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Abstract

In the budgeted learning problem, we are allowed to
experiment on a set of alternatives (given a fixed
experimentation budget) with the goal of picking a
single alternative with the largest possible expected
payoff. Constant factor approximation algorithms for
this problem were developed by Guha and Munagala
by rounding a linear program that couples the various
alternatives together. In this paper we present an index
for this problem, which we call the ratio index, which
also guarantees a constant factor approximation. Index-
based policies have the advantage that a single number
(i.e. the index) can be computed for each alternative
irrespective of all other alternatives, and the alternative
with the highest index is experimented upon. This is
analogous to the famous Gittins index for the discounted
multi-armed bandit problem.

The ratio index has several interesting structural
properties. First, we show that it can be computed in
strongly polynomial time. Second, we show that with
the appropriate discount factor, the Gittins index and
our ratio index are constant factor approximations of
each other, and hence the Gittins index also gives a
constant factor approximation to the budgeted learning
problem. Finally, we show that the ratio index can be
used to create an index-based policy that achieves an
O(1)-approximation for the finite horizon version of the
multi-armed bandit problem. Moreover, the policy does
not require any knowledge of the horizon (whereas we
compare its performance against an optimal strategy
that is aware of the horizon). This yields the following
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surprising result: there is an index-based policy that
achieves an O(1)-approximation for the multi-armed
bandit problem, oblivious to the underlying discount
factor.

1 Introduction

The classical multi-armed bandit problem provides an
elegant model to study the tradeoff between collect-
ing rewards in the present based on the current state
of knowledge (exploitation) versus deferring rewards to
the future in favor of gaining more knowledge (explo-
ration1) [2]. Specifically, in this model a user has a
choice of bandit-arms to play, and at each time step it
must decide which arm to play. The expected reward
from playing a bandit-arm depends on the state of the
bandit-arm where the state represents a “prior” belief
on the bandit-arm. Each time a bandit-arm is played,
this prior gets updated according to some transition ma-
trix defined on the state space. For instance, a typical
assumption on the bandit-arms is that they have (α, β)-
priors: the success probability of an (α, β)-bandit-arm is
α/(α+β); in case of a success a reward of 1 is obtained
and α gets incremented, whereas in case of a failure no
reward is obtained and β gets incremented. The user
wishes to maximize the total expected discounted re-
ward over time. This simple setting effectively models
many applications. A canonical example is exploring
the effectiveness of different treatments in clinical trials
while maximizing the benefit received by patients.

The discount factor in a multi-armed bandit prob-
lem may be viewed as modulating the horizon over
which the strategy explores to identify the bandit-arm
with maximum expected reward, before switching to ex-
ploitation. This facet of the multi-armed bandit prob-
lem is explicitly captured by the budgeted learning prob-
lem, recently studied by Guha and Munagala [19]. The
input to the budgeted learning problem is the same as
for the multi-armed bandit problem, except the discount
factor is replaced by a horizon h. The goal is to identify
the bandit-arm with maximum expected reward using

1We will use the terms experimentation and exploration inter-
changeably in this paper, depending on the context.



at most h steps of exploration. The work of [19] gives a
constant factor approximation for the budgeted learning
problem via a linear programming based approach that
determines the allocation of exploration and exploita-
tion budgets across the various arms. The budgeted
learning problem is the main object of study in this pa-
per.

The multi-armed bandit problem admits an elegant
solution: compute a score for each bandit-arm using
only the current state of the bandit-arm and the dis-
count factor, independent of all other bandit-arms in
the system, and then play the bandit-arm with the high-
est score. This score is known as the Gittins index, and
many proofs are known to show this is an optimal strat-
egy (e.g., see [9]). The optimality of this “index-based”
strategy implies that this problem exhibits a “separabil-
ity” property whereby the optimal decision at each step
is obtained by computations performed separately for
each bandit-arm. This structural insight translates into
efficient decision making algorithms. In fact, for com-
monly used prior update rules and discount rates, ex-
tensive collections of pre-computed Gittins indices exist,
enabling in principle, a simple lookup-based approach
for optimal decision-making. There are multiple defini-
tions of what it means for a problem to have an “index”.
We will use the term index in its strongest form, i.e.,
where the index of an arm depends only on the state of
that arm. This is also sometimes called a decomposable
index (eg. [3, 4]).

The inherent appeal and efficiency of index-based
policies is the unifying theme underlying our work. We
show that many interesting and non-trivial variations
of the multi-armed bandit problem, including the bud-
geted learning problem and the finite horizon problem,
can all be well-approximated by index-based policies.
Moreover, our approach gives decision strategies that
are oblivious to parameters such as the underlying hori-
zon or the discount factor while being constant-factor
competitive to optimal strategies that are fully aware of
these parameters.

1.1 Our results We will study this problem when
the state space of each arm satisfies the “martingale
property”, i.e., if we play an arm multiple times, the
sequence of expected rewards is a martingale. This is a
natural assumption for multi-armed bandit and related
problems, e.g. the commonly used (α, β) priors satisfy
this property.

An Index for Budgeted Learning Problems:
Our first result is that the budgeted learning problem
admits an approximate index, which we call the ratio
index. Informally speaking, given a single bandit-arm

and an exploration budget of h steps, the ratio index for
that arm is the maximum expected exploitation reward
per unit of the exploration and exploitation budget
utilized. The ratio index suggests the following natural
algorithm: at each step, play the arm with the highest
ratio index. We show that this simple greedy algorithm
gives a constant factor approximation to the budgeted
learning problem. An O(1)-approximation algorithm
for this problem is already known [19]. However, the
algorithm of [19] is based on solving a coupled LP over
all the arms, whereas the ratio index can be computed
for each arm in isolation, much like the Gittins index.
The ratio index has many other interesting properties.
For example:

(1) We show that the Gittins index with discount
factor (1− 1/h) and the ratio index over horizon h are
within a constant factor of each other. This gives the
following surprising result:

Theorem 1.1. Given an exploration budget h, playing
at each step the arm with the highest Gittins index,
with discount factor 1 − 1/h, yields a constant factor
approximation to the budgeted learning problem.

The proof relies on comparing the “decision-trees” of
the ratio index and Gittins index strategies. Even in
retrospect, it is not clear to us how such a result could
be derived using an LP-based formulation such as the
one used by Guha and Munagala [19]. Interestingly,
the policy described in theorem 1.1 is known to often
work well in practice [24]. Nonetheless, before the
work of Guha and Munagala [19], we do not know of
any provable guarantees for polynomial time algorithms
in this setting. And until now, we do not know
of any formal guarantees that relate the exponential
discounting approach (which yields the Gittins index)
and the budgeted learning approach.

(2) The ratio index can be computed in time which
is strongly polynomial in the size of the state space
(independent of h) of each arm if the state space is
acyclic, and strongly polynomial in the size of the state
space and h if the state space is general. Our proof of
this fact involves recursively analyzing the basic feasible
solutions of an underlying LP for computing optimum
single arm strategies and using the structure of the
basic feasible solutions to prove that these strategies
have a simple form.

Finite Horizon and Discount-Oblivious Multi-
Armed Bandits: We next study an important and
natural variation of the budgeted learning problem,
called the finite horizon multi-armed bandit problem.



We are given a finite horizon h, and the goal is to max-
imize the expected reward collected during the horizon.
Thus, in contrast to the budgeted learning problem, the
horizon h is being used for both exploration and ex-
ploitation, and no payoffs are obtained after time h.
We show the following result using the ratio index:

Theorem 1.2. There is an index-based policy that
gives a constant factor approximation to the finite hori-
zon multi-armed bandit problem.

Finally, we study the role of the discount factor in
the design of an optimal strategy for the exploration-
exploitation tradeoff. Small variations in discount fac-
tors can alter the choice of bandit-arm played at any
step, highlighting the sensitivity of the Gittins index to
the discount rate. We study the “Discount-oblivious”
multi-armed bandit problem where the underlying dis-
count factor is not known, and in fact, may even vary
from one time step to the next. A finite horizon problem
can be viewed as a special case of this general setting
where the discount factor is 1 for the first h steps and
is 0 for all subsequent steps. There is a useful rela-
tionship between the finite horizon and discount obliv-
ious versions of the multi-armed problem: a strategy is
κ-approximate for the discount-oblivious multi-armed
bandit problem iff it is κ-approximate (simultaneously)
for all finite horizons. Using this connection, and build-
ing on Theorem 1.2, we show the following result:

Theorem 1.3. There is an index-based policy that
gives a constant factor approximation for the multi-
armed bandit problem with respect to all possible dis-
count factors simultaneously.

Our proof of both of these results is based on the fol-
lowing easy consequence of the ratio index approach to
the budgeted learning problem. For any constant β, the
expected profit of the optimal h/β-horizon strategy is
an Ω(1)-fraction of the expected profit of an optimal
h-horizon strategy. Using this result, we design an al-
gorithm that alternates between budgeted exploration
and exploitation, using geometrically increasing hori-
zons; each increasing horizon competing against a lower
discount rate on future rewards. It is worth noting that
this result can also be shown using the LP-based proof
of Guha and Munagala. However, the following corol-
lary is a consequence of our index-based approach and
the relation between ratio and Gittins indices.

Corollary 1.1. The strategy that alternates between
exploring the arm with the highest Gittins index, and
exploiting the arm with the highest reward, in phases
of geometrically increasing length (and discount factor
1 − 1/t during a phase of length t) provides a constant

factor approximation to the multi-armed bandit problem
simultaneously for all finite horizons and for all dis-
count factors.

1.2 Related Work and Organization There are
many sources for the canonical work on Gittins in-
dices, particularly with reference to (α, β) bandits and
Bernoulli bandit processes [10, 11, 12, 9]. Glaze-
brook and others have studied approximation algo-
rithms for other extensions to multi-armed bandit prob-
lems [13, 14]. Their approach builds upon the concept
of achievable regions and general conservation laws and
a related linear programming approach built by Tsou-
cas, Bertsimas, Nino-Mora, and others [1, 3, 26]. Re-
laxed linear programming based approaches to exten-
sions of the multi-armed bandit problem have also been
developed, e.g. for restless bandits [28, 4]. Our work
on the ratio index builds on the insights obtained from
the LP relaxation based approach of Guha and Muna-
gala [19] as well as related work in model-driven opti-
mization [15, 18] and stochastic packing [7, 8, 16, 20].
Additionally, related LP formulations have been devel-
oped for multi-stage stochastic optimization [6, 25].

In the theoretical computer science community,
multi-armed bandits have primarily been studied in an
adversarial setting, with the goal being to minimize
the regret (see [5] for a nice overview). A typical
guarantee in these settings is that the total regret after
T steps grows as Õ(

√
TN) where N is the number of

alternatives, assuming the partial information model
(i.e. only the reward for the alternative that is actually
played is revealed), which corresponds well to our
setting. These results assume no prior beliefs, unlike
our decision theoretic framework. However, the regret
based bounds in the adversarial setting are meaningless
unless T > N . The decision theoretic framework which
has a rich history (starting perhaps with Wald’s work
in 1947 [27]) is more suited to the situation where the
number of exploration steps is drastically limited, as
is often the case. A typical setting, for example, is
one where an advertiser that can advertise on 100,000
possible phrases and is willing to pay for 100 clicks to
decide which keyword attracts visitors that convert into
paid customers. So a traditional regret based bound
may not be very meaningful in this setting.

In section 2 we define the budgeted learning prob-
lem and the ratio index, and prove that the ratio index is
a constant factor approximation to the budgeted learn-
ing problem. Section 3 establishes that the Gittins and
ratio indices are constant factor approximations of each
other. We also show here that playing the arm with
the largest Gittins index (with a suitable discount fac-
tor), gives a constant factor approximation to the bud-



geted learning problem. Section 4 presents index-based
policies for finite horizon and discount oblivious ver-
sions of the multi-armed bandit problem. In section 5,
we present a strongly polynomial algorithm to compute
the ratio index as well as several useful insights into its
structural properties.

2 The Budgeted Learning Problem and the
Ratio Index

2.1 The Budgeted Learning Problem. We are
given n arms. Arm i has state space Ti, with initial state
ρi. Experimenting on an arm i in state u ∈ Ti results
in the arm entering state v ∈ Ti with known probability
Puv. The payoff of state u is given as ζ(u). Given an
experimentation budget h, we are interested in finding
the optimal policy, π∗, so that Eπ∗ [maxi∈{1,...,n} ζ(vi)]
is maximum among all policies, where vi is the state of
arm i after the policy has been executed (the number of
experiments cannot exceed h).

We will use T to denote ∪iTi. For convenience, we
will assume that the Ti are disjoint and that Puv = 0
if u and v are in the state spaces of different bandit-
arms; this can be easily enforced by duplicating any
shared states. The initial states represent a prior
belief on the payoff from the bandit-arms. We will
assume that the expected payoff is a martingale, i.e.,
ζ(u) =

∑
v∈T Puvζ(v); the martingale assumption is

crucial to our results. We will also assume without loss
of generality that the state space of any arm is acyclic
and truncated at depth h.

The martingale property has some useful and easy
consequences which we will use repeatedly:

1. For an arbitrary policy let p(t) denote its expected
payoff if it is terminated after t experiment steps.
Then, p(t) is non-decreasing in t. In other words,
extra experiments can never hurt.

2. Given a single arm, no policy can have a higher
expected payoff than the one which does no ex-
ploration and simply chooses the initial state as
the winner; in other words, extra experiments can
never help given just one arm.

The proof of the following theorem is deferred to the full
version of this paper [17]. It is conceivable (though not
obvious to us) that this theorem can also be obtained
via the “indexability characterization” of [3]. In any
case, the proof is quite elementary and provides useful
intuition.

Theorem 2.1. There is no exact index for the budgeted
learning problem.

2.2 The ratio index We will now define the ratio
index, which is an approximate index for this problem.
At any given time, the current state of the system
is denoted by S = {u1, u2, . . . , un, δ}, which captures
the current states of all the arms, and the budget left
(i.e. the number of experimentation steps that are still
remaining), δ. The initial state of the system has all
the arms in their initial states, and δ = h. Since we use
the term state for both the system and an arm, we will
disambiguate where necessary by referring to these as
“system-state” and “arm-state” respectively. A policy
π is a function which takes as input a system-state S
and either returns an arm i for experimentation (i.e.
explores the arm-state ui), or chooses an arm i as a
winner and terminates (i.e. exploits the arm-state ui),
or simply terminates (abandons). If δ = 0 then the
only options are to abandon or exploit. The martingale
property (see the comment at the end of section 2.1)
implies that there always exists an optimal policy which
explores some arm iff δ > 0 and exploits some arm iff
δ = 0. We now introduce two vectors xπ and zπ. The
probability that arm-state u is the final exploited state
by policy π is given by xπ

u. The probability that arm-
state u is explored by policy π is given by zπ

u . We define
the cost of policy π as

C(π) =
∑

u∈T zπ
u

h
+

∑
u∈T

xπ
u.

Observe that C(π) ≤ 2, for any policy π. The profit of
policy π is defined as

P(π) =
∑
u∈T

xπ
uζ(u).

Observe that our definition of policy is an adaptive one;
the decisions made in step j > 1 depend on the entire
system-state at time j and hence on the outcome of
previous experimentation steps. Further, it is easy to
see that randomized strategies can not do any better
than deterministic strategies.

If we drop the requirement that a policy must
either exploit or abandon when the remaining budget δ
is 0, we obtain what we call a pseudo-policy. A single
arm policy is one which makes all its decisions based
only on the state of a single pre-determined arm i,
ignoring all other arms. We are now ready to define
the ratio index and prove that it leads quite naturally
to an approximation of the budgeted learning problem.

Ratio Index. The ratio index r(u, h) of a bandit-arm
(say arm i) in initial state u and with experimentation
budget h, is defined as

max
π

P(π)
C(π)

,



where the max is over all single arm pseudo-policies π
which have initial arm-state u, budget h, state space Ti,
and cost C(π) > 0. We refer to a policy which yields the
ratio index as a ratio index policy for state u, denoted
πr(u, h).

Even though we allow pseudo-policies in the defini-
tion of the ratio index, any ratio index policy respects
the budget constraint:

Lemma 2.1. Any ratio index policy for an initial state
u has cost at most 1.

Proof. Because of the martingale property, no single
arm policy starting from arm-state u can obtain profit
more than ζ(u). Hence, any single arm policy π that has
cost more than 1 must have a smaller ratio (of expected
profit to expected cost) than the single arm policy which
exploits in state u.

Greedy Algorithm. Suppose the initial experi-
mentation budget is h, and the current system-state
is given by S = {u1, u2, . . . , un, δ}. If δ > 0, the
greedy algorithm explores the arm i with the maximum
ratio index, r(ui, h), with ties broken arbitrarily but
consistently. If δ = 0 the greedy algorithm exploits the
arm i with maximum current expected reward ζ(ui).
We denote the greedy algorithm by G.

Note: The greedy algorithm uses the same h at every
step to compute the ratio index. Hence, given a table
of the ratio index of every state in T (which can be pre-
computed efficiently as specified in the section 5), we
can implement this algorithm using a simple min-heap
and the complexity of each step would be just O(log n),
which is much better than solving a coupled LP with
3nh variables.

2.3 Analysis of the greedy algorithm We now
show that the greedy algorithm gives an O(1)-
approximation to the budgeted learning problem.

Lemma 2.2. A ratio index policy for arm-state u,
πr(u, h), does not abandon any arm-state v with
r(v, h) > r(u, h) and does not explore or exploit any
arm-state v with r(v, h) < r(u, h).

The proof of the above lemma is deferred to the full
version of this paper [17]. Now consider the following
algorithm, which we call the persistent algorithm,
denoted G′.

The persistent algorithm G′: Given a system-state
S, let i be the arm with the highest ratio index r(ui, h)
where ui denotes the current state of arm i. Play arm i
in accordance with the policy πr(ui, h) until the policy

chooses to exploit or abandon. If πr(ui, h) abandons,
let S′ be the resulting system-state. Repeat the process
starting with S′. If at any time, the system-state is such
that δ = 0, immediately exploit the arm that has the
highest current ratio index.

Observe that as for the greedy algorithm, the ratio
index used by the persistent algorithm G′ is computed
using a fixed budget h; the number of remaining explo-
ration steps δ is used only to terminate G′.

Lemma 2.3. The expected profit of the greedy algorithm
G is at least as much as the expected profit of the
persistent algorithm G′.

Proof. Couple the greedy and the persistent algorithms
such that if they both explore an arm in a given
state, that arm transitions to the same state for both
strategies. Let I = 〈i1, i2, . . . , iκ〉 denote the sequence
of arms explored by G′ before exploitation; here κ ≤ h
since G′ can exploit early. Let J = 〈j1, j2, . . . , jh〉
denote the set of arms explored by G. By Lemma 2.2, we
can conclude that I is a prefix of J . By the martingale
property, early termination can never result in increased
profit; the lemma follows.
Thus it suffices to analyze G′. Given two single arm
pseudo-policies π̃ and π for an arm i, we say that
π̃ � π, if for all arm-states u ∈ Ti for which π ex-
plores (exploits) arm i, π̃ also explores (exploits) the
arm i. Notice that π̃ might choose to continue explo-
ration/exploitation when π abandons an arm-state. In-
formally, π̃ � π means that policy π̃ can be played after
policy π has been played to completion. We will now
state a useful technical lemma; the proof is in the full
version [17].

Lemma 2.4. Given two arbitrary single arm pseudo-
policies π, π′ for arm i in initial arm-state u, there
exists another single arm pseudo-policy π̃ starting in
the same initial arm-state u such that, (1) π̃ � π, (2)
C(π̃)− C(π) ≤ C(π′), and (3) P(π̃) ≥ P(π′).

The above property is akin to submodularity. We now
state our main theorem, which says that the greedy
algorithm G gives a constant factor approximation to
the optimal policy. Let Bπ(h,S) denote the expected
profit obtained by strategy π for the budgeted learning
problem run with budget h and initial system-state S,
and let B∗(h,S) denote the expected profit obtained by
an optimum strategy with the same parameters. We
will omit the system-state when it is the same for all
the strategies involved.

Theorem 2.2. BG(h) ≥ 0.22B∗(h)

Proof. From Lemma 2.3, it suffices to analyze the persis-
tent algorithm G′ rather than the greedy algorithm G.



We divide the persistent algorithm into stages, start-
ing from stage 1. Let i1 be the arm with the highest
ratio index at the beginning of stage 1 (and hence the
arm that will be played by G′ at the first step). Since
the arms evolve probabilistically, the first stage (as well
as subsequent stages) will result in a distribution over
system-states. Let Sj denote the system-state at the
start of stage j, and let Dj denote the distribution of
Sj . Let uj be the arm-state with the highest ratio index
among the arm-states which have a non-zero probabil-
ity, say γj , in Dj , and let ij be the corresponding arm.
The j-th stage of G′ is to simply move to the next stage
if the arm ij is not in state uj (which happens with
probability 1 − γj); we call this stage “empty” in this
case. If the arm ij is in state uj , then the j-th stage
of G′ is to mimic an optimum ratio index policy for
state uj . If the exploration budget gets exhausted dur-
ing this mimicking process, then the j-th stage exploits
arm ij right away and the policy terminates; the cost
of the extra exploitation is not charged to this stage of
the policy. By the martingale property, this early ter-
mination can only increase the expected profit of the
j-th stage. If the j-th stage exploits an arm, then the
persistent algorithm terminates as well.

Let πj denote the policy corresponding to the j-th
stage. Let pj and cj be the cumulative expected profit
and expected cost of the first j stages. Use ∆p(j) and
∆c(j) to denote the expected profit and the expected
cost of the j-th stage, conditioned on this stage being
played (i.e. the j-th stage being non-empty and the
persistent algorithm not terminating before reaching the
j-th stage). The following statement is a corollary of
Lemma 2.4: the proof is a digression from the current
theorem and is deferred to the full version [17].

Corollary 2.1. At the beginning of stage j, there
exists a single arm pseudo-policy with profit to cost ratio
at least (P(π∗)− pj−1)/2.

Since the persistent algorithm follows an optimum ra-
tio index policy we are guaranteed that ∆p(j)/∆c(j) ≥
(P(π∗)−pj−1)/2. By Markov’s inequality, the probabil-
ity that the budget has not been exhausted before stage
j starts is at least 1 − cj−1. Also, recall that γj is the
probability that the j-th stage is non-empty. The ex-
pected unconditioned profit of the j-th stage is at least
γj(1− cj−1)∆p(j). The expected unconditioned cost of
the j-th stage is at most γj∆c(j). Hence, we get

pj − pj−1

cj − cj−1
≥ P(π∗)− pj−1

2
· (1− cj−1).

Thus, the profit obtained by the persistent algorithm is
more than the one attained by the following differential
process, where p is the cumulative profit and c is the

cumulative cost, and p∗ = P(π∗) (view the process as
increasing the expected cost from 0 to 1):

dp

dc
=

p∗ − p

2
(1− c).

Integrating from c = 0 to c = 1 , we get that the
expected profit is at least (1− e−0.25)p∗ ≥ 0.22p∗.
Thus, we have shown the existence of a simple index
which yields almost as good an approximation ratio as
the LP-based approach of Guha and Munagala. The
results above assume that each exploration step has the
same cost, but can easily be extended to the weighted
exploration cost case. We can also modify the proof
slightly to obtain the following corollary2:

Corollary 2.2. B∗(h/2) ≥ 0.17B∗(h).

Combining Corollary 2.2 and Theorem 2.2, we
obtain the following corollary:

Corollary 2.3. BG(h/2) = Ω(B∗(h)).

3 Relating the Gittins and Ratio indices

We will use Sδ to denote a standard (stationary) bandit-
arm with a fixed reward of δ. We will use A to denote a
given bandit-arm in some initial state u. A Gittins index
strategy S takes as input an arm A with an unknown
reward distribution (but a known initial state) and a
standard bandit-arm Sδ for some δ ≥ 0, and gives a
strategy for maximizing the discounted reward for a
multi-armed bandit with A and Sδ as its two bandit-
arms. Thus each node in the decision tree of S is labeled
as playing either the given arm A or the standard bandit
Sδ. We can assume w.l.o.g. that once the strategy S
plays the standard bandit at a node in the tree, it plays
it forever from then onwards. The Gittins index of an
arm A is defined to be the least δ such that the Gittins
index strategy with input arms A and Sδ is indifferent
between playing either one of them at time 0. We will
assume u to be the initial state of A in the remainder
of this section, and drop its explicit mention. Let r(h)
denote the ratio index for A when the horizon is limited
to h. Let ρ(θ) denote the Gittins index for A when
the discount factor is uniform for some 0 < θ < 1.
The following lemmas show that the Gittins and the
ratio indices are constant factor approximations of each
other. The proofs involve transforming the Gittins
index strategy to the ratio index strategy (and vice
verse) and are in the full version [17].

Lemma 3.1. For any h ≥ 2, ρ(θ) ≥ r(h)
(
1− 1

h

)h

where θ = (1− 1
h ). Thus as h →∞, ρ(θ) ≥ r(h)/e.

2This corollary can also be obtained using the LP-based
framework of Guha and Munagala [19].



Lemma 3.2. For any h ≥ 2, ρ(θ) ≤ (2 + 4e)r(h) where
θ = (1− 1

h ).

Lemma 3.3. Let ρi(t) denote the Gittins index of arm i
at time t, where the discount factor θ is 1−1/h. Playing
the arm with the highest value of ρi(t) for t = 1, 2, . . . , h
and then picking the arm with the highest expected payoff
at time t results in a constant factor approximation to
the budgeted learning problem.

While the constants in our proofs are large, the algo-
rithms are simple and intuitive. For instance, Schnieder
and Moore [24] and Madani, Lizotte and Greiner [22]
have studied the policy defined in lemma 3.3 and other
similar policies, and found that they often work well in
practice.

4 Finite Horizon and Discount Oblivious
Multi-armed Bandits

In the traditional multi-armed bandit problem, we are
given a fixed discount factor θ ∈ (0, 1) and allowed to
play one arm at each time. If the reward at time t is
r(t) then the total discounted reward is

∑
t≥0 θtr(t).

Always playing the arm with the currently highest
Gittins index maximizes the expected total discounted
reward; however the Gittins index of an arm depends
crucially on the parameter θ. In this section, we discuss
both finite horizon and discount oblivious versions of the
multi-armed bandit problem.

In the finite horizon multi-armed bandit problem,
we are given a fixed number of steps, h, as in the bud-
geted learning problem. However, unlike the budgeted
learning problem, the objective of the finite horizon
problem is to maximize the total (undiscounted) ex-
pected reward obtained during the first h steps. This
models many important problems such as optimally
placing bets with a fixed number of chips, and optimally
assigning impressions to advertisers [23].

In the discount oblivious multi-armed bandit prob-
lem, we want to find a strategy that provides a con-
stant factor approximation to the optimum reward for
all θ ∈ (0, 1) simultaneously. It is not clear up front
that such a strategy exists. In fact, we will allow the
discounts to be even more general. Let Λ = 〈Λ0, Λ1, Λ2, ...
be an infinite sequence of discount factors that satisfies
the property 1 = Λ0 ≥ Λ1 ≥ Λ2 ≥ ... and where Λt → 0
as t →∞. We will call such a sequence a discount factor
sequence. Let the system-state S denote the vector of
all the arm-states. We will use Dπ(Λ,S) to denote the
total expected discounted reward of any strategy π for
discount factor sequence Λ starting from system-state S.
If strategy π obtains reward r(t) at time t when started
in initial system-state S, then Dπ(Λ,S) =

∑∞
t=0 Λtr(t).

Setting Λt = θt leads to the standard multi-armed ban-

dit problem. Setting Λt = 1 for t < h and Λt = 0 oth-
erwise leads to a fixed horizon problem where we only
get the reward from the first h time steps.

We will use Fπ(h,S) to denote the total (undis-
counted) expected reward over a window of h steps of
any strategy π, starting from S. We will use D∗(Λ,S),
F ∗(h,S) to denote the optimum values for the two prob-
lems. We will omit the parameter S when it is the same
for all strategies under discussion. All proofs are de-
ferred to the full version [17].

4.1 An approximate index for the finite horizon
problem Recall (from section 2) that BG(h) and B∗(h)
denote the expected profit of the greedy algorithm
(which always explores the arm with the largest ratio
index) and the optimum strategy respectively, for the
budgeted multi-armed bandit problem. We first relate
the budgeted learning and finite horizon problems:

Lemma 4.1. For any positive integer h, we have
⌈

h
2

⌉
·

B∗ (⌊
h
2

⌋)
≤ F ∗(h) ≤ h ·B∗(h).

We will now define two index-based strategies for the
finite horizon problem, assuming horizon h and initial
system-state S:.

1. For the first bh/2c steps, play the arm with the
highest ratio index, where the ratio index is com-
puted assuming a budget of bh/2c. For the re-
maining dh/2e steps, play the arm with the high-
est expected reward. We will denote this strategy
as RatioSwitch(h,S) since it switches from us-
ing the ratio index (in the first half) to using the
expected profit as an index in the second half.

2. Similarly, define GittinsSwitch(h,S) as the
strategy which plays the arm with the highest Git-
tins index (assuming a discount factor 1−1/bh/2c)
during the first bh/2c steps, and then switches to
using the arm with the highest expected reward.

Observe that both strategies use an index at each step,
and the choice of index does not depend on the state of
the system; it only depends on the time step. As before,
we will omit the system-state parameter S when is it is
the same for all strategies under discussion.

Theorem 4.1. FRatioSwitch(h)(h) = Ω(F ∗(h)).

Combining lemma 3.3 with the proof of theorem 4.1, we
obtain:

Theorem 4.2. FGittinsSwitch(h)(h) = Ω(F ∗(h)).

To the best of our knowledge, this is the first index for
the finite horizon problem with provable approximation



guarantees. It would be interesting to obtain a smooth
version of GittinsSwitch(h) which does not need to
make the discrete jump from a discount factor of 1−2/h
in the first half to playing the arm with the highest
expected reward (i.e. to a discount factor of 0) in the
second half.

4.2 An approximate index for the discount
oblivious problem We will first establish a connection
between the discount oblivious and finite horizon prob-
lems and then use this connection to obtain a simple
index-based approximation algorithm for the discount
oblivious problem.

Lemma 4.2. For any κ, a strategy gives a κ-
approximation simultaneously for all discount factor se-
quences Λ iff it gives a κ-approximation simultaneously
to the fixed horizon problems with all horizons h ≥ 0.

Let RatioScale be the following discount
oblivious strategy: play in sequence the strate-
gies RatioSwitch(1,S0), RatioSwitch(2,S1),
RatioSwitch(4,S3), RatioSwitch(8,S7), . . ., where
each RatioSwitch(2k) is started from the state of
the system after time 2k − 1, denoted S2k−1; this is
the state in which the arms are left by the previous
RatioSwitch strategy. S0 is the initial state of the
system.

Like RatioSwitch, RatioScale is also an
index-based strategy; the index used at any time step
t depends only on t. Analogously, GittinsScale
plays the sequence GittinsSwitch(1,S0),
GittinsSwitch(2,S1), GittinsSwitch(4,S3),
GittinsSwitch(8,S7), . . ..

Since the state of the system at the start of
RatioSwitch(2i) depends on the outcomes of the pre-
vious steps, the following technical lemma, which is an
easy consequence of the Martingale property, will be
useful. This lemma states that performing an arbitrary
sequence of extra explorations at the beginning cannot
hurt the optimum solution for the budgeted learning
problem. Observe that the state T is itself a random
variable in this lemma; the expectation is over all values
of T.

Lemma 4.3. Let π1 be any arbitrary finite sequence of
explorations starting from system-state S. Let T be
the system-state at the end of π1. Let π2 be an opti-
mum h step strategy for the budgeted learning problem
starting from the system-state T. Then E[Bπ2(h,T)] ≥
B∗(h,S).

Using the above lemma, we can show the following:

Lemma 4.4. For any positive integer h ≥ 1, the
expected reward of the discount oblivious strategy
RatioScale in the first h steps is Ω(F ∗(h,S0)).

Lemma 4.5. For any positive integer h ≥ 1, the
expected reward of the discount oblivious strategy
GittinsScale in the first h steps is Ω(F ∗(h,S0)).

Invoking lemma 4.2 now gives us:

Theorem 4.3. Strategies RatioScale and
GittinsScale both give a constant factor approxima-
tion to the multi-armed bandit problem simultaneously
for all discount factor sequences Λ.

5 Computing the Ratio Index

We will now sketch how the ratio index can be com-
puted. In the process, we will also get several useful
insights into its structural properties. Given a single
bandit-arm i, an initial state ρ for i, an exploration
budget of h, and a state space Ti truncated to depth h,
we view Ti as a layered DAG of depth h, which is to say
that for any arm-state, u, in layer j, if Puv > 0, then v
must be in layer j + 1. As explained in section 5.1, this
is without loss of generality. We let Σ be the number of
nodes in the layered DAG. Additionally, for any state u
in Ti, we use Tu

i to denote the sub-DAG of Ti with root
u; thus T ρ

i = Ti.
For the purposes of this section, we require the

use of randomized single arm policies. Whereas a
deterministic single arm policy (corresponding to arm-
state v) will always either explore v, exploit v, or
abandon with probability 1, a randomized policy, π,
selects ev, pv : ev, pv ≥ 0, ev+pv ≤ 1 where ev represents
the probability π explores in this state, pv represents
the probability π exploits in this state, and 1− ev − pv

represents the probability π abandons in this state. The
vectors xπ and zπ are defined for randomized policies as
for deterministic policies, as are the profit P(π) and cost
C(π) of the policy. Our approach below will calculate
the ratio index r(u, h) for all u ∈ Ti as well as the entire
profit curve Pu(·) for all u where Pu(Cu) = maxπ P(π)
where the max is over all randomized single arm policies
π with initial state u and C(π) ≤ Cu. We show that there
exists a deterministic policy that induces the maximum
Pu(Cu)/Cu over all Cu > 0 (and in fact our algorithm
will find such a policy). Thus, the value maxPu(Cu)/Cu

is the ratio index for u given h, i.e., r(u, h). Our
algorithm relies heavily upon the following theorem on
the structure of the profit curve.

Theorem 5.1. The profit curve, Pu(·), for any given
state u is concave and piecewise linear with at most 2Σu

segments where Σu represents the number of states in
Tu

i .



The proof of this theorem involves several steps and
is deferred to the full version [17]. Towards proving the
theorem, we show that as the budget increases along
the profit curve for u, a monotonicity property holds
that for every state v ∈ Tu

i , both pv and ev + pv are
non-decreasing.

Lemma 5.1. For any C(1), C(2), with C(2) > C(1),
there exist optimal solutions 〈e(1), p(1)〉 and 〈e(2), p(2)〉 to
LPu(C(1)) and LPu(C(2)) respectively such that p

(1)
v ≤

p
(2)
v and e

(1)
v + p

(1)
v ≤ e

(2)
v + p

(2)
v for all v in Tu

i .

We further characterize the intersection of line
segments of the profit curve as “corner” solutions and
show that at these points pv ∈ {0, 1} and ev ∈ {0, 1}
for all states in Tu

i . Thus, these points of the curve
are induced by deterministic policies. Thus, the policy
which induces the “corner” solution at the end of the
first segment of the profit curve is a deterministic ratio
index policy.

5.1 Algorithm for Computing the Profit Curve
The algorithm for computing the profit curve (and
hence the ratio index) involves recursively calculating
the profit curve for a state u given the profit curves for
all of its successor states. We begin by constructing an
exploration profit curve for u, Xu(·), which denotes the
optimal profit for any given cost conditioned on the fact
that we are exploring at u (i.e. eu = 1). We then take
the concave envelope over this curve combined with the
abandonment policy and the exploitation policy.

Superficially, it might seem that the number of seg-
ments of the profit curves could increase exponentially
as we perform this process up the DAG. However, Theo-
rem 5.1 guarantees that the number of segments remains
bounded and the entire curve for u can be computed in
time O(dΣu log Σu) given the successor curves, where d
represents the maximum number of immediate descen-
dants for any node. Thus, this algorithm is strongly
polynomial (in Σ) for computing the entire profit curve
of a state in the layered DAG, and hence, the ratio in-
dex. If the underlying state space of the bandit-arm is
an unlayered DAG, we can make it layered by multiply-
ing the number of states by at most Σ, so the algorithm
is still strongly polynomial in Σ. If the underlying state
space is not a DAG, we can convert it into a layered
DAG by multiplying the number of states by at most h.
Details of the algorithm and the analysis are in the full
version [17].
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