | OPT < 2L)
=Pr(ALG > (1—¢)-L) =1 — o(1)
where the last equality is by Lemma 5.2. 0O

AAAA

Theorem 5.1 now follows from Lemma 5.4 (by replacing ¢ with £/2 in Algorithm 3),
and the fact that Algorithm 3 queries O(%) matchings and hence O(%)
incident edges are queried for each vertex.

6. A BARRIER TO OBTAINING A NON-ADAPTIVE (1 — ¢)-APPROXIMATION ALGORITHM

The approximation ratio of our non-adaptive algorithm is (3 —) as opposed to the
near-optimal ratio of (1 — ¢) achieved by our adaptive algorithm. A natural question,
first raised by [Blum et al. 2015], is if one can obtain a (1 — ¢)-approximation using
a non-adaptive algorithm, even by allowing arbitrary dependence on p and ¢. In the
following, we highlight a possible barrier to obtain such a result.

Consider a bipartite graph G(L, R, E) constructed as follows: (i) the vertex sets are
L=V,UV3, R=1,UV, and |V;| = N for i € [4], (i7) there is a perfect matching between
V1 and V5, and a perfect matching between V5 and V,, and (iii) there is a gadget graph
G (Va, Vs, E), to be determined later, between V5 and V3 (see Fig 2.a).

Suppose we want to design a non-adaptive (1 — ¢)-approximation algorithm for the
instance G(V, E) with the parameter p = 2/3. In this case, for any graph G,, wh.p.,
there is a matching M; between V; and V5, and another matching M, between V3 and
V4, each of size (2/3)N — o(N). Hence,

OPT(Gp) > | M| + | M| + (2/3) - m(A, B) — o(N) 5)

Gadget
Graph

(a) Input graph G(V, E) (b) A realization G, (V, Ep)

Fig. 2: An example of a barrier to (1 — ¢)-approximation non-adaptive algorithms. The
edges in the gadget graph are not presented in this figure. In part (b), solid red edges
(resp. dashed edges) are the edges that are realized (resp. not realized).

where A (resp. B) is the set of vertices in V5 (resp. V3) that are not matched by M;
(resp. M>), and m(A, B) denotes the size of a maximum matching between A and B. A
few observations are in order. First, picking edges of M; and M, is crucial for having
any large matching in G, and second, for a uniformly at random chosen realization
of M, and Ms, the set A and B are chosen uniformly at random from V, and V3 (see
Fig 2.b). Based on these observations, we define the following problem.

PROBLEM 6.1. Given a bipartite graph G(L, R, E), choose a subgraph H(L, R, Q)
such that given two subsets A C L and B C R, if m(A,B) > N/3 —o(N) in G, then H
contains at least Q(N) edges between A and B.

The goal is to solve Problem 6.1 using a graph H with small number of edges. The
previous discussion implies that any non-adaptive (1 —¢)-approximation algorithm has

to solve Problem 6.1 for the gadget graph G, when the two sets A and B are chosen
uniformly at random. Otherwise, for the maximum matching size ALG(G,) in H(V, Q)
and maximum matching size OPT(G,) in G,, we have:

ALG(Gp) < |Mi| 4 [Ma] 4+ o(N) < (4/3)N + o(N)
OPT(G,) > (4/3)N + (2/3)(N/3) — o(N) = (14/9)N — o(N) (by Eq (5))

Hence, the approximation ratio of the algorithm on this instance is at most 6/7 + o(1),
bounded away from being a (1 — ¢) approximation for ¢ < 1/7.

Although for randomly chosen subsets A and B, no lower bound on the size of H is
known, we show in the following that if A and B are chosen adversarially, then there
exist graphs for which solving Problem 6.1 requires storing a subgraph with super
linear in n number of edges. Note that the number of queries of any non-adaptive
algorithm is at least the number of edges in H and hence this bound on the number
of edges in H implies that w(n) queries are needed, or in other words, the number of
per-vertex query needs to be a function of n. The existence of such a graph indicates a
barrier to obtain a non-adaptive (1 — ¢)-approximation algorithm.

To continue, we need a few definitions. For a graph G(V, E), a matching M is called
an induced matching, if there is no edge between the vertices matched in M, i.e., V (M),
except for the edges in M. A graph G(V, E) is called an (r,t)-Ruzsa-Szemerédi graph
((r,t)-RS graph for short), if the edge set F can be partitioned into ¢ induced matchings
each of size r. Note than the number of edges in any (r,¢)-RS graph is r - ¢.

Suppose G(L,R, E) is an (r,t)-RS graph with the parameter » = N/3 and in-
duced matchings M;,..., M;. For each i € [t], define A; (resp. B;) as V(M;) N L
(resp. V(M;) N R). Suppose we choose the pair (A, B) only from the set of pairs
F = {(41,B1),...,(At, B;)}. Note that between any pair in F, there is a matching
of size r = N/3, and moreover all edges of G are partitioned between these matchings.
If the subgraph H(V, Q) has only o(r - t) edges, a simple counting argument suggests
that for 1 — o(1) fraction of pairs in F, only o(r) edges between the pairs are present in
H. Hence, H cannot be a solution to Problem 6.1.

To complete the argument, we point out that there are (r, ¢)-RS graphs on 2N vertices
with parameters r = N/3 and t = N2(1/loglog N) [Rischer et al. 2002; Goel et al. 2012].
These constructions certify that to solve Problem 6.1 when the sets A and B are chosen
adversarially, one needs to store a subgraph with n!+t¢(1/leglogn) — (. polylog(n))
edges. In conclusion, while this result does not rule out the possibility of a non-adaptive
(1—¢)-approximation algorithm where the number of per-vertex queries is independent
of n, it suggests that any such algorithm has to crucially overcome Problem 6.1 using
the fact that the two sets A and B are chosen randomly instead of adversarially.

7. CONCLUSIONS

We studied the stochastic matching problem in this paper. We showed that there ex-
ists an adaptive (1 —¢)-approximation algorithm for this problem with O(%) per-
vertex queries and degree of adaptivity. We further presented a non-adaptive (% —£)-
approximation algorithm with O(%) per-vertex queries. These results represent

an exponential improvement over the previous best bounds of [Blum et al. 2015], an-
swering an open problem in that work.

An interesting direction for future research is to design a non-adaptive algorithm
that obtains a better than i-approximation while maintaining the property that the
number of per-vertex queries is independent of n. Toward this direction, we highlighted
a potential barrier to achieve a (1 — ¢)-approximation non-adaptively.

ACKNOWLEDGMENTS

We would like to thank Nika Haghtalab for introducing us to the stochastic matching problem. This
work was supported in part by National Science Foundation grants CCF-1116961, CCF-1552909, and IIS-
1447470.

REFERENCES

Marek Adameczyk. 2011. Improved analysis of the greedy algorithm for stochastic
matching. Inf Process. Lett. 111, 15 (2011), 731-737.

Mohammad Akbarpour, Shengwu Li, and Shayan Oveis Gharan. 2014. Dynamic
matching market design. In ACM Conference on Economics and Computation, EC
’14, Stanford , CA, USA, June 8-12, 2014. 355.

Ross Anderson, Itai Ashlagi, David Gamarnik, and Yash Kanoria. 2015a. A dynamic
model of barter exchange. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015. 1925-1933.

Ross Anderson, Itai Ashlagi, David Gamarnik, and Alvin E. Roth. 2015b. Finding long
chains in kidney exchange using the traveling salesman problem. Proceedings of the
National Academy of Sciences 112, 3 (2015), 663—668.

Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. 2016. Maxi-
mum Matchings in Dynamic Graph Streams and the Simultaneous Communication
Model. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016. 1345-1364.

Pranjal Awasthi and Tuomas Sandholm. 2009. Online Stochastic Optimization in the
Large: Application to Kidney Exchange. In IJCAI 2009, Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence, 2009. 405-411.

Nikhil Bansal, Anupam Gupta, Jian Li, Julidan Mestre, Viswanath Nagarajan, and Atri
Rudra. 2012. When LP Is the Cure for Your Matching Woes: Improved Bounds for
Stochastic Matchings. Algorithmica 63, 4 (2012), 733-762.

Avrim Blum, John P. Dickerson, Nika Haghtalab, Ariel D. Procaccia, Tuomas Sand-
holm, and Ankit Sharma. 2015. Ignorance is Almost Bliss: Near-Optimal Stochastic
Matching With Few Queries. In Proceedings of the Sixteenth ACM Conference on Eco-
nomics and Computation, EC ’15, Portland, OR, USA, June 15-19, 2015. 325-342.

Avrim Blum, Anupam Gupta, Ariel D. Procaccia, and Ankit Sharma. 2013. Harnessing
the power of two crossmatches. In ACM Conference on Electronic Commerce, EC ’13,
Philadelphia, PA, USA, June 16-20, 2013. 123-140.

Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri Rudra.
2009. Approximating Matches Made in Heaven. In Automata, Languages and Pro-
gramming, 36th International Colloquium, ICALP 2009, Part I. 266-278.

Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi,
Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. 2016. Kerneliza-
tion via Sampling with Applications to Finding Matchings and Related Problems in
Dynamic Graph Streams. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016. 1326-1344.

Kevin P. Costello, Prasad Tetali, and Pushkar Tripathi. 2012. Stochastic Matching
with Commitment. In Automata, Languages, and Programming - 39th International
Colloquium, ICALP 2012, Proceedings, Part I. 822—833.

John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. 2012. Dynamic Match-
ing via Weighted Myopia with Application to Kidney Exchange. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence.

John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. 2013. Failure-aware
kidney exchange. In ACM Conference on Electronic Commerce, EC ’13. 323-340.

John P. Dickerson and Tuomas Sandholm. 2015. FutureMatch: Combining Human
Value Judgments and Machine Learning to Match in Dynamic Environments. In
Proceedings of the AAAI Conference on Artificial Intelligence. 622—628.

Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Alex Samorodnitsky. 2002. Monotonicity testing over general poset domains. In
Proceedings on 34th Annual ACM Symposium on Theory of Computing. 474-483.

Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2012. On the Communication
and Streaming Complexity of Maximum Bipartite Matching. In the Twenty-third An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA ’12). STAM, 468-485.

Anupam Gupta and Viswanath Nagarajan. 2013. A Stochastic Probing Problem with
Applications. In Integer Programming and Combinatorial Optimization - 16th Inter-
national Conference, IPCO 2013. Proceedings. 205-216.

L. Lovasz and D. Plummer. 2009. Matching Theory. American Mathematical Soc.
https://books.google.com/books?id=yW3WSVq8ygcC

David F. Manlove and Gregg O’Malley. 2014. Paired and Altruistic Kidney Donation
in the UK: Algorithms and Experimentation. ACM Journal of Experimental Algo-
rithmics 19, 1 (2014).

Alessandro Panconesi and Aravind Srinivasan. 1997. Randomized Distributed Edge
Coloring via an Extension of the Chernoff-Hoeffding Bounds. SIAM J. Comput. 26,
2(1997), 350-368.

Utku Unver. 2010. Dynamic Kidney Exchange. Review of Economic Studies 77, 1
(2010), 372—414.

