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Abstract 

We study the following network design problem: Given 
a communication network, find a minimum cost sub- 
set of missing links such that adding these links to the 
network makes every pair of points within distance at 
most d from each other. The problem has been studied 
earlier [17] under the assumption that all link costs as 
well as link lengths are identical, and was shown to be 
R(logn)-hard for every d 2 4. 

We present a novel linear programming based ap- 
proach to obtain an O(log la log d) approximation algo- 
rithm for the case of uniform link lengths and costs. We 
also extend the Cl(Iogn) hardness to d E {Z, 3). On the 
other hand, if link costs can vary, we show that the prob- 

” ‘-’ n lem is n(Z s )- hard for d > 3. This version of our 
problem can be viewed as a special case of the minimum 
cost d-spanner problem and thus our hardness result ap- 
plies there as well. For d = 2, however, we show that the 
problem continues to be O(logn) approximable by giv- 
ing an O(log n)-approximation to the more general min- 
imum cost Z-spanner problem. An n(2”s’-’ “)-hardness 
result also holds when all link costs are identical but link 
lengths may vary (applies even when all lengths are 1 or 
2). Our reduction from the label cower problem [3] also 
applies to another well-studied network design problem. 
We show that the directed genemlized steiner network 
problem [6] is n(2 I’&-’ “)-hard, significantly improving 
upon the Q(logn) hardness known prior to our work. 
We also present O(n log d) approximation algorithm for 
our problem under arbitrary link costs and polynomi- 
ally bounded link lengths. Same result holds for the 
minimum cost d-spanner problem. 

Finally, all our positive results extend to the case 
where each pair (u,u) of nodes has a distinct distance 
requirement, say d(u, v). The approximation guaran- 
tees above hold provided d is replaced by max,,, d(u, v). 
All our algorithmic as well as hardness results hold for 
both undirected and directed versions of the problem. 

Sanjeev Khanna 
Bell Labs 

sanjeav@research.bell-labs.com 

1 Introduction 

This paper studies the following basic network design 
problem. We are given a communication network and a 
set of additional communication links that can be added 
to the network. The goal is to find a minimum cost 
subset of links to be added such that every pair of points 
in the network is connected by a path of length at most 
d. A natural special cake is when the initial network 
is empty; the goal then is to design a minimum cost 
network with bounded pairwise distance. Specifically, 

PROBLEM: Mincost Distance-d 

hSTANCE: A graph G = (V, E) with cost function e : 
i? H lR+, and length function 1: (Eu~?) c) 
Z+, where E = {(u,u) 1 (u, u) $ E}. 

GOAL: Find a minimum cost set E’ C i? of edges such 
that the distance between every pair of vertices 
in the graph G’ = (V, E U E’) is at most d. 

The graph G here represents the initial network and 
the set F represents the set of additional links that 
can be installed. Typically, the cost of an edge rep- 
resents the installation cost of the corresponding link 
while the length represents the delay across the link. 
We will study the problem for both undirected and di- 
rected networks. Placing restrictions on the cost and 
length functions gives rise to three natural variations of 
the problem’: 

l Diameter-d: unit costs, unit lengths. 
l Mincost Diameter-d: arbitrary costs, unit lengths. 
l Distance-d: unit costs, arbitrary lengths. 

The above variations not only model network design 
problems with varied structure, but also capture op- 
timization problems in other domains. For instance, 
the most basic version, namely the Diameter-d problem 
arises in the context of airline scheduling [17]. Even 
this basic variant is known to be NP-hard [17]. How- 
ever, not much seems to be known about the complexity 
of approximately solving these problems. The goal of 
this paper is to study the approximability of these basic 
network design problems. 

Related Work: Substantial work has been done when 
the design of the communication network is restricted 
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Problem 

Diameter-d 
(unit cost, unit length) 
Mincost Diameter-2 
(arbitrary costs, unit length) 
Mincost Diameter-d, d 2 3 
(arbitrary costs, unit length) 
Distance-d 
(unit costs, polybounded lengths) 
Mincost Distance-d 
(arbitrary costs, polybounded lengths) 

Approximation Ratio Approximation Ratio 1 Hardness Factor Hardness Factor 
- ,. 

O(lognlogd) Wg4, d E {2,31 ’ IE {2,3} 
(from Set Cover) r-..+ 

00% 4 mg n) 
(from Set Cover) -.-r) 

1-s 

O(nlogd) 
R(2’08’-‘n) 

(from Label Cover) -. -.er) 

O(nlogd) 
fi(Ztog’-‘n), lengths E {1,2} @hs E {l, 2) 

(from Label Cover) el Cover) 

O(nlogd) 
R(2’08’-‘n) -‘n) 

(from Label Cover) el Cover) 

Figure 1: Summary of Our Results 

to be a tree structure. A rather well-studied problem is 
the shallow-light tree problem where the goal is to find 
a spanning tree such that it has a bounded pairwise 
distance (shallow) and small cost (light). An (a,@)- 
approximation for shallow-light trees relaxes the dis- 
tance bound by a factor of a and the cost bound by a 
factor of p. Awerbuch et al. [5] gave an (O(l),O(l))- 
approximation algorithm when the cost and the length 
functions are identical. Mar&he et al. [18] extended this 
to an (O(logn), O(logn))-approximation when the cost 
and the distance functions are unrelated. Recently, Ko- 
rtsarz and Peleg 115) studied the cake when all distances 
are unit but costs are arbitrary and the goal is to find 
a minimum cost Steiner tree of diameter d. They ob- 
tained an O(dlogn)-approximation when d is constant 
and an O(nO-approximation (for any E > 0) for gen- 
eral d. Another representative problem is the swxlled 
light, approximate shortest path trees where the goal is 
to find a tree of small cost that closely approximates the 
shortest distances from a given single source [ZO, 111. A 
more closely related lie of research is the extensively 
studied area of graph spanners [l, 7, 12, 13, 141: 
PROBLEM: Mincost d-Spanner 

INSTANCE: A graph G = (V, E) with cost function c : 
E++W+. 

GOAL: Find a minimum cost set E’ G E of edges such 
that every pair of vertices is at most a factor d 
further apart in G’ = (V, E’) than it was in G. 

Any feasible solution to this problem is called a d-spanner 
of G. We will show that there is a close relation be- 
tween this problem and the Mincost Diameter-d prob- 
lem. When all costs are the same, we refer to the prob- 
lem as d-Spanner. Kortsarz and P&g gave an O(logn)- 
approximation for the Z-Spanner problem, and Kort- 
sarz [12] recently showed a matching R(logn)-hardness 
result. Not much seems to be known about the approx- 
imability of the Mincost d-Spanner problem thus far. 

Our Results: All our results hold for both undirected 
and directed networks. Our algorithmic results also ex- 
tend to the cake where each pair (u,v) of nodes has a 

distinct distance requirement, say d(u, v). The approxi- 
mation guarantees below hold provided d is replaced by 
max,,, d(u, v). In this abstract, however, we restrict our 
attention to undirected graphs with uniform distance 
requirement d, leaving the details of above extensions 
to the full version. 

Our first result is an O(log n log d)-approximation al- 
gorithm for the Diameter-d problem. Our algorithm 
is based on a novel linear programming formulation 
whose solution implicitly specifies an instance of the 
Hitting Set problem and a fractional solution for the 
instance. Randomized rounding as well as a greedy 
approach can then be used to make the solution in- 
tegral. We also show that the problem is R(logn)-hard 
to approximate even for d E {2,3}, complementing the 
R(logn)-hardness result of Li et al. [17] for any d 2 4. 

Our next result is that when either non-uniform costs 
or non-uniform lengths are allowed on edges, the prob- 
lem at once becomes very hard to approximate. Specif- 
ically, we show that for any d > 3, Mincost Diameter-d 
is hard to approximate within 0(21081-’ “) unless NP C 
DTIME(n p”‘y’og(n)). Since one can easily reduce the 
Mincost Diameter-d problem to the Mincost d-Spanner 
problem (see Lemma 2.1), this implies an identical hard- 
ness result for the latter problem. We also show that 
the condition d 2 3 is essential by presenting an optimal 
O(logn)-approximationalgorithm for Mincost 2-Spanner 
(and thus Mincost Diameter-Z) problem. Our algorithm 
generalizes the algorithm of Kortsarz and Peleg [13]. 

Perhaps more surprisingly, the same hardness re- 
sult also holds for the Distance-d problem even when 
all edge lengths are only 1 or 2. These hardness re- 
sults are based on reductions from a variant of the 
Label Cover problem [3]. We believe that our construc- 
tion here is of independent interest since it seems to 
be adaptable to capture the hardness of some other 
network design problems. In particular, we can show 
that the generalized steiner tree problem in directed 
graphs [S] (given k pairs of vertices in a directed graph, 
find a minimum cost subgraph that connects each pair) 
is R(21091-‘“)-hard, substantially improving upon the 
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previously known fl(logn)-hardness. 
Finally, we show that the general Mincost Distanced 

problem is O(nlogd)-approximable if all lengths are 
polynomially bounded. Our result is based on a suitable 
multicommodity flow formulation of our problem. An 
O(nlogd) ratio can also be obtained via this approach 
for the Mincost d-Spanner problem. We remark that 
since in the presence of non-unit costs or lengths, any 
feasible solution to our problem may have fl(n’) edges, 
the approximation factor achieved above is indeed non- 
trivial. Our results are summarized in Figure 1. 

2 Preliminaries 

The input graph is denoted by G = (V,E) and the 
number of vertices (VI = n. Given two vertices u, v E V, 
we denote by dist(u,v,G) the length of the shortest 
path from u to u in the graph G. The set of vertices 
adjacent to a vertex s E V is denoted by N(s). We will 
use the following two simple lemmas. 

Lemma 2.1 An a-approximation algorithm for Mincost 
d-Spanner problem implies an a-approximation algo- 
rithm for the Mincost Diameter-d problem. 

Proof. For any input G = (V, E) to Mincost Diameter-d 
with cost function c, fore < E, create a complete graph 
K = (V,F) where F = V x V with cost function CL 
defined as follows: if e E E then c; = 0, else c; = 
c,. Then any solution E’ for Mincost d-Spanner on K 
yields a solution E” = E’\E for Mincost Diameter-d on 
G of identical cost. Conversely, any solution E” for 
Mincost Diameter-d on G yields a solution E’ = EUE” 
to Mincost d-Spanner on K of identical cost. 0 

Lemma 2.2 Let X,.X,.. .X, be 1 indewndent O/l 
random variables 8.6 Pr(X,) ‘= min{l,p;} and zipi’> 
S. Then P~[A r;;,] 5 e@. 

Proof. If pi > 1 for some i E [I., .1], then Pr(~z~) = 
0 5 ems. Otherwise, each pi < 1 and Pr(A Xi) = 
n(l -pi) 5 .--cipi 5 e-s. 0 

3 The Diameter-d Problem 

3.1 An O(lognlogd) Approximation Algorithm 

Theorem 3.1 Thereis an O(lognlogd) approximation 
algorithm for Diameter-d. 

Our approach here is based on working with a certain 
restricted problem which we call Restricted Diameter-d, 
where we put special restrictions on the type of paths 
of length at most d that we allow. We first show that 
this restricted problem is closely related to our problem 
and thus it suffices to approximate the former. We then 
formulate the Restricted Diameter-d as an integer linear 
program and present a technique for efficiently rounding 

an optimal fractional solution to this program. Finally, 
we show that the fractional solution can be used to cre 
ate an instance of the Hitting Set problem and can be 
derandomized by solving this hitting set instance by a 
greedy approach. 

3.1.1 The Restricted Diameter-d Problem 

In what follows, we let Ud(G) = {(u, V) 1 dist(u, ZI, G) > 
d} to denote the set of “unsatisfied” pairs. We now 
define the restricted version of interest: 

PROBLEM: Restricted Diameter-d 

INSTANCE: A graph G = (V, E) and a vertex s E V. 

GOAL: Find a minimum cardinality set of edges E’ such 
that for each pair (u, u) E U&G), there is a path 
r “.” of length at most d in G’ = (V, E U E’). 
Moreover, I’,,, satisfies one of the following two 
properties: 

(A) ru+ has exactly one edge in E’ (we say that (u, V) 
is covered by a TYPE-A path), or 

(B) ru+ has exactly 2 consecutive edges in E’, both 
of which are incident on s (we say that (u,v) is 
covered by a TYPE-B path). 

Lemma 3.2 For any graph G = (V, E) and any s E V, 

1 < OPTRestricted Diameter-d(G) < 3 
- 

OPTDiameter-d(G) - 

Proof. The first inequality follows from the fact that 
any solution to Restricted Diameter-d is a solution to 
Diameter-d. To see the second inequality, let E’ be 
an optimal solution to Diameter-d problem. Denote 
by V’ 2 V the set of vertices touched by E’ and let 
G’ = (V, E u E’). Clearly IV’] 5 2)E’I. Define E” 
to be E’ augmented with all possible edges from s to 
V’; thus IE”j 5 31E’I. We claim that E” is a solu- 
tion to Restricted Diameter-d. Consider any pair (u, V) E 
Ud(G). Since G’ has diameter at most d, there is a path 
ru,. between u and u in G’ of length at most d. If r”,. 
has only one edge in E’, (u, u) is covered by a TYPE-A 
path. 

Otherwise, ru,” uses at least two edges in E’; let 
(a, b) and (z, y) denote the first and the last such edges 
respectively. Then the path which starts at u, follows 
r “,” to vertex a, then goes to vertex g via the vertex 
s, and finally follows r.,. to arrive at vertex V, gives 
either a TYPE-B path (a and Y are different from S) or 
a TYPE-A path of length at most d. 0 

Thus it suffices to give an O(lognlogd)-approximation 
to the Restricted Diameter-d problem. In what follows, 
we describe an ILP formulation for the restricted prob- 
lem and show how its LP relaxation can be rounded to 
obtain the desired approximation guarantee. 
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3.1.2 An ILP Formulation for Restricted Diameter-d 

Assume G(V,E) is our input graph and let s denotes 
the special vertex. In order to describe the ILP, we 
need some further notation: 

s We denote by F(s) the set of vertices not con- 
nected to s in G, i.e. the set {z 1 z # s, (8, z) @ E). 

l Given u E V, let LAYER;(U) = {w 1 dist(u,w,G) = 
i} rlr(s). Let LAYERED = {w 1 dist(u,w,G) 5 
j} n TV(s) = ui<j LAYERi( 

l Given (u,v) E Ud(G), we denote by S,,” = {e E 
E 1 dist(u,v,G+e) 5 d}. 

l Given two subsets A, B & {0 (d- 2)} such that 
max{i E A} 5 min{j E B}, we denote it by A + 
B. Such a pair (A, B) is called a matched pair. 

. We denote by T the set {(i,j)jO < i 5 j 5 (d-2)}. 

We use the following O/l variables in our ILP: 

. f. indicates whether an edge e E ?? is chosen. 
l For ease of exposition we use additional variables 

I, to indicate whether an edge (8,~) is chosen; 
we enforce that a&, = f(.,+ 

. For each (u,v) E Ud(G), we use 7”,” to denote 
whether the pair (u, V) is covered by a TYPE-A or 
TYPE-B path. If the pair (u,~) is covered by a 
TYPE-A path then 7”,. = 1, and it is 0 otherwise. 

We now formulate the ILP constraints. 

TYPE-A Path Constraints: A pair (u,u) E Ud(G) is 
covered by a TYPE-A path if and only if CeES, y fc 1 1. 
We add the constramt CeES,,. fe 2 -r”,” to determine 
whether u and II are covered by a TYPE-A path. 

TYPE-B Path Constraints: A TYPE-B path for a pair 
(u,v)~Lld(G)hastheform:uuy~s-,*2*v, 
where y E LAYER;(U), z E LAYERS and i + 6 5 (d - 2). 
Call such a path an [i, d - 2 - II-path between u and 
u with connecting points y and 2.’ In other words, an ’ 
[i,j]-path means that y is at distance i from u, z is at 
distance d - 2 - j from v and if we add edges (s, y) and 
(s, z) to E, then u and ‘v are at distance i + 2 + (d - 
2 - j) = d - (j - i). Thus, the valid settings for a and 
j are precisely all pairs (i,j) E T. A particular [i, j]- 
path with connecting points y and z is selected if and 
only if min{s,, z.) > 1. In order to capture all possible 
[i, &paths, we define the following two summation6 

Some [&&path selected w min{L;(u),Rj(u)} 2 1. 

Indeed, the minimum (over the integer z,,,(s) is at least 
1 iff both sums are at least 1, i.e. some zy = z, = 1 

for $I E M’ER~(u), .z E LAYE&-*-j(v), i.e. we included 
some [i, j]-path in our solution. The naive approach of 
including one such constraint for any (i, j) E T would 
lead to a poor approximation guarantee. So we need to 
cover (i, j) E T in a more effective manner. Abbreviate 
by La(u) = Cua L;(u), E&(o) = CjEB R,(u). Then: 

Some &]-path selected for i E A,j E B Q 
min{h(u),Rd~)l 2 1. 

Notice, since A 4 B, all such paths are indeed paths of 
TYPE-B, i.e. we did not include paths of length more 
than d. This will be important later in the rounding 
process to ensure that we get a feasible solution, and 
explains why we insist that A + B. We now need to cre- 
ate a sequence of matched pairs (AI, BI), , (At, Bt) 
that “cover” our set 2’. 

Definition 3.3 (Covering Family) 
Afamilyofmatchedpairs3=~(A~,B1),...,(At,Bt)} 
is a covering family for T if lJ,=, A, x B, = T, i.e. 
for all 0 5 i 5 j < (d - 2) there exists an a such that 
i E A,, j E Be. Family 3 is called C-covering if for 
any 0 5 i < (d - 2), 

l{a 1 i E A,}( < C and [{a 1 i E B,}( 5 C. 

Now assume that we have a covering family 3 for T. 
Then the fact that at least one path of TYPE-B is se- 
lected between u and 2) is captured by the condition that 
C’,=, min{La,(u),Rs,(u)} 2 1. Indeed, over the O/l 
domain the sum is at least 1 iff at least one of the mini- 
mums is at least 1, i.e. some path of TYPE-B is selected. 
Conversely, every path of TYPE-B is covered by some 
pair (A,, B,) since 3 is a covering family for T, and 
then the corresponding minimum will be at least 1. Let 
the variable. 6,,,,, be defined as min{la- (u), Rg, (v)}. 
Then (u,v) is covered by a TYPE-B path if and only 
if ck=, 6,,,,, _ > 1. Finally, we add the constraint 

cb, L,U,” 2 1 - 7%” to indicate that (u,~) must be 
covered either by a TYPE-A path or a TYPE-B path. 
Putting together all the pieces, we get the following ILP: 

Minimize CeeE fe 

Subject To: V(u,v) E Ud(G) 

c fe 2 Y”,” (1) 
eES.,, 

va=1...t, 6 o.u,v I minh (u), RB, (4) (2) 

&L,“,” 2 1 - 7%” (3) 
a=* 

v w E m-9, f(.,w, = %Jl (4) 

vwwE(s),v~WE, fe,zw~{O,l) (5) 
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3.1.3 Rounding of an Optimal Fractional Solution 

Let us now consider a relaxation of the above integer 
program where we replace the constraint je, zw E {0, 1) 
with 0 5 j., z, 2 1. We show how an optimal solution 
for this relaxation can be converted to an integral sc- 
lution whose value is not much larger. Assume that 
we are given a C-covering family F. The parameter C 
will play a direct role in determining our approxima&n 
guarantee, and we will specify later the value of C for 
the covering family 7 that we use. 

Let 0’ denote the value of the optimal fractional so- 
lution, and let j,‘, SE, r:,, and S;,,,” denote the values 
taken by the various variables in the optimal fractional 
solution. Our rounding procedure is the following: 

include e $ E in E’ w/pr. min{l, 9Cj,‘log n}. 

The set E’ of chosen edges will be our solution to the 
Restricted Diameter-d (and Diameter-d) problem. 

Theorem 3.4 For any C-covering family 7, E’ is w.h.p 
a feasible solution to the Restricted Diameter-d problem 
of size at most an O(C log n) factor more than 0’. 

Proof. We will use w.h.p. to mean with probabil- 
ity at least 1 - l/n. It is easily seen that E[lE’J] 5 
9Clogn(&z j,‘) = (9Clogn)O’. By Chernoff bound, 
we get that w.h.p. the size of E’ is at most O(Clogn) 
times 0’. To show that w.h.p. E’ is a feasible solution 
to Restricted Diameter-d, it suffices to show that for any 
(u,v) E U&G), Pr[(u,v) is not covered] < 2/n3. Since 
IUd(G)l < (3, the union bound would give the desired 
result. We look at the following two cases: 

$, 2 l/3: By condition (l), CcESw,. jr 2 l/3. 

Now if a pair (u,u) is not covered by a TYPE-A path, 
then no edge e E S,,, is selected. Since the probabil- 
ity that an edge e is selected is min{ 1,9C j,’ log n} and 

c .aes, y 9Cj.‘logn 2 3logn, we get by Lemma 2.2 that 
the prdbability (u,u) is not covered by a TYPE-A path 
is at most lfn3. 

r:,, < l/3: By condition (3), xi=, 8: ,“,” 2 2/3. 

Denote A < io to mean that max{i E A} 5 i,,, and sim- 
ilarly, io -X B to mean that io 5 min{i E B}. Choose 
the unique io such that 

c C,“,” < ; I c C,“,” (6) 
~0lA.<(io-1)) ~dA.+d 

Such an io exists as the sum goes from 0 to at least 
2f3. Using inequalities (6) and (2) together with C- 
coverability of 7, we get 

= ~ltalitA,}l.~r(u)~C.~~i(u) 
id 

Also, (6) together with our assumption implies that 
~talAmd(i,-l)) 6&, 2 l/3. But whenever it is not 
the case that A, 4 (in - I), there is some i E A, s.t. 
i 2 io, and as A, + B, (our pairs are matched), we 
must have that io + B,. Thus, analogously to the pre- 
vious case, 

To summarize, there is 0 < ill 5 (d - 2) s.t 

Now we claim that w.h.p. we select some edge (y, s) 
in E’ where y E LAYER<;,(~). Indeed, such edge is se- 
lected wfpr. min(l,9Cr; logn). As we have by (7) 
that &LA.,ER~i, 9Cz; logn 2 3logn, Lemma 2.2 im- 

plies that none of the y’s is selected with probability at 
most l/n3. Similar argument shows that with prob- 
ability at most l/n3 none of the edges (s,t) where 
z E LAYER+-.~~~(v) is selected. By union bound, we 
select an appropriate (y, s) and (8, z) with probability 
at least l-2/~?. Such y and z create a path of TYPE-B 
of length at most d, as needed. 0 

3.1.4 An O(logd)-covering Family 

The last step is to create a C-covering family for T = 
{(i,j) 1 0 5 i 5 j 5 (d - 2)) for a small value C. 
We are able to achieve C = O(logd), giving us the 
O(logn log d) approximation claimed by Theorem 3.1. 

Let C[1] denote the covering number of the fan- 
ily we construct for Tl = {(i,j) 1 0 < i 5 j 5 1) 
and let j = [1/2J. We include the rectangle R = 
({0 j}, {j I}), after which the only uncovered pairs 
are theonesofthesetsT/ = {(i,j) ) 0 5 i 5 j 5 j-l}, 
TF = {(i,j) 1 f + 1 5 i 5 j < I}. We cover them 
recursively and since coverage C[I] of each point is at 
most 1 + C[j] 5 1 + C[1/2], we get C[l] = O(logl). 
Setting 1 = d - 2 yields the desired result. It is also 
easy to show that for any covering family for Tl, C[E] 2 
R(log I f loglog I); so our analysis can be improved by at 
most an O(loglogd) factor. 
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3.1.5 Derandomization 

We observe that an optimal solution to our linear pro- 
gram in fact gives us an instance I of the Hitting Set 
problem such that any integral solution to this instance 
I is also a solution to the Diameter-d problem. Specif- 
ically, the universe U of our hitting set instance is the 
set E of all edges not in G. For each pair (u, w) E Ud(G) 
we add the following sets to the collection of sets to be 
hit. If r:,, _ > l/3, we simply add the set A = S,,,. 
And if r:,, < l/3, we know that there exists a value 
io E [0, d - 21 satisfying Equation (7). For this pair, we 
add two sets A’ = {e 1 e = (s, y) where y E LPIYER<(~ (u)} 
and B’ = {e 1 e = (s,t) where I E L/\YER<~-Z-j,,(w)}. It 
is clear that any set of edges in ?? that hits (intersects) 
all these sets forms a feasible solution to our problem. 

We now simply use a greedy algorithm to solve this 
hitting set problem, i.e. we iteratively keep picking 
edges that hit a largest number of sets among those 
yet untouched. We claim that this greedy solution is 
indeed an O(lognlogd) approximation. To see this, 
suppose we scale the value of all the variables in our LP 
solution by a factor of 3C. Then by our construction, 
we know that the scaled variables form a fractional sw 
lution for this instance I. Moreover, the value of this 
fractional solution is 3C. 0’. The final fact needed to 
complete the analysis is the well-known result showing 
that the greedy algorithm always yields a solution that 
is within an O(logn) factor of the optimal fractional so- 
lution (see [9], for instance). Substituting C = O(logd), 
we get the claimed result. 

Remark 3.5 We already pointed out that our algo- 
rithm extends to the directed case as well as to the case 
of non-uniform distance requirements d(u, V) (giving the 
ratio of O(log n log d,,,,) where d,,, = max,,, d(u, v)). 
It also extends to the case when we place the distance 
requirements not for all (9 pairs (u,v), but only for 
a subset of pairs, say {(Q,Q)}~=~ (in particular, the 
resulting graph need not be connected). The approxi- 
mation ratio becomes O(log k log&,,). Finally, we can 
easily obtain a “bicriteria” (2,O(logn))-approximation 
where the number of edges we add is a factor of O(logn) 
away from the optimum, but the vertices are only guar- 
anteed to be at distance at most 2d (rather than d) from 
each other. 

3.2 Hardness of Diameter-d Problem 

Li et al. [17] showed that Diameter-d is R(logn)-hard 
for d 2 4 using a reduction from Dominating Set. We 
show an 0(logn) hardness for d E {2,3) as well. 

Theorem 3.6 The Diameter-dproblem isn(logn)-hard 
to approximate for d E {2,3) unless P = NP. 

Proof. We use a reduction from Set Cover which is 
known to be o(logn)-hard unless P = NP [8, 4, 211. 

Consider an instance I of Set Cover problem specified 
by a collections of sets S1, , S,,, over the universe U = 
{~1, , u,}. The goal is to find the smallest collection 
of sets whose union is U. We assume that for every 
u;,zlj E U, there exists a set S, containing both U; and 
uj. This assumption is w.1.o.g. since we can always add 
(3 additional sets S,,j = {pi,+} to our collection of 
sets changing the optimal set-cover value by at most a 
factor of 2. 

Consider the following graph G = (V,E). V has a 
vertex s; for each set S; and M vertices ZL~J, I~;,z, , I~;,M 
for each element U; E U, where M = 2(7n + 1). More- 
over, V contains a special additional vertex r that is not 
connected to any other vertex. If an element U; E Sr, 
there is an edge in E from sl to each ~i,j, 1 5 j 5 M. 
Finally, E contains all edges of the form (sir sj), i.e. the 
“set vertices” induce a clique. It is easy to verify that 
all vertices in G have a pairwise distance of at most 2 
except for the pairs that involve the special vertex T 
(here we use our assumption about a common set for 
any pair of vertices). Also observe that there is always a 
solution of cost at most m on this instance of Diameter-2 
problem: just connect T to all the “set vertices” in G. 

We first argue that any set-cover consisting of p sets 
yields a solution to Diameter-2 on G of cost p. Simply 
connect I‘ top “set vertices” corresponding to the chosen 
sets. Conversely, consider any solution E’ of size at 
most m for Diameter-2 on G. Let Q, , sip be the “set 
vertices” connected to T in E’. We claim that the sets 
Sl,, , Sl, must form a set-cover for U of size p < IE’I. 
Indeed, if there is some U< $ Ut==lSt,, then for each 
j E {l M}, ui,j must have an adjacent edge in E’ in 
order to have a. path of length at most two to T. But 
then IE’I 2 M/2 > m, a contradiction. 

The construction and proof for d = 3 is almost iden- 
tical, we only replace the single isolated vertex T by an 
M-clique rl, , TM. Again, any solution of cost p for 
set-cover yields a solution of cost p for Diameter-3 by 
connecting rl to the corresponding sets. Conversely, 
take any solution E’ of cost at most m for Diameter-3 
on G and look at the sets corresponding to the “set 
vertices” adjacent to some Q in E’. They must form 
a set-cover or else we can show similar to the previous 
case that IE’I > m, a contradiction. 0 

4 Hardness of the Mincost Diameter-d and Distance-d 
Problem 

We now show that our problem becomes much harder 
once non-uniform costs or lengths are introduced. We 
use the following version of the Label Cover problem 
that we refer to as the Symmetric Label Cover problem, 
to show the hardness for both Mincost Diameter-d and 
Distance-d problems. 



Definition 4.1 (Symmetric Label Cover) We are given 
a complete bipartite graph H = (V, W, E,) (where IUI = 
IWI = n), two sets A and B (called the label sets), 
and a non-empty relation R,,, c A x B for each edge 
(u,w) E E,,. A feasible solution is a pair of label assign- 
ments Mu : U --t ZA and Mw : W -t 2B such that each 
edge (u,w) is consistent, i.e. there exist a E Mu(u) 
and b E A&(w) such that (a,b) E R,,,,. The ob- 
jective is to find a pair of label assignments such that 
CuEu /Mu(u)I + Cwcw IMw(w)l is minimized. 

This problem is known to be 0(2’0g1-‘“)-hard for 
any c > 0 (provided NP c DTIME(nP”‘Y’O~(“))) via a 
reduction from Label Cover [2, lo]. We use it to show 
the following result. 

Theorem 4.2 For any c > 0, the foIlowing problems 
are 0(2’@’ “)-hard: 

(a) Mincost Diameter-d, for any d > 3. 
(b) Mincost d-Spanner, for any d > 3. 
(c) Distance-d, even when all lengths are 1 and 2. 
(d) Directed generalized Steiner network problem. 

Proof. (a) We start by presenting a reduction for 
d = 3 and then sketch an extension to the case d > 3. 
Let I be an instance of Symmetric Label Cover spec- 
ified by a complete bipartite graph H = (U, W, E,,), 
relations R,,,, for all u E U, w E W, and label sets 
A, B. We create an instance G = (V, E) as the input to 
Mincost Diameter-3 problem, where V, E = E1UE2UE3 
and costs on the missing edges E are as follows: 

. V=UUWu{UxA}u{WxB}U{~};wedenote 
the elements of {U x A} as pairs (~,a), similarly 
for W x B. 

. El = {(b,a),b,b)) I u E u,w E w,(a,b) E 
R,,,,}; these edges capture the consistent label as- 
signments for any pair (u, w). 

. Ez = {(u,u’) I u,u’ E iY}u{(w,w’) I w,w’ E W}; 
these edges induce a clique on U and W. 

. Es={(~,(~,~))Iu~U,~~A}u{(r,(w,b))lw~ 
W, b E B}; these edges create a length two path 
via vertex r between any pair of label nodes. 

. Let E’= {(u,(u,a)) 111 E V,a E A}u{(w,(w,b)) 1 
w E W, b E B}. Edges in E’ have unit cost white 
every other missing edge is assigned a large cost 
C = IE’I + 1. Intuitively, edges in E’ correspond 
to assigning labels to vertices in V, W. 

Observe that the only pairs of vertices in G that are 
not already within a distance of 3 correspond to (UJW), 
u E U, w E W. Moreover, the graph G’ = (V, E u E’) 
always has diameter 3. Since every missing edge outside 
of set E’ has cost IE’I + 1, w.1.o.g. assume a feasible 
solution is always a subset of E’. 

Let S = (Mu, Mw) be any solution to the label cover 
instance I, and define ES = {(u, (~,a) I u E V,a E 

Mu(u)} U {(w, (w, b)) 1 w E W, b E L%(U)}. Clearly, 
l&l = CuEu lWr(u)l + CwEW lMw(w)l. Since S is 
consistent for each pair (a, w), we get that Gs = (V, EU 
Es) indeed has diameter 3. Conversely, consider my set 
of edges E’ such that G’ = (V, E U E’) has diameter 3. 
Then any pair (u, w) must be connected to each other 
via a path of length 3 of the form u + (u, a) -a (w, b) + 
w such that (a, b) E &,,. Thus, defining Mu(u) = {a I 
(% (%a)) E E’) and Mv(~) = {b I (w, (w> b)) E E’), 
gives a solution to I of cost IE’I, completing the proof. 

To extend this reduction to d > 3, we simply aug- 
ment the graph G constructed above. Let trr = Ly] 
and tw = [?I. For each u E U, attach a path P, 
of length t(i to u, and for each w E W, attach a path 
Qw of length tw to w. As before, only the edges in 
E’ have unit cost and all other missing edges have cost 
IE’I + 1. Now, an analogous argument can be used to 
show that for any pair (u, w), the last vertex on P, and 
the last vertex on Q,,, are within a distance of d if and 
only if 21 and 20 are within a distance of 3, establishing 
the desired hardness of Mincost Diameter-d for d 2 3. 

(b) Follows from part (a) and Lemma 2.1. We re- 
mark that the best known hardness result for d-Spanner 
is n(log(n/d)) [12], so we are able to obtain a much 
stronger hardness result once general costs are allowed. 

(c) We use the same construction as in (a). All the 
edges of the original graph are assigned length 1 as well 
as all the (missing) edges in E’. All other edges (the 
ones that had large cost in the previous construction) 
are assigned length 2, and all the edge costs are 1. Now 
if we set d = 3, a similar argument completes the proof. 

(d) We use again a modification of the construction in 
part (a); the details are defered to the final version. 0 

5 Approximating Mincost Diameter-d, Distance-d and 
Mincost Distance-d 

5.1 Approximating Mincost Diameter-d Problem 

Our main results here are as follows: 

Theorem 5.1 The Mincost d-Spanner problem is: 
. O(logn)-approximable for d = 2. 
l O(n log d)-approximable for d > 3. 

Combining this with Lemma 2.1 gives us identical re- 
sults for the Mincost Diameter-d problem. This also 
shows why the hardness result of Theorem 4.2 holds 
only for d > 3. 

5.1.1 O(logn)-approximation for Mincost 2-Spanner 

Kortsarz and Peleg [13] gave an O(logn)-approximation 
algorithm for the (unit cost) 2-Spanner problem. We 
show how their algorithm may be extended to handle 



arbitrary edge costs. In fact, we present a much simpler 
analysis for this more general algorithm. 

Observe that a 2.spanner G’ = (V,E’) for G = 
(V,E) implies that for every e E E, either e E E’ or 
there are elre2 E E’ forming a triangle with e. In 
the latter case, we say that e is covered by el and e2. 
Given a collection F of edges, they cover the set of edges 
{e E E 1 3 el,ez E F covering e}. Given F, a vertex 
ZI covers all the edges in the set C(v,F) = {(a,b) E 

E I (a, ~1, (v, b) E 9. 

Definition 5.2 (Density) Given a graph G = (V, E) 
with cost c, 2 0 on every edge e E E and w, > 0 
on every vertex TJ E V, the density of G is given’ by 

P(G) = Cea 4 Cvw w.. 

Using a reduction to the minimum cut problem (see [16]), 
we can find in polynomial time the densest subgraph G’, 
i.e. the induced subgraph of G of maximum density. Us- 
ing this result, we make the following modification to 
the algorithm of [13] to deal with the weighted case. 

Algorithm: Let G = (V, E) be the input graph with a 
non-negative cost c, associated with each edge e E E. 
We will iteratively maintain the following sets partition- 
ing the edge set E: 

. Es - edges included in the 2-spanner. Initially 
consists of all zencost edges of E. 

. EC - edges currently covered by E’. 

. E” - edges yet to be covered. 

We repeat the following procedure until we are done in 
step (3). For each 2) E V, let G, = (N(u),E(v)) be 
the subgraph of G induced by E” in u’s neighborhood 

N(u). 

(1) 

(2) 

(3) 
(4) 

Assign a vertex cost of ZU.I = c(,,.~) to each $ E 
N(u) and an edge cost c, for every e E E(v). 
Find the densest subgraph H. = (N,, F,) in G,. 
Let p(v) be its density and let p = rns~,~~ p(u) be 
achieved by ~0 E V. 
If p 5 1 or E” = 0, output E’ U E“ and stop. 
Otherwise, add the star from vo to NV, to E”, now 
covered edges F,, to EC and remove all these edges 
from E”. 

Clearly, we output a 2-spanner upon termination and 
the algorithm terminates in polynomial time as each 
iteration decreases the cardinality of E”. 

Analysis: We show the following. 

Theorem 5.3 The above algorithm achieves the ap- 
proximation ratio 0(1 + log -#), where M = CeEE c, 
is the sum of all edge costs of G and M’ is the cost of 
the optimum 2-spanner for G. 

Proof. We need the following claim concerning effec- 
tive “coverability”. 

Claim 5.4 Let M’ denote the total cost of edges in 
EU at the begiyning of some iteration of the algorithm. 
Then p 2 k($& - 1) during this iteration. 

Proof. Consider a minimum cost 2.spanner F of cost 
MB which covers the edges of E” & E. Since F can use 
any edge of the original graph, M” 5 M’. Let W’(v) = 

c eEC(v,FlnEY c, be the cost of all the edges of E” that 
are covered by v in F. Then CvEV W’(v) 2 M’ - M”, 
as all edges of EU except (maybe) those of the spanner 
F are covered. Let Wa(u) be the sum of costs of all the 
edges of F adjacent to w Then CvEV W’(Y) = 2. M’, 
as each edge of F is counted twice. Hence, there must 
be a vertex v s.t. 

By our procedure of assigning costs to vertices in the 
neighborhood of u, we get that the neighborhood of v 
in F has the claimed density. 0 

Let W; be the sum of the costs of new edges we added 
to Ed during iteration i and Mi be the cost of E” after 
this iteration. By Claim 5.4, 

M, 5 ,-,-,-~.($j+l) (8) 

This also implicitly shows that W; 5 2M’ for each i. 
Let us look at the last round k s.t. Mk 2 M’. Let W 
be the cost of edges added to our spanner after round 
k. We claim that W 5 3. M’. Indeed, if k was the 
last round, since no subgraph has density more than 1 
we have by Claim 5.4 that i(# - 1) 5 1, so W = 
Mk 5 3. M’. If k was not the last round, we have 
that WI+~ 5 2. M’ and M~+I < M’, so again W 5 
Wk+t + Mt+l 5 3. M’. Also, by Equation (9) and our 
choice of k, 

Thus, the total cost of our spanner W + C:=, W; 5 
3M’ + 2M’log $$ = O(1 + log $) M’. 0 

Eliminating Large Costs: The performance ratio of 
0(1 flog $) can be very large if G has some “useless” 
edges of very high cost. This is overcome as follows. 
Let C be the smallest edge cost such that removing all 
edges of cost at least C leaves no 2-spanner for G (i.e. 
the remaining graph by itself is not a 2-spanner for G). 



Clearly, C 5 M’. On the other hand, if we leave only 
the edges of cost at most C, they form a valid Z-spanner 
for G of cost at most Cn’. Thus, M’ 5 Cn’. Hence, 
replacing the cost of all edges of cost more than Cn’ 
by 2Cn* leaves the optimal 2-spanner as well as its cost 
M* unchanged. However, now the sum of all the edge 
costs is at most 2Cn2 n2 5 2n4M’, so our algorithm 
on this modified graph yields approximation ratio of 
0(1 + log *, = O(logn). 

5.12 Approximating Mincost d-Spanner (d 2 3) 

We now present a randomized O(n log d)-approximation 
algorithm for the Mincost d-Spanner when d 2 3. We 
start with the following two definitions: 

Definition 5.5 (d-extension) Given a graph G = 
(V, E), the d-atension of G is a (d+ I)-layered directed 
graph G[dl as described below: 

l G[dj has d + 1 layers of vertices V’, , I/” where 
each V” is a copy of V. For u E V, we denote by 
us the copy of u in V’ and given any U s V, let 
U’ = uuEu ui. 

l For each (u, v) E E, there is a directed edge from 
u; to ~li+l, where 0 5 i < d. In addition, we add 
“self” edges (uj, u;+l) for 0 < i < d. 

Detlnition 5.6 (d-Ascending U-V Cut) Ad-ascending 
u-v cut in a graph G = (V, E) is a cut in its d-extension 
G[d] and is specified by a sequence C = {Vo C Ul c 

C Ud 1 U; & V,u E U,,v @ Ud}. The two sides of 
the cut induced by C are given by L(C) = U,“=, lJi and 

R(C) = U$, V;\U,i. We say that C is satisfied if at 
least one edge in G[dl goes from L(C) to R(C). 

Observe that since G[dl contains self edges, d-ascending 
cuts are the only cuts not satisfied when E = 0. It is 
easy to see that there are exactly (d+l)“-2 d-ascending 
cuts for a n-vertex graph. This follows from the fact 
that each w E V\{u, u} has (d+l) disjoint sets to choose 
from: 63\{~), Q\Gh.. , Ud\Ud--l, V\(ud U Iv)). 

Lemma 5.7 Given a graph G = (V, E), for any u, 1) E 
V and E’ c E, the following are equivalent: 

(1) dist(u,v,G’) 5 d, where G’ = (V,E’). 
(2) ug and I.I~ are connected in G’[dj. 
(3) Every d-ascending u-u cut of G’ is satisfied. 

Proof. Let dist(u,v,G’) = 1 5 d and u” = u, u’,. ., 
u! = u be a ZL u v path in G’. Let ui = ‘u for I < i 5 d. 
Then the sequence ut, u:, , uj is a ug or* zld path in 
G’[d]. Conversely, any ug -r) ud path in G’[dl naturally 
defines a path of length at most d in G’ by removing 
self edges. Finally, ug and Q are disconnected in G’[dl 
if and only if there exists a regular cut between u,, and 
v,+ that is not satisfied. But we already observed that 

due to self edges, the only cuts that may not be satisfied 
are the d-ascending cuts. 0 

A Multicommodity Flow Formulation: The preced- 
ing lemma tells us that the Mincost d-Spanner prob- 
lem on input G = (V,E) can be equivalently stated 
as follows: Choose a minimum cost subset of edges 
E’ c E s.t. for any (u,v) E E, the vertices ug and 
Ed are connected in G’[d] where G’ = (V,E’). This 
can be formulated as a “non-aggregating” multicom- 
modity flow problem in the graph G[dl. There is a 
commodity qcu,“) for each edge (u,~) E E, and let 
& = {q(u,.~ 1 (u, u) E E} be the set of all commodities. 
For each (u,~) E E, we require that one unit of Q(~,“J- 
flow be sent from 21,~ to z)d. We use variable hg(q y;+l) 
to denote the amount of flow of commodity q across 
the edge (zi, y;+l) in G[dl. For any (z, y) E E and 
q E &, we define variables g9(z, y) = Ctzl h,(zi, yd+l) 
and f(s, y) = max,,~ gg(z, y). Our objective function 
is simply to minimize the sum C~z,y)EE~(Z,V) f(z,y). 
In other words, we charge each “non-self” edge in pro- 
portion to the maximum J~OW of any commodity routed 
over all of its d copies (zi,yi+l) in the graph G[q. We 
omit here the description of standard flow conservation 
constraints. Since in the optimal solution the path of 
length at most d from u to v uses each edge at most 
once, the LP is the relaxation of our problem. 

Rounding and Analysis: Let the superscript l denote 
the value of the variables in an optimal fractional solu- 
tion to the LP. For each (5,~) E E, we include (s,y) 
in our solution E’ with probability min{l,flf’(z, y)} 
where 0 will be chosen later. Clearly, the cost of E’ is 
w.h.p. at most a factor O(p) away from the cost of op- 
timal d-spanner. Let G’ = (V, E’). It remains to choose 
p s.t. for all (u,~) E E, w.h.p. there is a path of length 
at most d connecting u and 21 in G’, i.e. (Lemma 5.7) 
all &wcending U-V cuts are satisfied in G’[d. 

Lemma 5.8 For any (u,u) and anyd-ascendingu-v cut 
C, the probability that C is not satisfied in G’[dj is at 
most e-0. 

Proof. Let q = ~J(~,+J, Ec[dj be the set of edges crossing 
C in G[dl and EC 2 E be the set of edges (s, y) such 
that (xi, yi+l) E Ec[dj for some 0 < i < d. Since one 
unit of commodity q must flow across C, we get 

15 c h;hyi+d I c Y(~,Y) 
(zi,ui+l)E~&i (w)Ea 

Using the fact that each e E EC is chosen with probabil- 

ity minIlyPf’(~,Y)l and that C(z,ar)EEc Pf’b,~) 2 
0, we get by Lemma 2.2 that Pr[C is not satisfied] = 
Pr[Ec n E’ = 01 5 e-0. 0 

Choosing 0 = O(n log d) bounds the above probability 

by nscd$)n-l. Since there are at most O(n’) u-u pairs 

to be considered and each pair has exactly (d + l)n--2 
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&ascending u-v cuts, E’ forms a feasible solution with 
probability at least 1 - l/n. 

5.2 Approximating Distance-d and Mincost Distance-d 

We describe how to extend our algorithm to the more 
general version of the Mincost d-Spanner problem where 
the edges have arbitrary (polynomially bounded) lengths 
and we want to find the subgraph of the smallest cost 
that is a d-spanner w.r.t. this length function. Since the 
analog of Lemma 2.1 still holds w.r.t. general lengths 
(i.e. we now consider spanners for graphs with arbitrary 
lengths on their edges), this implies the same result for 
the Mincost Distance-d problem. We remark that the 
previous algorithm works with no changes for directed 
graphs, and it is actually simpler to describe our exten- 
sion for the case of directed graphs as well. 

The basic idea is to transform the input graph G = 
(V, E) into a (directed) unit-length graph H = (VH, EH) 
such that each edge e = (u,v) in G is replaced by 
a path of length 1, (recall, 1, is the length of e), say 
u,ze,,, z,J,. ,z,J--~, v. We put the original cost e, 
on the last edge &,I.--l, IJ) of the path (referred to as 
the last edge corresponding to e) and a cost of 0 on all 
the other edges along the path. Since the lengths are 
polynomially bounded, the size of H is polynomial. 

Now we simply run the algorithm of the preceding 
section on H (except we only ship flow between pairs 
of “original” vertices) and use the wme rounding, i.e. 
the same p = O(nlogd). We then take all the “last” 
edges in our solution and output the edges of G cor- 
responding to them as our solution (the cost is id&i- 
al). The analysis essentially remains unchanged. But 
the critical point is that even though the size of H is 
polynomially larger than that of G, the number of “rel- 
evant” u-z) cuts is the same as before, do(“) (yielding 
the O(nlogd) performance guarantee). Indeed, since 
we can always add zero-cost edges to our solution and 
because of the special structure of H, the only u-u cuts 
in H[dj that need to be non-trivially satisfied are the 
ones that “come from G”. Specifically, we take any d- 
ascending u-IJ cut C in G, take its right side R(C) in 
G[dl and view it as the right side of a cut in H[dj. If 
all such cuts are satisfied in H[d], then adding all the 
zero cost edges makes ug and vd connected in H[d]. We 
defer the complete details to the final version. 
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