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In the undirected Edge-Disjoint Paths problem with Congestion (EDPwC), we are given
an undirected graph with V nodes, a set of terminal pairs and an integer c. The objective
is to route as many terminal pairs as possible, subject to the constraint that at most c
demands can be routed through any edge in the graph. When c = 1, the problem is
simply referred to as the Edge-Disjoint Paths (EDP) problem. In this paper, we study the
hardness of EDPwC in undirected graphs.

Our main result is that for every ε > 0 there exists an α > 0 such that for 1 ! c !
α log logV
log log logV , it is hard to distinguish between instances where we can route all terminal pairs

on edge-disjoint paths, and instances where we can route at most a 1/(logV )
1−ε
c+2 fraction

of the terminal pairs, even if we allow congestion c. This implies a (logV )
1−ε
c+2 hardness

of approximation for EDPwC and an Ω(log logV/ log log logV ) hardness of approximation
for the undirected congestion minimization problem. These results hold assuming NP "⊆S

dZPTIME(2log
dn).

In the case that we do not require perfect completeness, i.e. we do not require that
all terminal pairs are routed for “yes-instances”, we can obtain a slightly better inapprox-

imability ratio of (logV )
1−ε
c+1 . Note that by setting c=1 this implies that the regular EDP

problem is (logV )
1
2−ε hard to approximate.

Using standard reductions, our results extend to the node-disjoint versions of these

problems as well as to the directed setting. We also show a (logV )
1−ε
c+1 inapproximability

ratio for the All-or-Nothing Flow with Congestion (ANFwC) problem, a relaxation of ED-
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PwC, in which the flow unit routed between the source–sink pairs does not have to follow
a single path, so the resulting flow is not necessarily integral.

1. Introduction

In the edge-disjoint paths (EDP) problem we are given a graph G and a set
{(s1, t1),(s2, t2), . . . ,(sk, tk)} of pairs of vertices called terminals. The objec-
tive is to connect as many pairs as possible via edge-disjoint paths. Even
highly restricted cases of EDP correspond to well-studied important opti-
mization problems. For instance, EDP on stars is equivalent to the graph
matching problem. EDP and its variants also have a host of applications to
network routing, resource allocation, and VLSI design. It is then not sur-
prising that EDP is one of the most well-studied problems in combinatorial
optimization. In directed graphs, the problem becomes NP-hard even when
we are given only two source–sink pairs [21]. In undirected graphs, the sem-
inal work of Robertson and Seymour [36] gives a polynomial time algorithm
for any constant number of pairs. These results are suggestive of the inherent
differences between the undirected and directed versions of EDP. However,
the tractability of undirected EDP with constant number of pairs does not
hold once the number of pairs is allowed to grow as a function of the input
size. In particular, the problem is NP-hard even on planar graphs [23].

Consequently, much of the recent work on EDP has focused on un-
derstanding the polynomial-time approximability of the problem. While
constant or poly-logarithmic approximation algorithms are known for re-
stricted classes of graphs such as trees, meshes, and expanders [7,15,20,24,
29,30], the approximability of EDP in general graphs is not well understood.
The best approximation algorithm for EDP in directed graphs has a ratio
of Õ(min(V 2/3,

√
E)) [14,31,32,38,39] where V and E denote the number of

vertices and edges respectively in the input graph. For undirected graphs and
directed acyclic graphs, this factor improves to an O(

√
V )-approximation

ratio [13]. In directed graphs, the approximation ratio is matched by an

Ω
(
E

1
2−ε

)
-hardness due to Guruswami et al. [25]. In contrast, only APX-

hardness was known for undirected EDP until the work of [3] which showed

an Ω
(
log

1
3−εV

)
-hardness, unless NP⊆ZPTIME(npoly(logn)).

In this paper we study undirected EDP together with a natural general-
ization known as edge-disjoint paths with congestion (EDPwC), in which the
goal is to route as many terminal pairs as possible subject to the constraint
that at most c paths are routed through any edge. For directed and undi-
rected graphs with constant congestion c!2, there exists an O(V 1/c) approx-
imation [8,9,32]. When the congestion is allowed to be O(logV/ log logV ) we
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get a constant approximation via randomized rounding [34]. For undirected
planar graphs, when congestion 2 is allowed, an O(logV )-approximation
has recently been derived [11,12]. We note that the performance of an ap-
proximation algorithm for EDPwC is measured with respect to an optimal
solution with no congestion.

Another related problem is the all-or-nothing (ANF) flow problem where
each routed demand is allowed to be routed on fractional paths. Thus ANF
is a relaxation of EDP. Recent work has shown that in undirected graphs,

ANF is O(log2V )-approximable [10,12]. The Ω
(
log

1
3−εV

)
hardness result

in [3] extends to ANF as well. We also study the variant of ANF where
congestion is allowed, referred to as ANF with Congestion (ANFwC).

The last problem that we discuss is the Congestion Minimization Prob-
lem (CMP) in which the goal is to find the minimum value of the con-
gestion c such that all terminal pairs can be routed. The randomized
rounding result of [34] implies that CMP can be approximated to within
a factor Ω(logV/ log logV ). In [4], it was shown that undirected CMP is
hard to approximate to within a factor (log logV )1−ε. For directed graphs
[6] showed a hardness ratio of (logV )1−ε. This was improved to the tight
bound of Ω(logV/ log logV ) in [17].

1.1. Our results

Our main results are as follows.

Theorem 1. Consider an undirected graph. For every ε > 0 there exists
α > 0 such that for every integer-valued function c : N→ N satisfying 1 !
c(n)! α log logn

log log logn (and computable in time polynomial in n), it is impossible
to distinguish in randomized polynomial time between the following cases
(unless NP⊆ZPTIME(npoly(logn)))1:

• [Yes Instances]: There are edge-disjoint paths connecting all the ter-
minal pairs.

• [No Instances]: With congestion c=c(V ), at most a 1/(logV )
1−ε
c+2 frac-

tion of the terminal pairs can be routed.

Hence undirected EDPwC is hard to approximate to within a factor

(logV )
1−ε
c+2 under the above complexity assumption.

1 The reduction will naturally have one-sided error, immediately giving hardness under
the assumption that NP !⊆coRPTIME(npoly(logn)). It is a standard fact that this assump-
tion is implied by NP !⊆ZPTIME(npoly(logn)); see Lemma 27.
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An important feature of the reduction implied by the above result is that
it has perfect completeness, i.e. all terminal pairs are routed in the case of
yes-instances. If we do not require perfect completeness then we obtain the
following slightly stronger gap.

Theorem 2. The reduction of Theorem 1 can be adapted so that for some
parameter f it is impossible to distinguish in randomized polynomial time
between the following cases (unless NP⊆ZPTIME(npoly(logn))):

• [Yes Instances]: There are edge-disjoint paths connecting an f -fraction
of the terminal pairs.

• [No Instances]: At most an f/(logV )
1−ε
c+1 fraction of the terminal pairs

can be routed with congestion c=c(V ).

Hence undirected EDPwC is hard to approximate to within a factor

(logV )
1−ε
c+1 under the above complexity assumption.

Note that in the above theorems n is an abstract parameter used to define
the complexity class ZPTIME(npoly(logn)). Recall that ZPTIME(npoly(logn))
is the class of languages for which there is a randomized algorithm that al-
ways gives the correct answer and whose expected running time is npoly(logn).
Since our reduction is quasipolynomial, n is not V , the size of the EDPwC
instance.

We remark that simple modifications to the reductions used in the proofs
of Theorems 1 and 2 immediately imply analogous hardness results for the
Node-Disjoint Paths with Congestion problem in which the congestion con-
straint applies to the vertices of the graph instead of the edges. In addition,
we also show that the result of Theorem 2 can be extended to give a hardness

of (logV )
1−ε
2c for the ANFwC problem.

We now highlight two consequences of the above theorems that we believe
are of particular interest. First, the perfect completeness of Theorem 1 means
that it implies a gap in the amount of congestion required to connect all
terminal pairs.

Lemma 3. It is impossible to distinguish in randomized polynomial time
between the following cases (unless NP⊆ZPTIME(npolylog(n))):

• [Yes Instances]: There are edge-disjoint paths connecting all the ter-
minal pairs.

• [No Instances]: With congestion c=Ω(log logV/ log log logV ), not all
terminal pairs can be routed.

Hence undirected CMP is hard to approximate to within a factor Ω(log logV/
log log logV ).
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This improves the (log logV )1−ε hardness of [4]. Second, by setting c=1
in Theorem 2 and in our result for ANFwC, we obtain the following hardness
results for regular EDP and ANF.

Corollary 4. For every constant ε>0, undirected EDP and ANF are both

hard to approximate to within a factor (logV )
1
2−ε.

This improves the (logV )
1
3−ε hardness of [3]. These corollaries imply that

our results capture (and improve) in a unified way hardness results for EDP,
ANF, EDPwC and CMP that were presented in the sequence of papers [3,
4,2]. In particular, we believe that the current proof unifies the previous
work also in terms of the proof techniques, by basing the reduction from
the “correct” general constraint satisfaction problem – one defined over a
large (non-Boolean) domain and that is hard with perfect completeness and
near-optimal amortized query complexity [37,27].

We also present a simple family of instances that shows that the integral-
ity gap of the well-studied multicommodity flow relaxation is (logV )Ω(1/c)

for both EDPwC and ANFwC.

Theorem 5. For any congestion 2 ! c ! O
( log logV
log log logV

)
, the integral-

ity gap of the multicommodity flow relaxation for undirected EDPwC

is Ω
(
1
c ·

( logV
(log logV )2

) 1
c+1

)
. For ANFwC, the integrality gap with conges-

tion c is Ω
(
1
c2 ·

( logV
(log logV )2

) 1
c+1

)
. In particular, there exists a congestion

c=Θ
( log logV
(log log logV )2

)
for which the integrality gaps for both problems remain

superconstant.

We note that an immediate consequence of Theorem 5 is that for any
fixed integer i, the gap between (1/i)-integral multicommodity flow (i.e.,
each flow path carries an integral multiple of 1/i units of flow) and frac-
tional multicommodity flow is super-constant in undirected graphs. To our
knowledge, prior to our work, it was not known if there was a superconstant
gap even between half-integral flow and fractional flow in directed or undi-
rected graphs. The instances used in establishing the integrality gap have a
surprisingly simple structure.

1.2. Overview of Techniques

This paper represents a merging of three papers [26,5,16]. A preliminary
version containing results from [5,16] appeared in a conference paper [2].
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The hardness construction presented here is based on [26] and may be seen
as unifying all three constructions.

Our hardness construction is based on a hard-to-approximate Constraint
Satisfaction Problem (CSP) due to [27] (and thus avoids an intermediate
step taken by [3] of creating an independent set instance). The high-level
idea of the reduction is as follows. In the CSP instance Ψ we start from,
we have a set of variables and a collection of constraints on certain k-tuples
of variables, each of which constrains the set of possible assignments to the
variables in that k-tuple. The CSP has the property that given such an
instance, it is hard to tell if it is satisfiable (i.e., some assignment satisfies
all the constraints), or it is “very” unsatisfiable (in the sense that every
assignment satisfies only a tiny fraction of the constraints – we skip the
exact parameters for this discussion).

From such a CSP instance, we construct a graph GΨ which contains a
sufficiently large collection of edge-disjoint paths for each (constraint, sat-
isfying assignment) pair (call this a “local accepting configuration”). These
paths are referred to as the canonical paths of the corresponding local accept-
ing configuration. The canonical path collections for any two local accepting
configurations that disagree on the value they assign to some common vari-
able are made to randomly intersect with each other. The goal is to encode
conflicting values to a variable by a gadget which ensures that low conges-
tion routings cannot be based on too many conflicting values to variables.
This implies that such routings can be “decoded” into a good assignment to
the original CSP.

The graph GΨ serves as the input graph for the EDPwC instance. The
source–sink pairs are formed by grouping together end-points of the canon-
ical path collections corresponding to each constraint (over all its satisfying
assignments). The idea is that (ideally) each source–sink pair picks a path
corresponding to a satisfying assignment for the corresponding constraint. If
the instance Ψ is satisfiable, by picking such paths, we can route all source–
sink pairs on edge-disjoint paths. If very few constraints of Ψ are satisfiable,
the construction ensures that if pairs are indeed routed on such “ideal”
canonical paths, those paths must collide with high probability and create
high congestion (because they must assign too many inconsistent values to
some variable). However, these conflicts can be avoided if source–sink pairs
are connected via paths that are not canonical. In order to deal with such
non-canonical paths we employ an idea from [1] and construct the random
graph GΨ so that on average, paths that deviate significantly from canonical
paths are much longer than canonical paths and thus consume much more
of the routing capacity of the graph. Therefore, there cannot be too many
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source–sink pairs routed on such non canonical paths. Together with the
bound on number of pairs routed on (almost) canonical paths, we conclude
that when only a small fraction of the constraints of Ψ are satisfiable, with
high probability (over the randomness in constructing GΨ ), only a small
fraction of source–sink pairs can be routed in the graph GΨ (even if we
allow some bounded congestion).

1.3. Organization

In Section 2, we present a simple integrality gap construction that establishes
Theorem 5. Sections 3 and 4 present the hardness construction and analysis
underlying Theorem 1 and Corollary 3. In Section 5, we establish Theorem 2
and Corollary 4 as well as describe an extension of our hardness results to
node-disjoint paths problem.

2. Integrality Gap of the Multicommodity Flow Relaxation

In this section, we will show a family of instances that realize the in-
tegrality gap results stated in Theorem 5. The instances will be charac-
terized by a parameter n, and we will construct, for each integer c !
O((log logn)/(log log logn)), an EDP instance of size O(n logn) for which

the integrality gap is Ω
(( logn

(log logn)2

)1/c
/c
)
when congestion is restricted to

be strictly less than c. Our construction will use two additional parameters,

β1 =
1
4

( logn
150(log logn)2

)1/c
and β2 = 6(2β1)c−1 lnβ1. The integrality gap of our

EDP instance will be Ω(β1/c). Towards the end, we sketch how these results
extend to ANF with congestion.

2.1. The Multicommodity Flow Relaxation

We start by presenting the standard multicommodity flow relaxation for
EDP (ANF). Given a graph G and a set {(s1, t1),(s2, t2), . . . ,(sk, tk)} of
source–sink pairs, let P(i) denote the set of all paths joining si and ti in G.
Also, let P =

⋃
iP(i). The multicommodity flow relaxation uses two vari-

ables: (i) a variable f(P ) for each path P ∈ P that gives the amount of
flow sent on P , and (ii) a variable xi that indicates the total flow routed for
the pair (si, ti). We let f̄ denote the flow vector with a component for each
path P , and we denote by |f̄ | the value

∑
ixi. Then the LP relaxation for
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EDP (ANF) is as following:

max
k∑

i=1

xi (xi, f(P ) ∈ [0, 1] | ∀i : 1 ! i ! k, P ∈ P) s.t.:

xi −
∑

P∈P(i)

f(P ) = 0 (∀i : 1 ! i ! k),

∑

P : e∈P
f(P ) ! 1 (∀e ∈ E).

When considering the integrality gaps for EDPwC and ANFwC, we re-
strict the fractional solution to obey the same constraints as above, but allow
the integral solution to route up to (c−1) paths through any edge e.

2.2. Auxiliary Hypergraph Construction

Our starting point is a random hypergraph H with vertex set V (H) =
{v1, . . . ,vn}, and β2n hyperedges, h1, . . . ,hβ2n. Each hyperedge hi, for 1 !
i! β2n, is a subset of c vertices chosen randomly and independently. Our
EDP instance will be derived from the hypergraph H.

We now establish some properties of H. A set S⊆V (H) of size n/β1 is
said to be a bad set if it contains none of the β2n hyperedges in H. We say
that event E1 occurs if there is at least one bad subset S⊆V (H) of size n/β1.

Lemma 6. The probability that the event E1 occurs is at most 1/4.

Proof. Fix a set S ⊆ V (H) of size n/β1. The probability that a random
hyperedge is contained in S is:

(n/β1
c

)
(n
c

) =
n
β1

·
(

n
β1

− 1
)
· · ·

(
n
β1

− c+ 1
)

n · (n− 1) · · · (n− c+ 1)
"

( n
β1

− c

n

)c

" 1

(2β1)c

since c!n/(2β1) for sufficiently large n.
Therefore,

Pr[S is bad] !
(
1− 1

(2β1)c

)β2n

! e
− β2n

(2β1)
c .

Since the number of possible choices for the set S is
( n
n/β1

)
which can be

upper-bounded by (eβ1)n/β1 ! β2n/β1
1 , using the union bound, we get that

the probability that any set S of size n/β1 is bad, is at most:

β
2n
β1
1 · e

−β2n
(2β1)

c ! e
n
β1

(
2 ln β1− β2

2cβc−1
1

)
= e

−n lnβ1
β1 ! 1

4
.
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Given a vertex v ∈ V (H), we say that it is a high-degree vertex, if it
participates in more than 10β2c hyperedges in H. We say that the event E2
occurs, if the number of high-degree vertices inH is greater than n/β1. Using
Chernoff bounds, we can bound the probability of this event as follows.

Lemma 7. The probability that the event E2 occurs is at most 1/4.

Proof. A vertex v occurs in a random subset of size c with probability c/n.
Thus the expected number of hyperedges in which a vertex is contained
is β2c. By Chernoff bounds, for any δ!2e−1, the probability that a vertex
is contained in more than (1+δ)β2c hyperedges can be bounded by 2−(1+δ)β2c.
Thus the probability that a vertex is contained in more than 10β2c hyper-
edges is at most 1/(4β1). Hence the expected number of high degree vertices
is at most n/(4β1). By Markov’s inequality, the probability that there are
more than n/β1 such vertices is at most 1

4 .

Thus with probability at least 1
2 , neither event E1 nor event E2 occurs in

the random hypergraph H created above.

2.3. Integrality Gap Instances

The construction of the integrality gap instances for EDPwC and ANFwC
is based on the hypergraph H defined above. The family of gap instances is
identical for both problems. We focus on EDPwC, and describe at the end
of this section the analysis for ANFwC.

The EDPwC instance is defined on a graph G constructed as follows.
For each hyperedge hi : 1" i"β2n, it contains two vertices #i,ri, which are
connected by a special edge. Consider now some vertex v ∈ V , and assume
that it participates in hyperedges hi1 ,hi2 , . . . ,hik , where i1 < i2 < · · · < ik.
We add the following regular edges to graph G: (s(v),#i1), (rik , t(v)), and for
each j : 1"j"k−1, we add a regular edge (rij ,#ij+1). Finally, for each vertex
v∈V (H), the EDP instance contains a source–sink pair (s(v), t(v)). For each
source–sink pair s(v)–t(v), we define a canonical path as follows: P (v) =
(s(v),#i1 ,ri1 , . . . ,#ik ,rik , t(v)). Note that the canonical path P (v) traverses
all hyperedges containing v in a monotonically increasing order.

Properties of the EDPwC Instance. We now establish that with high
probability, the instance created above satisfies a set of properties that would
allow us to establish the integrality gap.

Let G′ be a graph obtained from G by shrinking each special edge (#i,ri)
into a vertex ui. Note that each edge in G′ corresponds to a unique and
distinct regular edge in G. In particular, an edge (ui1 ,ui2) in G′ maps to
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an edge (ri1 ,!i2) if i1 < i2, and to edge (!i1 ,ri2) otherwise. Let g > 2 be a
fixed integer and let Kg be the total number of (simple) cycles of length at
most g in G. We say that the event E3 occurs if Kg > (6β2c2)g+1. In the
following Lemma 8 we first show a property that holds for any g>2. In the
subsequent section, we define a desirable value of g.

Lemma 8. The probability that the event E3 occurs is at most 1
4 for any

fixed integer value of g>2.

Proof. A cycle C of length k in the graph G′ corresponds to an ordered
sequence of k vertices ui1 , . . . ,uik , where ik=max{i1, . . . , ik}, and edges e1=
(ui1 ,ui2), . . ., ek−1=(uik−1 ,uik), ek =(uik ,ui1) belong to the cycle C in G′.
Note that the indices i1, i2, . . . , ik need not form an increasing sequence; they
only satisfy the property that ik is the largest integer in the sequence.

For each j∈ [1, . . . ,(k−2)], we first bound the probability that the edge ej
exists given the existence of edges e1, . . . ,ej−1. Let A⊆V (H) be the subset of
vertices that defines the hyperedge hij . Note that |A|=c. If the edge ej exists,
then hyperedge hij+1 must contain at least one vertex from A. The proba-

bility of this happening (given the existence of e1, . . . ,ej−1) is at most c2

n .
We now bound the probability of edges ek,ek−1 belonging to G′, given

the existence of e1, . . . ,ek−2. Consider the hyperedges hi1 ,hik−1 of graph H.
Let X,Y,Z be pair-wise disjoint subsets of V (H) defined as follows: X =
hi1\hik−1 , Y =hi1∩hik−1 , and Z=hik−1\hi1 . We claim that the hyperedge hik
must have a non-empty intersection with at least two sets among X, Y
and Z. For instance, if the hyperedge hik has a non-empty intersection only
with the set Y but is disjoint from both X and Z, then at least one of the
edges ek−1,ek does not belong to G′. This follows from the fact that for any
vertex v∈V (H) the canonical path of v traverses the hyperedges of H in a
monotonically increasing order. So for each vertex v∈Y , the canonical path
of v in G′ visits ui1 ,uik−1 ,uik in this order, and so edge (ui1 ,uik) does not
belong to G′. Similarly, we can rule out the possibility that the hyperedge hik
has a non-empty intersection only with X or only with Z. Thus in order for
edges ek−1,ek to belong to G′, the hyperedge hik must intersect with at least
two out of the three sets X,Y,Z. We bound the probability that it intersects
with both X and Y . The probabilities of hik intersecting with X and Z, and
with Y and Z, can be bounded similarly.

Let EX ,EY denote the events that hik ∩X %= ∅ and hik ∩Y %= ∅, respec-
tively. Then

Pr [EX ∧ EY | e1, . . . , ek−1] = Pr [EX |EY , e1, . . . , ek−1] ·Pr [EY | e1, . . . , ek−1]

! Pr [EX | e1, . . . , ek−1] ·Pr [EY | e1, . . . , ek−1] !
c4

n2
,
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where the inequality Pr [EX |EY ,e1, . . . ,ek−1] ! Pr [EX |e1, . . . ,ek−1] follows
from the fact that X ∩ Y = ∅, and so the hyperedge hik is less likely to
contain a vertex from X if it already contains a vertex from Y . Therefore,
the total probability that both edges ek−1,ek belong to G′ is at most 3

(
c4

n2

)
,

and the probability that cycle C of length k belongs to G′ is at most 3
(
c2

n

)k
.

The number of possible cycles of length k can be bounded by (β2n)k. Thus
the expected number of cycles of length k is at most (3β2c2)k. Summing up
over all k ∈ [3, . . . ,g], we get that E[Kg]! (3β2c2)g+1 for any integer g > 2,
and using Markov’s inequality, we get the claimed bound.

2.4. Integrality Gap Analysis

Let g=3β1β2c2. By Lemmas 6, 7, and 8, with probability at least 1/4, none
of the events E1, E2, and E3 (for value 2g) occur. We assume this from now
on, and establish the integrality gap.

The fractional solution can route at least n
c units of flow, by sending 1

c
units of flow on each canonical path. This gives us a fractional solution of
value (n/c) with congestion 1. Note that this is a feasible fractional solution
for both EDPwC and ANFwC.

Gap Analysis for EDPwC. Consider now some integral solution whose
congestion is at most c− 1, and let P ′ denote the set of paths on which
the source–sink pairs are routed in this integral solution. We partition P ′

into three subsets: P1 contains canonical source–sink paths, P2 contains
non-canonical source–sink paths whose length is at least g, and P3 contains
non-canonical source–sink paths whose length is smaller than g. We bound
the size of each one of these sets separately.

|P1|! n
β1

if event E1 does not happen. Otherwise, there must be c paths
that go through a single special edge and the solution has congestion c.

|P2|! n
β1

since the total number of edges in G is at most 3β2cn. Thus
even allowing a congestion of c, total routing capacity available in the graph
is at most 3β2c2n. Thus the number of paths of length at least g can be no

more than 3β2c2n
g = 3β2c2n

3β1β2c2
= n

β1
.

To analyze |P3|, we first remove from P3 all paths that correspond to
vertices which occur in more than 10β2c hyperedges of H. Since event E2
does not happen, we discard at most n/β1 paths. Let P ′

3⊆P3 be the set that
remains. For any s(v)–t(v) pair routed in P ′

3, the length of its canonical path
is at most 10β2c. Let p1(v) denote the non-canonical path used for routing
the pair s(v)–t(v) in P ′

3, and let p2(v) denote the canonical path for the pair
s(v)–t(v). We consider the union of paths p1(v) and p2(v) in the graph G′
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(recall that G′ is obtained from G by shrinking each special edge (!i,ri)
into a vertex ui). This union must contain a simple cycle of length at most
g+10β2c ! 2g. By Lemma 8, the number of cycles of length at most 2g
in G′ can be bounded by (6β2c2)2g+2. Since each edge in G′ corresponds to
a unique edge in G, and each edge in G is allowed a congestion of up to
(c−1), it follows that |P ′

3|!2gc(6β2c2)2g+2 as each path in P ′
3 uses at least

one edge associated with such a cycle. Thus

|P ′
3| ! 2gc(6β2c

2)2g+2 ! (β2c
2)3g ! 24g log β2 = 272(4β1)c·ln2 β1 !

√
n ! n/β1.

In total, |P ′|! 4n/β1, and the integrality gap is at least β1
4c , giving the

bound in Theorem 5.

Gap Analysis for ANFwC. To show an integrality gap for ANF with
congestion, consider the subset of pairs routed in some feasible solution.
Recall that for each pair s(v)–t(v) chosen in a feasible solution for ANFwC,
a unit of flow needs to be routed (possibly fractionally) from s(v) to t(v).
We refer to a routed pair as a canonical pair if more than (c−1)/c-fraction
of the flow is routed on the pair’s canonical path, and call it a non-canonical
pair otherwise. It is easy to see that no more than (c− 1) canonical pairs
can traverse a special edge without causing a congestion greater than (c−1).
Thus essentially the same analysis as given above for P1 applies to canonical
pairs. For non-canonical pairs, we proceed as above for P2 and P3 noting
that for each routed pair, we now have only (1/c)-fraction of the flow to be
supported on non-canonical paths. Thus we can bound the number of pairs
routed in any feasible solution for ANFwC by 4cn

β1
, and hence the integrality

gap is at least β1
4c2 , giving the bound in Theorem 5.

3. The Hardness Construction

We now establish Theorems 1 and 2 by using a randomized reduction from
a general constraint satisfaction problem (CSP) over large (non-Boolean)
domains.

3.1. A Hard-to-Approximate Constraint Satisfaction Problem

An instance of p-ary k-CSP consists of variables {x1, . . . ,xN} that take values
in {1,2, . . . ,p} and constraints C1, . . . ,CM on tuples of the variables of size k.
Formally, a constraint Ci is simply a tuple τi of k variables along with
a subset Si ⊆ {1,2, . . . ,p}k of “satisfying assignments”. The constraint is
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satisfied if the k variables in τi are assigned a tuple of k values that belongs
to Si. The goal is to find an assignment to the xi’s that satisfies as many
constraints as possible. Both p and k can be functions of the number of
variables N .

The starting point for our reduction to EDPwC is the following strong
hardness result for constraint satisfaction (over any domain {1,2, . . . ,p} with
p prime) due to H̊astad and Khot [27] (stated as Theorem 9 below). The
two features about this result that are important to us are (i) perfect com-
pleteness, and (ii) the maximum number of satisfying assignments to any
constraint is much smaller than the reciprocal of the soundness (below, the

former is at most p10
√
! while the latter is at least p!−10

√
!, and for large " the

ratio of the logarithm for these quantities tends to 0). The result of Samar-
odnitsky and Trevisan [37], which was extended to larger, non-Boolean do-
mains by Engebretsen [18], achieves the second property above but lacks
perfect completeness.

Theorem 9. For all large enough integers " and every function p : N→N
that takes prime values, there is a reduction from 3SAT to p-ary "-CSP with
the following properties:

1. [Reduction complexity]: For a 3SAT instance of size n, the reduction

runs in time nO(! logp) ·ppO(!)
, and produces a p-ary "-CSP instance with

at most nO(! logp) ·ppO(!)
variables and constraints, where each constraint

in the instance has at most p10
√
! satisfying assignments. (Here we use

the shorthand p=p(n).)
2. [Perfect completeness]: If the original 3SAT instance is satisfiable,

the p-ary "-CSP instance is also satisfiable.
3. [Soundness]: If the original SAT instance is not satisfiable, then at most

a fraction p−!+10
√
! of the constraints in the p-ary "-CSP instance are

satisfiable.

While the above gives a quasi-polynomial time reduction for p(n) up
to polylog(n), we will use it with p(n) at most O((log logn)3). In this case
the reduction from 3SAT to the above CSP instance will run in nO(log log logn)

time.

3.1.1. Some details about the proof of Theorem 9. The above result
is Theorem 1.5 in [27]. We say a few words about how the parameters claimed
above arise in [27], since the complexity of the reduction is not spelled out
explicitly there. (The focus in [27] was on the case of p being a constant,
and in this case the reduction clearly had polynomial time complexity.) We
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discuss the high level details of the proof so as to convince the reader of the
claimed bounds for non-constant functions p(n).

The starting point for the above result, like so many other PCP results,
is the u-parallel version of the basic 2-prover 1-round (2P1R) proof system
for Gap3SAT(5). In a Gap3SAT(5) instance of 3SAT each variable occurs
exactly in five clauses, and the goal is distinguish satisfiable instances from
those that are most η0-satisfiable for some absolute constant η0 < 12. In
this u-parallel game, based on a Gap3SAT(5) instance ψ, a verifier picks
u clauses of ψ at random and asks one prover (the “clause prover”) for
the assignment to the variables in those clauses. The verifier also picks u
variables, one from each of the u chosen clauses, at random and asks the
other prover (the “variable prover”) for their values. The verifier accepts
if the clause prover returns an assignment satisfying all the u clauses, and
the variable prover’s response is consistent with the clause prover’s answer
on the u common variables they both got asked about. By Raz’s parallel
repetition theorem [35], the parallelized 2P1R has soundness cu0 for some
absolute constant c0<1. The size of the 2P1R instance (viewed naturally as
a bipartite graph) is nO(u), if n is the size of the Gap3SAT instance ψ, and
the answers from each of the provers consist of at most 3u bits.

To get the hardness for p-ary CSP, one gives a PCP verifier V which
randomly checks # locations of a proof consisting of suitably encoded versions
of the two provers’ answers in the above u-parallel game. Each location of
the proof must consist of a value in {1,2, . . . ,p}. Specifically, the verifier
expects as proofs the encodings of the two provers’ answers by the p-ary
long code. Each of these long codes has a position for every function taking
values in {1,2, . . . ,p} on a domain of size 2O(u), and thus has size p2

O(u)
. The

variables of the CSP naturally correspond to positions of these long codes
(and a proof corresponds to a p-ary assignment to the variables). The total
number of variables in the CSP instance is at most

(1) nO(u)p2
O(u)

,

since there are nO(u) long codes each of length p2
O(u)

.
H̊astad and Khot first give a verifier that makes 5 queries and has

completeness 1 and soundness at most 1
p + cΩ(u)

0 pO(1) (this is the result of
Lemma 4.9 in [27]). Then for any integer f!1, they analyze an “f -iterated”
verifier that performs f2 copies of this test, reusing many queries between
the tests for a total of #=4f+f2 queries into the proof. This verifier inher-
its the perfect completeness of the basic 5 query verifier, and Theorem 4.10

2 There exists such η0 for which the problem is NP-hard, according to the PCP theorem.
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of [27] shows that the iterated verifier has soundness p−f2
+cΩ(u)

0 pO(1) (our f
is called k in their notation). (In other words, the f2 tests effectively behave
as if they are independent even though they share many queries.) To sum-
marize, if the Gap3SAT instance ψ is satisfiable, all constraints checked by
the verifier can be simultaneously satisfied, whereas in the soundness case

when ψ is at most η0-satisfiable, at most a fraction p−f2
+cΩ(u)

0 pO(1) of the
constraints can be satisfied by any assignment.

By picking u=d0# logp for a large enough (absolute) constant d0>0, the

soundness can be made at most 2p−f2 !p−"+10
√
". By a simple inspection of

their construction (Section 4.2.2 in [27]), the total number of different query
patterns of the f -iterated verifier (which correspond to constraints in the
CSP view) can be seen to be at most

(2) nO(u)2O(uf)pf2
O(u)

.

For the choice u = Θ(# logp), (1) and (2) imply that the size of the CSP

instance, and the time complexity of the reduction, are both nO(" logp)pp
O(!)

as claimed.

3.2. A new CSP by serial product

We will boost the soundness of the above CSP by forming a new instance
via a λ-fold serial product for an integer parameter λ= λ(n). Specifically,
we will form a new p-ary k-CSP instance for k= λ#, where there is a con-
straint for each λ-tuple of constraints in the original CSP (with repetitions),
and this constraint is satisfied iff all the λ constituent constraints are sat-
isfied. Note that the number of constraints of the new CSP is bounded by
nO("λ logp)2p

O(!)λ logp. An assignment that satisfies all constraints of the p-ary
#-CSP instance satisfies all constraints of the p-ary k-CSP instance, so per-
fect completeness is preserved. Also, an assignment σ to the variables that
satisfies a fraction ρ of the constraints of the original CSP satisfies a frac-
tion ρλ of the constraints in the product CSP (since each of the λ chosen
constraints must be satisfied by σ, and these choices are made indepen-
dently). The soundness therefore gets raised to the λ’th power, and is at

most p−("−10
√
")λ.

3.3. The Reduction to EDPwC instance

The overall reduction first constructs the p-ary #-CSP instance guaranteed
by Theorem 9, followed by taking a λ-fold serial product.
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Suppose an arbitrary constant ε > 0 is given and we seek hardness for
congestion c(n) where the function c(n) satisfies 1! c(n)! log logn

10log log logn . We

first specify the parameters ",p= p(n) and λ= λ(n) to construct the p-ary
k = λ"-CSP instance as above. For convenience, we also define two other
parameters h,b that are closely related to the congestion c=c(n).

" = "(ε) is a large enough constant, "(ε) > 10000/ε2 ,(3)

h = c = c(n),(4)

b = c+ 1,(5)

p = Any prime such that b2 < p < b3(6)

(note that such a prime always exists),

λ =

⌈
log log n

(b+ 1) log p

⌉
,(7)

k = λ".(8)

We note that since c(n)! log logn
10log log logn ,

log logn
(b+1)logp >1 so that λ=

⌈ log logn
(b+1)logp

⌉
!

2 log logn
(b+1)log p .

We now describe the reduction from the resulting p-ary k-CSP to routing
in undirected graphs. Let N be the number of variables and M the number
of constraints. Recall that we have

(9) M ! nO(!λ log p)2p
O(!)λ log p ! nO(log logn).

We define some more notation concerning the p-ary k-CSP instance.

• Let J be an upper bound on number of satisfying assignments to any of

the constraints (we have J!p10
√
!λ=p10k/

√
!).

• Let Bi denote the number of constraints in which variable xi partic-
ipates in. Note that

∑
iBi = kM . Let T = maxiBi be the maximum

number of constraints any variable participates in.

The reduction will use two other integer parameters Y,Z which will be
defined in Section 3.4.

For a positive integer K, we will use the notation [K] to denote the
set {1,2, . . . ,K}. In what follows, i∈ [N ] will typically be used for a variable
index, j∈ [M ] for a constraint index, and q∈ [p] to refer to a possible value
assigned to a variable. For each q∈ [p] and for constraint Cj containing xi,
let Γijq be the set of satisfying assignments to Cj that set xi to q and let Γiq

be the set of all pairs (Cj,γ) such that Cj contains xi and γ∈Γijq.
The main building blocks in the construction are certain variable gadgets.

For each variable xi, we give a randomized construction of a gadget called Gi
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that we describe in detail below. Recall that Bi!T denotes the number of
occurrences of xi in the constraints. For notational simplicity, we omit the
subscript i in Bi and refer to it as simply B when i is obvious from the
context (we do not assume that all Bi’s are equal). For each z ∈ [Z], the

variable gadget Gi has a matching M (i)
z consisting of Y JB special edges

eiz,s =(uiz,s,v
i
z,s) for s∈ [Y JB] – the vertex uiz,s (resp. viz,s) will be referred

to as the left (resp. right) endpoint of the edge eiz,s.

These disjoint matchings will be strung together by Z + 1 intermedi-
ate levels of connector vertices in a random way as described below. Let
τ =(Cj,γ,y) be a triple where γ is a satisfying assignment for Cj and y∈ [Y ];
we call such a triple an accepting interaction. For each z∈ [Z+1] and q∈ [p],

we have a set W (i)
q,z of Y |Γiq| connector vertices, each labeled by an accepting

interaction (Cj ,γ,y) where the pair (Cj ,γ) belongs to Γiq and y∈ [Y ] (that is,
there are Y vertices for each pair (Cj ,γ) where Cj contains xi and the satis-

fying assignment γ to Cj assigns the value q to xi). We will denote by wi,z
Cj ,γ,y

the vertex in W (i)
q,z that is labeled by the accepting interaction (Cj ,γ,y). Note

that, for each z, we have
∑

q∈[p] |W
(i)
q,z |!Y JB. Now comes the crucial inter-

connection of the different matchings via the connector vertices. For each

q∈ [p] and z∈ [Z], pick independently and uniformly at random a subset S(i)
q,z

of the matching M (i)
z of size |W (i)

q,z |. Connect the left endpoints of the edges

in S(i)
q,z to the vertices W (i)

q,z via a random matching. If the left endpoint of

an edge in S(i)
q,z is connected to the vertex labeled wi,z

Cj ,γ,y
, then the right

endpoint of that edge is connected to the corresponding node wi,z+1
Cj ,γ,y

in the

(z+1)’th level. Moreover, we will call this special edge as f i,z
Cj ,γ,y

. Note that

the collection of the edges f i,z
Cj ,γ,y

as (Cj ,γ) ranges over Γiq and y ranges

over Y is precisely the submatching S(i)
q,z of M (i)

q,z.

We now identify and give names to certain collections of “canonical”
paths through the variable gadget Gi that correspond to the p possible value
assignments to xi. Fix a value q for xi. For each pair (Cj ,γ)∈Γiq and for each
y ∈ [Y ], we can define a canonical path Pi[j,γ,y] as the unique path going
through the connecting vertices labeled wi,z

Cj ,γ,y
: z∈ [Z+1]. Note that for each

q ∈ [p] and i ∈ [N ], the at most Y JBi canonical paths Pi[j,γ,y] : (Cj ,γ) ∈
Γiq,y∈ [Y ] are edge disjoint. Moreover, at each level z∈ [Z], Pi[j,γ,y] passes
through a special edge eiz,s where s is distributed uniformly in [Y JB].

This defines a variable gadget. The graph is constructed by linking to-
gether the variable gadgets as follows. For each constraint Cj there are
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ui
1,1 vi1,1

ui
1,8 vi1,8

ui
2,1 vi2,1

ui
2,8 vi2,8

ui
3,1 vi3,1

ui
3,8 vi3,8

W (i)
3,1

W (i)
2,1

W (i)
1,1

W (i)
3,4

W (i)
2,4

W (i)
1,4

Figure 1. Gadget Gi for p=3, Z=3 and Y =2. The special edges are shown in bold.
One of the canonical paths is shown dotted.

Y source–sink pairs (Sj,y,Tj,y). Let xi1 , . . . ,xik be the k variables in con-
straint Cj in some order. For each such assignment γ that satisfies Cj, we
string together from Sj,y to Tj,y by connecting:

1. Sj,y to the vertex wi1,1
Cj ,γ,y

by a weighted edge of weight Z, “implemented”

as a simple path of length Z (with the internal vertices of this path being
degree two vertices that are exclusive to this path)3;

2. wit,Z+1
Cj ,γ,y

to wit+1,1
Cj ,γ,y

for t∈ [k−1] by an edge; and

3. wik ,Z+1
Cj ,γ,y

to Tj,y by a weight Z edge, again implemented by a simple path

of length Z (again, the internal vertices of this path have degree two).

This naturally defines the canonical paths P [j,γ,y] connecting Sj,y to Tj,y

that pass through Pit [j,γ,y] for each t ∈ [k]. Note that for each (Sj,y,Tj,y)
pair, we have a choice among the canonical paths P [j,γ,y] corresponding to
which assignment γ satisfies Cj . Each of these canonical paths has O(kZ)
edges.

Note that the number of source–sink pairs is MY , each of which has at
most J canonical paths of length O(kZ) connecting them. Therefore, the
total number of edges in the graph is O(MY JkZ), and the graph can be

3 The use of a long path instead of an edge for this connection will be very convenient
in a later step in our analysis.
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constructed in time polynomial in the number of edges. This completes the
construction.

3.4. The parameters

For easy reference, recall again the following parameters concerning the p-ary
k-CSP instance we start with:

• p=p(n) is a prime in the range (b2, b3) where b=c(n)+1, and 1!c(n)!
log logn

10log log logn is the congestion for which we seek hardness;

• k = λ" where λ =
⌈ log logn
(b+1)logp

⌉
and " = "(ε) is a large enough constant,

"(ε)>10000/ε2 ;
• N , the number of variables;
• M , the number of constraints, M=nO(loglogn);
• J , the maximum number of satisfying assignments to any constraint (J!

p10k/
√
!);

• Bi, the number of constraints in which variable xi participates; we have∑N
i=1Bi=kM .

We now discuss the values for the other parameters Y,Z that were used
in the above reduction, and define some other parameters that will be useful
in the analysis. Note the parameters are defined in order of dependence.

r = pk/3 " (log n)
!

3(b+1) ,(10)

ρ = pkJr,(11)

Z = 128bρb,(12)

g = Zρ,(13)

Y = 4Mgg2g+1,(14)

Xi = Y JBi (for i ∈ [N ]),(15)

X = max
i

Xi,(16)

Ai = 2Xi/ρ.(17)

We give some intuition for the parameters here. The final gap we get
is r and ρ is roughly (not much larger than) r. The best gap we can hope

for is the soundness of the p-ary k-CSP, which is p−(!−10
√
!)λ and surely at

most p−k/3. This determines our choice of the gap r.
Since there is a source–sink path for every assignment to the correspond-

ing constraint, two such paths form a cycle. Since each cycle allows a de-
mand using an edge on the cycle to avoid a particular heavily loaded edge,
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we need the notion of almost-canonical paths. The capacity argument we
use for flows that use several detours requires us to set the threshold for
almost-canonical to be ρ detours.

Z has to be roughly ρb−1 for the measure concentration part of the balls-
and-bins argument, that guarantees that for every setting of flows, the num-
ber of bins with too many balls is close to its expectation. However, since
we allow almost-canonical paths to deviate on about ρ edges, the expected
number of bad bins has to be large enough, which requires us to set Z to be
about ρb.

Once again, to make a capacity argument, we need to set the threshold g
defining a long cycle to be about Zρ. The number of short cycles then is
exponential in g, which requires us make Y exponential in g as well. Thus Y

is roughly 2ρ
b+1

and the hardness we get is about log
1

b+1 Y . The total number
of vertices, say V , in the final graph H is O(MY JkZ) which is at most Y 2,

so we get a gap of about Ω
(
log

1
c+2 V

)
as a function of the number V of

vertices. For future reference, we formally record the following bound on r.

Lemma 10. With the above choice of parameters, we have r=Ω
(
log

1−ε
c+2 V

)
,

where V is the number of vertices in the graph H output by the reduction.

Proof. Let us bound logY from above in terms of r. We have logY =
O(g(logM + logg)). By definition, g = bΘ(k). Since b ! log logn and k =
O(log logn), g! logO(1)n. Combined with the fact that M =nO(loglogn), we
have logY =O(g log2n). Again by definition, g=128bρb+1=O(ρb+1 logn) so
that logY =O(ρb+1 log3n). We have

ρ = pkJr ! p20k/
√
#r = r1+60/

√
# ! r1+ε/2,

if # " 10000/ε2. Also log3n ! r(b+1)9/# ! r(b+1)ε/2. Plugging these, we get

logY =O(r(b+1)(1+ε)), which gives r=Ω
(
(logY )

1−ε
b+1

)
. Recalling that V !Y 2

and b=c+1, we have the claim.

3.5. Time complexity

The time complexity of the reduction is polynomial in Y , which for the above

choice of parameters is easily seen to be 2log
O(")n if n is the size of the original

SAT instance. Therefore, we have a quasi-polynomial time reduction.

4. Hardness Gap Analysis

We now analyze the hardness gap achieved by the preceding reduction.
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4.1. Completeness

When there is a satisfying assignment to the p-ary k-CSP instance, all MY
pairs (Sj,y,Tj,y) can be routed on edge-disjoint paths. Indeed, let a be an
assignment that satisfies all constraints, and let γ be the projection of a to
constraint Cj . Then, for each y ∈ [Y ], connect (Sj,y,Tj,y) via the canonical
path P [j,γ,y].

4.2. Soundness

We now show that if no assignment satisfies more than a small fraction of
the constraints, then it is impossible to route many of the (Sj,y,Tj,y) paths,
even if congestion c is allowed. This part is complicated with several steps
and using several of the ideas developed by Andrews and Zhang in their
paper [4] on hardness of congestion minimization.

Due to the fact that we are aiming for perfect completeness, we
have to handle an additional complication. We call a source–sink pair
(Sj,y,Tj,y) risky if for some assignments γ "= γ′ satisfying Cj, the canoni-
cal paths P [j,γ,y] and P [j,γ′,y] intersect. We now argue that the number
of risky paths is small with high probability.

We call a canonical path Pi[j,γ,y] risky if for some γ′ "=γ, Pi[j,γ,y] inter-
sects Pi[j,γ′,y]. Note that γ′ and γ must assign different values to xi for them
to intersect. In this case their matching edges eiz,s are chosen independently
at each level, and hence the probability that Pi[j,γ,y] intersects Pi[j,γ′,y]
is at most Z

Y JBi
. Taking a union bound over the at most J possible γ′’s, the

probability that Pi[j,γ,y] is risky is at most Z
Y Bi

< Z
Y . A demand (Sj,y,Tj,y)

is risky if one of its canonical paths is risky. Taking a union bound over
the k variables and the at most J assignments γ, we get an overall bound
of kJZ

Y . Thus the expected number of risky demand pairs is MkJZ. Using
Markov’s inequality, with probability 99/100, the number of risky demand
pairs is at most 100MkJZ.

It is easy to verify that for the above setting of parameters, this quantity
is Mpolylog(Y ), which is negligible compared to MY , the total number of
demands. Moreover, it is easy to find all risky demand pairs in an instance,
and delete them. The resulting graph still hasMY (1−o(1)) source–sink pairs,
inherits the perfect completeness, and has no risky demands. For the rest of
the paper, we assume that we have an instance with no risky demands.

We take an arbitrary routing of some subset of the Sj,y–Tj,y pairs and
divide the paths used for the routing into two classes: almost-canonical and
non-canonical, defined as follows.
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Definition 11. For j ∈ [M ] and y ∈ [Y ], an Sj,y–Tj,y path Π is said to be
almost-canonical if there is a satisfying assignment4 γ∈ [J ] to Cj such that
for each variable xi present in constraint Cj, the path Π uses more than
Z−ρ out of the Z matching edges in M i

z, z∈ [Z], that are used by P [j,γ,y].
In other words, Π deviates from the canonical path P [j,γ,y] in at most ρ
special edges in each variable gadget.

For such an almost-canonical path Π, we say that the value highlighted
by Π for xi equals the value that satisfying assignment γ assigns to xi
(note that each almost-canonical path highlights exactly one value for each
variable present in the associated constraint).

Definition 12. For j ∈ [M ] and y ∈ [Y ], an Sj,y–Tj,y path is said to be
non-canonical if it is not almost-canonical.

We will bound the number of almost-canonical and non-canonical paths
separately.

4.3. Bounding almost-canonical paths

We divide almost-canonical paths into two categories: heavy and light, de-
fined below, and bound each of these in turn.

Definition 13 (Heavy and Light Paths). For i ∈ [N ] and q ∈ [p], a
variable-value pair (xi,q) is said to be heavy if more than Ai almost-canonical
paths highlight the value q for xi.

An almost-canonical path Π connecting Sj,y to Tj,y is said to be heavy if
(xi,qi) is heavy for each variable xi in Cj where qi is the value highlighted
by Π for xi.

An almost-canonical path that is not heavy is said to be light.

4.3.1. Light almost-canonical paths. It is very easy to bound the num-
ber of light almost-canonical paths. Indeed this number is at most p

∑
iAi,

since for a pair (xi,q) at most Ai almost-canonical paths can be light because
of it. We record this as:

Lemma 14. In any routing of a subset of the Sj,y–Tj,y pairs, there can be

at most p
∑N

i=1Ai light almost-canonical paths.

4 There can be more than one such γ. If so, we pick one of them arbitrarily.
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4.3.2. Heavy almost-canonical paths.

Definition 15 (Over-ambiguous variables). Define a variable xi to be
over-ambiguous if the variable-value pair (xi,q) is heavy for more than h
values of q∈ [p].

The above notion is an important one for our analysis. On the one hand,
if there are no over-ambiguous variables, then the soundness of the original
CSP implies a bound on number of heavy almost-canonical paths (Lemma 16
below). On the other hand, the existence of an over-ambiguous variable xi
implies that with high probability the almost-canonical paths that pass
through the variable gadget Gi create congestion more than h=c (provided
parameters such as Z are picked appropriately). The intuition behind the
latter phenomenon can be explained as follows. For each value q for which
(xi,q) is heavy, the heavy almost-canonical paths pass through a random

subset of the matching M (i)
z of size Ai. For different values q, these subsets

are chosen independently for each z. If more than h such subsets of size Ai

(out of Xi) are chosen, then with high probability they will all collide on
some element creating congestion h+1, provided Z is large enough. This is
the “balls and bins” intuition behind our reduction.

Lemma 16. If there are no over-ambiguous variables in a routing of a sub-
set of Sj,y–Tj,y pairs, then the number of heavy almost-canonical paths is at

most p10k/
√
!(h/p)kMY .

Proof. Let C̃ denote the set of constraints Cj for which for some y ∈ [Y ]
there is a heavy almost-canonical flow path connecting Sj,y to Tj,y. Con-
sider the following assignment to each xi. Pick an element from the set
Vi = {q | (xi,q) is heavy} uniformly at random. Note that for each con-
straint in C̃, this assignment satisfies it with probability at least 1/hk,
since |Vi| ! h for all xi. Therefore, the expected number of constraints
satisfied by this assignment is at least |C̃|/hk. This quantity must be at

most pλ(−!+10
√
!)M=p−k+10k/

√
!M due to the soundness of p-ary k-CSP. It

follows that the total number of heavy almost-canonical paths is at most

|C̃|Y !p10k/
√
!(h/p)kMY .

We now show that if there is an over-ambiguous variable, then we must
get congestion at least h+1, with high probability over the construction of
our instance.

Consider a variable xi and let α1, . . . ,αb be b = h+ 1 distinct possi-
ble values of xi. Denote by Xi = Y JBi the number of matching edges in
each of the matchings M i

z (recall that Bi!T is the number of occurrences
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of variable xi in the constraints Cj , j ∈ [M ]). For convenience, we shall
omit the subscript i in the rest of this section and use A and X to refer
to Ai and Xi respectively. For s ∈ [b], let Is be a set of A triples (j,γ,y)
such that Cj uses xi and γ assigns the value αs to xi. Thus by construc-
tion, the set of matching edges used by (the canonical paths correspond-
ing to) triples in Is is a uniformly random subset of size A. We expect
about (A/X)bX of the matching edges to be used by a triple from each of
the Is’s.

Definition 17. We say that I1, . . . , Ib are highly congesting at level z∈ [Z] if
at least ( A

2X )bX matching edges inM i
z are used by a triple from each I1, . . . , Ib

(in other words, they have congestion b).
We say bad event B(α1, . . . ,αb, I1, . . . , Ib,z) occurs if the sets I1, . . . , Ib are

not highly congesting at level z.

Lemma 18. Pr[B(α1, . . . ,αb, I1, . . . , Ib,z)]!2e
− Ab

16(2X)b−1 .

Proof. The event that the sets I1, . . . , Ib are not highly congesting at level z
has the same probability as the following event: For each color 1, . . . , b, we
are throwing A balls into X distinct bins and we want to compute the
probability that fewer than ( A

2X )bX bins have a ball of every color. Let

βs=( A
2X )s.

Suppose that we have thrown balls for s of these colors and assume
inductively that the probability that there are at least βsX bins with q balls

each is at least 1−
∑s

t=1 e
−βtX

8 . Suppose that βsX bins indeed have s balls
each. Let Yj be the number of (s+1)-loaded bins after we have thrown the
jth ball of color (s+1) and let Y ′

j =Yj+1−Yj. As long as Yj!2βs+1X, Y ′
j is 1

with probability at least (βs−2βs+1). Thus the probability that YA<βs+1X
is bounded above by the probability that the sum of A independent 0-1
random variable each with mean (βs−2βs+1) is less than βs+1X. Assuming

A< X
10 and using Chernoff bounds, the latter probability is at most e−

βs+1X

8 .
Hence the induction holds. The claim follows.

Let B(α1, . . . ,αb, I1, . . . , Ib) be the event that the above bad event happens
at no less than Z

2 of the Z levels. Then

Pr[B(α1, . . . ,αb, I1, . . . , Ib)] !
(
Z
Z
2

)
e
− ZAb

32(2X)b−1

! 2Ze
− ZAb

32(2X)b−1 .
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Let B(α1, . . . ,αb) be the event that there exist sets I1, . . . , Ib such that this
bad event occurs. Then

Pr[B(α1, . . . ,αb)] !
(
X

A

)b

2Ze
− ZAb

32(2X)b−1

!
(
eX

A

)bA

2Ze
− ZAb

32(2X)b−1

! ebA(logX+1−logA)+Z ln 2−ZX
16

`
A
2X

´b
.

Plugging in the values of A in terms of X, the negative of the exponent
is at least X

(
Z

16ρb
− 2b(logρ+1)

ρ − Z ln2
X

)
. Since Z"128bρb"64bρb−1(logρ+1),

the first term is at least twice the second. The third term is easily seen to
be much smaller. The negative of the exponent is thus ω(X).

Thus the probability that for a given variable xi there is a set of val-
ues α1, . . . ,αb for which B(α1, . . . ,αb) occurs is at most pb as much, which is
still o(exp(−X)). Taking a union bound over the n variables, the probability
of any bad event is o(1).

Suppose that no bad events occur, but that a variable xi is over-
ambiguous with b = h+ 1 heavy values α1, . . . ,αb. Let Ps be a set of A
almost-canonical paths that highlight value αs for xi. Let Is be the set of
triples corresponding to the almost canonical paths in Ps; by definition, each
path in Ps deviates from the corresponding canonical path in Is in at most
ρ levels. On the other hand, the event B(α1, . . . ,αb, I1, . . . , Ib) did not occur
and hence at least Z

2 " 16bρb levels are highly congested by the canoni-

cal paths in I1, . . . , Ib. At each such level, at least
(

A
2X

)b
X of the paths in⋃b

s=1Ps must deviate from the corresponding canonical path, or else some
edge at this level has congestion b. The total number of deviations is thus(

A
2X

)b
X(16bρb) which is at least 8bAρ. Since we are looking at only bA paths,

one of them must deviate at 8ρ levels, which is a contradiction since almost-
canonical paths deviate from the associated canonical path at most ρ times.
We have thus proved:

Lemma 19. With high probability (over the choice of random matchings
in the construction), if a routing of some subset of Sj,y–Tj,y pairs has an
over-ambiguous variable, then it creates congestion at least h+1 on some
edge.

In summary, combining Lemmas 14, 16 and 19, we conclude the following:

Lemma 20. With high probability over the construction of the graph H
from the p-ary k-CSP instance, the following holds when the k-CSP instance
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is at most p−k+10k/
√
!-satisfiable: The number of Sj,y–Tj,y pairs which can

be routed using almost-canonical paths using congestion c is at most

p10k/
√
!(h/p)kMY + p

N∑

i=1

Ai .

4.4. Bounding non-canonical paths

At a high level we bound the number of non-canonical paths by classifying
them into long and short ones. The long ones are few because of volume
arguments. The short ones are few for they create short cycles in a cer-
tain random graph that has few short cycles in expectation. The details of
the overall analysis are technical, mainly due to “guaranteed” cycles in H
comprising of two different canonical paths between an Sj,y–Tj,y pair. Specif-
ically, following [4], we argue about cycles in an auxiliary graph, called the
incidence graph.

We define an auxiliary (undirected) graphG based on the instance, sayH,
of edge-disjoint paths constructed in Section 3.3. The nodes in G consist of:

• a demand node dj,y for each Sj,y–Tj,y pair;
• a path node p for each canonical path P [j,γ,y];

• a special edge node f for each edge in the matchings M (i)
z for i∈ [N ] and

z∈ [Z].

The edges in G are defined as follows:

• An edge (dj,y,p) for each demand node dj,y and path node p correspond-
ing to P [j,γ,y] for all satisfying assignments γ to Cj. Note that each
path node is connected to a unique demand node, namely the one whose
source and destination it connects.

• An edge between a path node p and special edge node f if f belongs to p.

(Thus G is obtained from H by shrinking each special edge, identifying
each source sink pair and identifying all connector nodes corresponding to
each canonical path.)

A route in the original graph H maps into a route in G in a natural
way. Each route of length 2 that connects two special edges f1 and f2 (via
a connector vertex) along canonical path p maps to a two-edge route f1→
p → f2 in G. The two-edge route between a source node Sj,y to a special
edge f (through some connector vertex) along canonical path p corresponds
to a two-edge route dj,y → p→ f in G. Likewise, the route between special
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edge f and node Tj,y via a canonical path p corresponds to a two-edge route
f→p→dj,y in G.

The following easy lemma says that long routes in G correspond to long
routes in the original graph H.

Lemma 21. An Sj,y–Tj,y route in H that passes through x special edges
corresponds to a route of length at most 2x+2 in G.

We are now in a position to tackle non-canonical paths used for routing
in H. Consider a demand d= dj,y and let π be the (simple) path that d is
routed along in H. This path maps naturally to a (non-simple) path in G
and thus induces a subgraph of G. There are two scenarios to consider,
depending on whether or not this subgraph is cyclic – this is the precise
dichotomy of non-canonical paths used to bound them.

4.4.1. π forms a cycle in G. This case is further divided into two sub-
cases, depending on whether the cycle is of length at most g or more than g.

Lemma 22. With probability at least 3/4, in the graph G the number of
demands which are within distance g of a cycle of length less than g is at
most 4Mgg2g+1.

Proof. For the sake of simplicity, let us shrink all d–p edges in G thus
getting a bipartite (multi)graph G′. Since the demands d in G are not risky,
every cycle in G uses path/demand nodes from at least two demands. Thus
each cycle in G is still a cycle (of no larger length) in G′. Each d node is now
connected to at most J of the Xi f -nodes for each variable i participating in
its constraint, at each level. Let us estimate the expected number of cycles
in G′ containing g′<g nodes. The number of prospective cycles is at most
(2ZY J

∑
Bi)g

′
=(2ZY JkM)g

′
, since G′ has no more than 2Z

∑
Xi nodes.

Conditioned on at most g′!Y/2 other edges, each edge of this cycle occurs
with probability no more than maxiJ/(Xi − g′) ! 2J/Xi ! 2/Y . Thus the
expected number of cycles of length g′ is at most (2ZY JkM)g

′
(2/Y )g

′ !
(4kZJM)g

′
.

Therefore, the expected number of cycles of length less than g is at
most (4kZJM)g, and so with probability at least 3/4 the number of cy-
cles of length less than g is at most 4(4kZJM)g . The maximum degree of
the graph is at most max{kJZ,p} = kJZ, so at most g(kJZ)g nodes are
within distance g of any particular cycle of length less than g. This leads to
a total of at most 4g(4k2J2Z2M)g demands which are within distance g of
some cycle of length less than g. Now 2kJ!pkJ!ρ and g=Zρ, so we have
4g(4k2J2Z2M)g!4g(g2M)g, which gives the desired upper bound.
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In view of the above lemma, we conclude the following. Except for pos-
sibly 4Mgg2g+1 demands, all demands routed that fall under this case are
connected by paths of length at least g − kZ ! g/2. Since the total ca-
pacity of all special edges in a congestion c routing is at most c times
the number of special edges (which is O(MY JkZ)), there can be at most
O(MY JkZc/g) =O(MY Jkc/ρ) routed demands that fall in this category.
We remark that demands of this form force us to take g to be about Zρ.

4.4.2. π does not form a cycle in G. In this case, we have the following
crucial lemma.

Lemma 23. If a demand is routed along a path π (in H) which does not
form a cycle in G, then either π is almost-canonical or π has length at
least Zρ.

Proof. The proof of this lemma relies on the following claim:

Claim 24. Suppose that the path π in H maps to an acyclic subgraph in G.
Let π̂ be the canonical path to which the first edge of π belongs. Then:

• π passes through each connector node in π̂ (in H).
• Each component of π\ π̂ (in H) has length at least Z.

Assuming the claim, we now prove the lemma. Let χ be the number of
components in π\ π̂. Since π is simple and contains all the connector nodes
of π̂ it deviates from π on at most χ special edges. If χ"ρ, the path π must
be almost-canonical. On the other hand, since each component of π \ π̂ has
length at least Z, if χ!ρ, the total length of π is at least Zρ.

Proof of Claim. We now prove Claim 24. Consider the image of π
in G: since it induces an acyclic subgraph and s and t are both mapped
to the same node d, it is a closed walk along a tree. Thus:

Fact 25. If the image of π leaves a node u in G along the edge (u,v),
it returns to u along the edge (v,u).

Let the nodes of π̂ in H be s,w1,u1,v1, . . . ,wi,ui,vi,wi+1, . . . ,wL, t,
where the wi’s are connector nodes and fi=(ui,vi) are special edges
on it. Suppose that π does not traverse (vi,wi+1) for some i and let
wi+1 be the first such node. Thus π enters wi using (vi−1,wi) and
hence must leave using (wi,ui). In G this corresponds to traversing
the edge (π̂,fi). Thus it must traverse this edge in the opposite di-
rection and since π is a simple path in H, the reverse traversal of the
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edge (fi, π̂) must correspond to the edge (vi,wi+1) in H, contradicting
the assumption. This proves the first part of the claim.
Consider now a component of π \ π̂. Its image must leave π̂
along the edge (fi∗ ,p′) for some p′ != π̂. Let p′ be the path
s′,w′

1,u
′
1,v

′
1, . . . ,w

′
i,u

′
i,v

′
i,w

′
i+1, . . . ,w

′
L, t

′ and let f ′
i =(ui,vi). Since the

graph is leveled and edge has the same index in any path it be-
longs to. Hence, fi∗ = f ′

i∗. The edge (f ′
i∗ ,p

′) can correspond to either
edge (u′i∗ ,w

′
i∗) or to the edge (v′i∗ ,w

′
i∗+1) in H. The two cases are

analogous and we assume the former. Since π is a simple path, the
edge (u′i∗ ,w

′
i∗) must be immediately followed by the edge (w′

i∗ ,v
′
i∗−1)

which maps to the edge (p′,f ′
i∗−1) in G. Thus we must revisit p′ using

the edge (f ′
i∗−1,p

′). Since π is a simple path in H, this must corre-
spond to using the edge (u′i∗−1,w

′
i∗−1) and must therefore be followed

by the edge (w′
i∗−1,v

′
i∗−2) which maps to the edge (p′,f ′

i∗−2) in H. In-
ducting in this fashion, π must eventually use the edge (p′,d′). Using
Fact 25 again, π must use the edge (d′,p′). By simplicity of π in H,
these edges must correspond to edges (w′

1,s
′) and (t′,w′

L) in H respec-
tively. Hence the component of π\π̂ must go from s′ to t′. Since these
nodes are distance Z apart in H, this implies that the component of
π\ π̂ must have length at least Z as desired.
Since the edge (w′

i,s
′) has weight Z (i.e., the actual edge is a path of

length Z), this means that this component of π \ π̂ must have length
at least Z, as desired.

It follows that there can be at most O(MY JkZc/Zρ) = O(MY kJc/ρ)
non-canonical paths that are routed within congestion c and which fall in
this category.

In summary, we record the following bound on the total number of non-
canonical paths.

Lemma 26. With probability at least 3/4, the number of demands that
can be routed on non-canonical paths using congestion c is at most

O(MY kJc/ρ) + 4Mgg2g+1.

4.5. Final Accounting with Chosen Parameters

By combining the bounds on almost-canonical and non-canonical paths from
Lemmas 20 and 26, we can bound from above the total number of demands
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routed with congestion c by

(18) p10k/
√
!(h/p)kMY + p

N∑

i=1

Ai +O(MY kJc/ρ) + 4Mgg2g+1.

We now bound each of the terms in (18) above one by one. We shall show
that each of the terms is O(MY/r).

1. The first term p10k/
√
!(h/p)kMY . Since p>h2, this term is at most

p10k/
√
!−k/2MY ! p−k/3MY = MY/r,

if ""3600.
2. The second term p

∑
iAi. Recall that

∑
iBi=kM and Ai=2Xi/(pkJr)=

2Y JBi/(pkJr). So p
∑

iAi=2MY/r.
3. The third term O(MY kJc/ρ). Since ρ= pkJr and p" c, this term is at

most O(MY/r).
4. The fourth term 4Mgg2g+1. By definition, this equals Y . Now r !

(logn)!!M , so this term is at most MY/r as well.

Recalling the lower bound on r from Lemma 10, we get the claimed gap

in terms of the number of vertices of the graph. Also, since V ! 2log
O(!)n

and the result holds for congestion c(n)! log logn
10log log logn , in terms of V , we get

a result for congestion up to α log logV
log log logV where α is a constant that depends

on " (and hence on ε).
This proves the gap that we claim in Theorem 1. Note however that our

reduction has one-sided error. For the soundness component of the proof
we only show that the value of the optimal solution is small with high
probability. Hence we have only proved the gap under the assumption that
NP "⊆coRPTIME(npoly(logn)). We now show that this can be converted into
an assumption that NP "⊆ZPTIME(npoly(logn)) which implies the full state-
ment of Theorem 1. This last proof is similar to a standard argument that
NP⊆coRP implies NP⊆ZPP.

Lemma 27. If NP⊆coRPTIME(npoly(logn)) then

NP ⊆ ZPTIME(npoly(logn)).

Proof. If NP ⊆ coRPTIME(nlogan) then RP ⊆ NP ⊆ coRPTIME(nlogan).
Taking complements we have coRP⊆ coNP⊆ RPTIME(nlogan). Now con-
sider a language L ∈ coRPTIME(f(n)) for some function f(n) " n. For
any string α let g(α) be the string that is obtained by padding α with
f(|α|) − |α| zeros. Let g(L) = {g(α) : α ∈ L}. Clearly we can obtain a
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coRP algorithm for g(L) by simply running the coRPTIME(f(n)) algorithm
for L. By the above inclusions this implies that g(L) ∈ RPTIME(nlogan).
Since we can trivially create g(α) from α in linear time, this in turn
implies that L ∈ RPTIME(f(n)log

a f(n)). We have just shown that un-
der our initial assumptions coRPTIME(f(n)) ⊆ RPTIME(f(n)log

a f(n)).
If we take f(n) = nlogan then this shows that coRPTIME(nlogan) ⊆
RPTIME(nlogan(loga+1n)a)⊆RPTIME(nloga(a+2)n). Hence

NP ⊆ coRPTIME(nloga n)∩RPTIME
(
nloga(a+2) n

)
⊆ ZPTIME

(
nloga(a+2) n

)
.

The claim of Theorem 1 now follows.

5. Non-Perfect Completeness, Node-Disjoint Paths and
All-or-Nothing Flow

In this section we extend our results to the cases of non-perfect completeness,
Node-Disjoint Paths and All-or-Nothing flow.

5.1. Non-Perfect Completeness

First, we show how to prove Theorem 2, i.e. we show that in the case
that perfect completeness is not required, we can improve the inapprox-

imability factor for EDPwC from (logV )
1−ε
c+2 to (logV )

1−ε
c+1 . In particular we

wish to adapt the reduction such that for some parameter f , in the case of
yes-instances there are edge-disjoint paths connecting an f -fraction of the
terminal pairs and in the case of no-instances we can connect at most an

f/(logV )
1−ε
c+1 fraction of the terminal pairs, even if we allow congestion c.

Proof of Theorem 2. The proof is extremely similar to the proof of The-
orem 1 for the perfect completeness case. In the following we list the main
differences.

• We “split up” the canonical paths so that each canonical path P [j,γ,y]
has a separate source node Sj,γ,y and destination node Tj,γ,y. We now
have at most MY J demands, each of which is now associated with a
single canonical path.

• We define Z = 128bρb−1 instead of Z = 128bρb. This change in the def-
inition of Z allows us to obtain the improved hardness factor. As we
explained in Section 3.4, Z needs to be more than ρb−1 in order for
the balls-in-bins argument to work. However, we had to make it larger
than that (about ρb) since we allowed almost-canonical paths to deviate
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from canonical paths. Without almost-canonical paths, Z can be kept at
roughly ρb−1.

• For yes-instances we can route MY demands on edge-disjoint canonical
paths. Note that the total number of demands in the system is more
than MY and so we no longer have perfect completeness.

• We no longer concern ourselves with the concept of an almost-canonical
path that can deviate from a canonical path a limited number of times.
We simply classify demands according to whether they use their entire
canonical path or some other path.

• The analysis of canonical paths is almost identical to the analysis in
Section 4.3. The only difference is that we no longer have to account
for deviations from the canonical path which allows us to use the new
definition of Z.

• The analysis of non-canonical paths is simpler under the new reduction.
Note that in the proof of Theorem 1, each demand had multiple canonical
paths. These paths created unavoidable cycles since they shared the same
source and destination node. A large part of the analysis of Section 4.4.2
was concerned with showing that these cycles cannot be used to create
short non-canonical paths. In the new reduction each demand has a single
canonical path and so those cycles do not appear. In this case the analysis
of Section 4.4.2 gives us the following simpler analog of Lemma 23.

Lemma 28. If a demand is routed along a path π (in H) which does
not form a cycle in G, then the path π must be a canonical path.

This implies that if π is a non-canonical path then we only need to
consider the case that π forms a cycle in G. This can be handled in the
same manner as in Section 4.4.1. The remainder of the proof is exactly
the same as for Theorem 1. In particular we obtain that for no-instances

we can connect at most MY/(logV )
1−ε
c+1 terminal pairs.

5.2. Node-Disjoint Paths with Congestion

In the undirected Node-Disjoint Paths with Congestion (NDPwC) problem
we wish to route as many demands as possible subject to the constraint that
at most c paths pass through any node. The reductions that we used to prove
Theorems 1 and 2 for EDPwC apply directly to NDPwC. For yes-instances
it is easy to see that the canonical paths that correspond to the satisfying
assignment of the CSP instance are node-disjoint as well as edge-disjoint.
The results for no-instances follow directly from the fact that any solution
with edge-congestion c automatically has node-congestion at least c.
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5.3. All-or-Nothing Flow with Congestion

All-or-Nothing Multicommodity Flow with Congestion is a relaxation of ED-
PwC in which each demand is allowed to be routed on fractional paths
subject to the constraint that the total demand routed through an edge is
at most c. The objective is to maximize the number of demands for which
the entire demand is routed. There is no natural analog of our perfect com-
pleteness result (Theorem 1) for ANFwC since the multicommodity flow
relaxation gives a polynomial-time algorithm to decide whether or not it is
possible to route all demands fractionally with congestion c.

We can however adapt our non-perfect completeness result (Theorem 2).
Note that in our construction without perfect completeness each demand
has exactly one canonical path. For the case of yes-instances we can route
MY demands integrally on edge-disjoint paths. For the case of no-instances
we classify any routed demand according to two types. We say that a routed
demand is a Type 1 demand if strictly more than half the demand is routed
along its canonical path, otherwise it is a Type 2 demand. Since the capac-
ity of each edge is c, the total number of Type 1 demands whose canonical
paths can be routed through any edge is at most 2c−1. Our canonical path
analysis therefore implies that the total number of Type 1 demands is at

most MY/(logV )
1−ε
2c . Moreover, an almost identical argument to the anal-

ysis of Section 4.4 implies that the total amount of demand routed along

non-canonical paths is at most MY/(logV )
1−ε
c+1 , even if this demand is frac-

tionally routed. This in turn allows us to say that the total number of Type 2

demands is at most 2MY/(logV )
1−ε
c+1 . The combination of these two results

implies that for any ε, ANFwC is hard to approximate to within (logV )
1−ε
2c .

6. Concluding remarks

We have shown an Ω(log1/2−εV ) inapproximability result for EDP, ANF,
and node-disjoint paths (NDP) on undirected graphs, for any constant ε>0.
When congestion c, 1 ! c ! O

( log logV
log log logV

)
, is allowed in the routing, we

obtained a hardness factor of log
1−ε
c+1 V (and a slightly weaker log

1−ε
c+2 V factor

with perfect completeness, i.e., when one is promised that the instance has
an edge-disjoint routing of all the source–destination pairs).

There is still a large gap between the hardness result for EDP and NDP
and the best known ratio of V Ω(1) achieved by polynomial time approxima-
tion algorithms. Closing this gap remains a central open question. For ANF,
there is less of a gap, since a factor O(log2V ) approximation algorithm is



518 ANDREWS, CHUZHOY, GURUSWAMI, KHANNA, TALWAR, ZHANG

known [10,12]. Another interesting point is that for the edge-disjoint cy-
cles (EDC) problem on undirected graphs, where the goal is to pack a max-
imum number of cycles that are edge-disjoint, there is an O(

√
logV ) approxi-

mation algorithm [33]. It has been shown in [22] that our techniques for EDP
hardness, specifically the version in [16], also yield a tight inapproximabil-
ity factor of log1/2−εV for EDC. This is a rather surprising approximation
threshold for a natural optimization problem and also highlights some limi-
tations of our techniques. In order to improve our hardness factor for EDP,
we need to develop techniques that will not work for EDC, and in order to
get a hardness factor that is greater than poly(logV ), we need techniques
that are less general and won’t apply for ANF. These intricacies make the
challenge of pinning down the approximability of EDP on undirected graphs
all the more important and exciting.
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[30] J. M. Kleinberg and É. Tardos: Disjoint paths in densely embedded graphs, in:
Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
page 52, 1995.



520 M. ANDREWS, ET AL.: EDGE-DISJOINT PATHS IN UNDIRECTED GRAPHS

[31] J. M. Kleinberg: Approximation algorithms for disjoint paths problems, PhD
thesis, MIT, Cambridge, MA, 1996.

[32] S. G. Kolliopoulos and C. Stein: Approximating disjoint-path problems using
greedy algorithms and packing integer programs, in: Proceedings of the Conference
on Integer Programming and Combinatorial Approximation, pages 153–168, 1998.

[33] M. Krivelevich, Z. Nutov and R. Yuster: Approximation algorithms for cycle
packing problems, in: Proceedings of the 16th ACM-SIAM Symposium on Discrete
Algorithms, pages 556–561, 2005.

[34] P. Raghavan and C. D. Thompson: Randomized rounding: A technique for prov-
ably good algorithms and algorithmic proofs; Combinatorica 7(4) (1987), 365–374.

[35] R. Raz: A parallel repetition theorem, SIAM Journal on Computing 27(3) (1998),
763–803.

[36] N. Robertson and P. D. Seymour: An outline of a disjoint paths algorithm, in:
Paths, Flows and VLSI-Layout (B. Korte, L. Lovász, H. J. Prömel and A. Schrijver,
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