
Improved Hardness Results for Profit Maximization Pricing

Problems with Unlimited Supply

Parinya Chalermsook∗† Julia Chuzhoy‡ Sampath Kannan§ Sanjeev Khanna¶

Abstract

We consider profit maximization pricing problems, where we are given a set of m customers
and a set of n items. Each customer c is associated with a subset Sc ⊆ [n] of items of interest,
together with a budget Bc, and we assume that there is an unlimited supply of each item. Once
the prices are fixed for all items, each customer c buys a subset of items in Sc, according to its
buying rule. The goal is to set the item prices so as to maximize the total profit.

We study the unit-demand min-buying pricing (UDPMIN) and the single-minded pricing
(SMP) problems. In the former problem, each customer c buys the cheapest item i ∈ Sc, if
its price is no higher than the budget Bc, and buys nothing otherwise. In the latter problem,
each customer c buys the whole set Sc if its total price is at most Bc, and buys nothing otherwise.
Both problems are known to admit O(min {log(m+ n), n})-approximation algorithms. We prove

that they are log1−ε(m+n) hard to approximate for any constant ε, unless NP ⊆ DTIME(nlog
δ n),

where δ is a constant depending on ε. Restricting our attention to approximation factors de-

pending only on n, we show that these problems are 2log
1−δ n-hard to approximate for any δ > 0

unless NP ⊆ ZPTIME(nlog
δ′ n), where δ′ is some constant depending on δ. We also prove that

restricted versions of UDPMIN and SMP, where the sizes of the sets Sc are bounded by k, are
k1/2−ε-hard to approximate for any constant ε.

We then turn to the Tollbooth Pricing problem, a special case of SMP, where each item
corresponds to an edge in the input graph, and each set Sc is a simple path in the graph. We
show that Tollbooth Pricing is at least as hard to approximate as the Unique Coverage problem,

thus obtaining an Ω(logε n)-hardness of approximation, assuming NP 6⊆ BPTIME(2n
δ

), for any
constant δ, and some constant ε depending on δ.

∗Department of Computer Science, University of Chicago, Chicago, IL and IDSIA, Lugano, Switzerland. Email:
parinya@cs.uchicago.edu. Supported in part by NSF CAREER grant CCF-0844872, Swiss National Science Foun-
dation project 200020-122110/1, and Hasler Foundation Grant 11099
†Part of this work was done while at University of Chicago.
‡Toyota Technological Institute, Chicago, IL 60637. Email: cjulia@ttic.edu. Supported in part by NSF CA-

REER grant CCF-0844872 and Sloan Research Fellowship.
§Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA. Email:

kannan@cis.upenn.edu. Supported in part by the National Science Foundation grant CCF-1137084
¶Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA. Email:

sanjeev@cis.upenn.edu. Supported in part by the National Science Foundation grants CCF-1116961 and IIS-
0904314

1

1 Introduction

We study profit maximization pricing problems in the unlimited supply model. In these problems,
we are given a set of m customers and a set of n items, where each customer c is associated with
a budget Bc, and a subset Sc ⊆ [n] of items it is interested in. Our goal is to set a price p(i) for
each item i ∈ [n], so as to maximize the total revenue. Once the prices for the items are set, each
customer c chooses a subset of items in Sc to buy, using its buying rule. We assume that we are
given an unlimited supply of each item.

One of the most natural buying rules is the unit-demand min-buying rule, where each customer
c ∈ [m] buys the cheapest item i ∈ Sc (breaking ties arbitrarily), provided that the price p(i) ≤ Bc.
We refer to the corresponding pricing problem as UDPMIN. This problem was first introduced by
Rusmevichientong et al. [22, 23], and subsequently Aggarwal et al. [1] have shown an O(logm +
log n)-approximation algorithm for it.

The second problem that we consider is Single-Minded Pricing (SMP). Here, each customer c buys
the whole set Sc of items if its total price does not exceed its budget Bc, and buys nothing otherwise.
This problem was introduced by Guruswami et al. [17], who also show that the techniques of [1] can
be used to obtain an O(logm+ log n)-approximation algorithm for SMP. Hartline and Koltun [18]
gave a (1 + ε)-approximation algorithm for both UDPMIN and SMP when the number of items n is
constant.

We remark that for pricing problems, it is natural to assume that the number of customers is much
higher than the number of items, that is, m >> n. Even though both UDPMIN and SMP admit
logarithmic approximation algorithms in terms of (m+n), if we restrict ourselves to approximation
factors depending only on n, nothing better than the trivial O(n)-approximation is known.

On the negative side, Briest [5] has shown that both UDPMIN and SMP are max
{
nδ, logδ(m+ n)

}
-

hard to approximate for some (small) δ > 0, assuming that no randomized polynomial-time algo-
rithms can approximate constant-degree Balanced Bipartite Independent Set to within arbitrarily
small constant factors. He also showed similar results under an assumption that slightly strengthens
Feige’s Random 3SAT hypothesis [13].

In this paper, we show that both UDPMIN and SMP are log1−ε(m+n) hard to approximate for any

constant ε, unless NP ⊆ DTIME(nlogε
′
n) for some constant ε′ depending only on ε. If we restrict our

attention to approximation factors as a function of n, then we show that both these problems are

2log1−δ n hard to approximate for any constant δ, under the assumption that NP 6⊆ ZPTIME(nlogδ
′
n),

for some constant δ′ depending only on δ.

We next turn to restricted versions of UDPMIN and SMP, denoted by kUDPMIN and kSMP respec-
tively, where the sizes of the sets Sc are bounded by k. The kSMP problem is known to be APX-hard
even for k = 2 [17], and Balcan and Blum [4] have shown an O(k)-approximation for kUDPMIN,
improving on an independent work of Briest and Krysta [6], who achieved an O(k2)-approximation
for the problem. As for negative results, Briest [5] has proved that kSMP is kε-hard to approximate
for some constant ε, assuming Feige’s random 3SAT hypothesis [13], and Khandekar et al. [19]
showed that the problem is Ω(k) hard to approximate for constant k, assuming the Unique Games
Conjecture of Khot [20]. We show that both kUDPMIN and kSMP are k1/2−ε-hard to approximate
for any constant ε unless P = NP.

2

Finally, we consider a special case of the SMP problem called the Tollbooth Pricing problem, where
we are given a graph G, and items correspond to the edges of G. The item set Sc of every customer
c is some simple path in graph G, and the goal is to set the prices of the edges, so as to maximize the
revenue. Since the Tollbooth Pricing problem is a special case of SMP, it admits an O(logm+log n)
approximation [17]. The problem is APX-hard [17], and from the results of Khandekar et al. [19],
it is (2− ε) hard to approximate even on star graphs, assuming the Unique Games Conjecture. We
show that the Tollbooth Pricing problem is at least as hard to approximate as the Unique Coverage
problem (to within a constant factor). In the Unique Coverage problem, we are given a collection
U of n elements, and a family S of subsets of elements of U . The goal is to find a family S ′ ⊆ S
of element subsets, maximizing the number of elements that are covered by exactly one subset in
S ′. The problem was introduced and studied by Demaine et al. [10], who showed that for any

arbitrarily small constant δ, if NP 6⊆ BPTIME(2n
δ
), then Unique Coverage is hard to approximate

to within a factor of Ω(logε n), where ε is some constant depending on δ. They also showed that
the problem is hard to approximate to within Ω(log1/3−ε n) for any ε assuming the Random 3SAT
Hypothesis of Feige [13], and proved additional hardness results using a hypothesis about Balanced
Bipartite Independent Set. Our reduction immediately implies similar hardness results for the
Tollbooth Pricing problem.

Related Work. Briest and Krysta [6] considered a more general version of UDPMIN, where
customers are allowed to have different budgets (valuations) for different items. They show an
Ω(logε n)-hardness for this problem for some constant ε, unless NP ⊆ DTIME

(
nO(log logn)

)
, and an

nε-hardness for some constant ε > 0, unless NP ⊆ DTIME
(

2O(nδ)
)

for all δ > 0.

A special case of the Tollbooth Pricing problem, called the Highway Problem, where the input graph
is restricted to be a path, has received a significant amount of attention. Elbassioni et al. [11]
showed that the problem is strongly NP-hard. On the algorithmic side, Balcan and Blum [4] have
shown an O(log n)-approximation algorithm, and Elbassioni et al. [12] have proposed a QPTAS.
Subsequently, Grandoni and Rothvoss [16] have shown a PTAS for the problem. For the special
case of the Tollbooth Pricing problem where the input graph is a tree, the best known approximation
ratio is O(log n/ log log n), due to Gamzu and Segev [15]. However, when the number of leaves in
the tree is bounded by a constant, the problem admits a PTAS [16].

Pricing problems with limited supply have also received a considerable amount of attention; Please
refer to, e.g., [7, 9, 8] and references therein.

Our Results. We start by formally stating the pricing problems we consider. We are given a set
of m customers and a set of n items, where each customer c ∈ [m] is associated with a set Sc ⊆ [n]
of items and a budget Bc. Given a setting {p(i)}i∈[n] of item prices, every customer selects a subset

S′c ⊆ Sc of items to buy according to its buying rule, and our goal is to maximize the total profit,∑
c∈[m]

∑
i∈S′c p(i). In the UDPMIN problem, the buying rule of the customers is defined as follows.

Each customer c ∈ [m] buys the cheapest item i ∈ Sc, breaking ties arbitrarily, if p(i) ≤ Bc, and
buys nothing otherwise.

In the SMP problem, each customer c ∈ [m] purchases the whole set Sc if
∑

i∈Sc p(i) ≤ Bc, and
purchases nothing otherwise. Our main result is summarized in the following theorem.

3

Theorem 1 UDPMIN and SMP are log1−ε(m + n)-hard to approximate for any constant ε > 0,

unless NP ⊆ DTIME(n(logn)ε
′
), where ε′ is some constant depending only on ε. Moreover, assuming

that NP 6⊆ ZPTIME(n(logn)δ
′
), both problems are hard to approximate to within a factor of 2log1−δ n

for any constant δ, where δ′ is some constant depending only on δ.

We next turn to special cases of both problems, denoted by kUDPMIN and kSMP respectively, where
the sizes of the sets Sc are bounded by k and prove the following theorem.

Theorem 2 Let ε > 0 be any constant. Then for infinitely many constants k, both kUDPMIN and
kSMP are k1/2−ε-hard to approximate unless P = NP.

Finally we turn to the Tollbooth Pricing problem. In this problem, we are given a graph G = (V,E),
and a set of m simple paths P1, . . . , Pm, where each path Pc is associated with a customer c and a
budget Bc. Once the price function p : E → R on the edges is set, each customer c buys all edges
on the path Pc if

∑
e∈Pc p(e) ≤ Bc, and buys nothing otherwise. The goal is to compute the edge

prices p(e) so as to maximize the total profit. It is clear that Tollbooth Pricing is a special case of
SMP, and notice that the number of items is n = |E(G)|.

We perform a reduction from the Unique Coverage problem to the Tollbooth Pricing. In the Unique
Coverage problem, we are given a set U of elements and a family S of subsets of U as input. A
solution is a sub-collection S ′ ⊆ S of the input sets. We say that element u ∈ U is satisfied by the
solution if and only if it belongs to exactly one set in S ′. Our goal is to choose S ′ so as to maximize
the number of satisfied elements. Demaine et. al. [10] have shown that for any arbitrarily small

constant δ, if NP 6⊆ BPTIME(2n
δ
), then Unique Coverage is hard to approximate to within a factor

of Ω(logε n), for some constant ε depending on δ. They also showed that, under the assumption of
Feige [13] that refuting random instances of 3SAT is hard, Unique Coverage is hard to approximate
to within a factor of Ω(log1/3−ε n) for any ε > 0. We prove the following theorem:

Theorem 3 If there is a factor α-approximation algorithm for the Tollbooth Pricing problem, for
any approximation factor α ≤ O(log n), then there is a randomized O(α)-approximation algorithm
for the Unique Coverage problem.

Combining this with the result of [10], we obtain the following corollary.

Corollary 4 For any arbitrarily small constant δ, if NP 6⊆ BPTIME(2n
δ
), Tollbooth Pricing is hard

to approximate to within a factor of Ω(logε n) for some constant ε depending on δ. Moreover,
under Feige’s random 3SAT assumption, this problem is hard to approximate to within a factor of
Ω(log1/3−ε n) for any ε > 0.

2 Hardness of UDPMIN and SMP

In this section we prove Theorems 1 and 2. We focus here on the UDPMIN problem only. The
hardness results for SMP are obtained using similar ideas and are deferred to Appendix.

We start with the following theorem, due to Trevisan [25]. Since we use slightly different parameters,
we provide the proof in the Appendix.

4

Theorem 5 Given an n-variable 3SAT formula ϕ, any sufficiently small constant ε > 0 and any
integer λ > 0, there is a randomized algorithm to construct a graph G with maximum degree at
most ∆ = 2λpoly(1

ε
) such that w.h.p.:

• (Yes-Instance:) If ϕ is satisfiable, then G has an independent set of size |V (G)|/∆ε.

• (No-Instance:) If ϕ is not satisfiable, then G has no independent set of size |V (G)|/∆1−ε.

The construction size is |V (G)| = nλ poly(1
ε
), and the reduction runs in time nλpoly(1

ε
). Moreover,

the algorithm can be made deterministic with running time 2O(∆)nλ poly(1
ε
).

We remark that this theorem allows us to adjust parameter λ. To prove Theorem 1, we will use
λ = O(log log n), while we set λ = O(1) for Theorem 2.

2.1 The Construction

Let G = (V,E) be the instance of Maximum Independent Set obtained from Theorem 5, where the
value of λ (and ∆) will be fixed later. We first define an intermediate instance of UDPMIN, which
is then converted into a final instance.

The intermediate instance is defined as follows. The set of items contains, for each vertex v ∈ V ,
for each index y ∈ [∆], an item i(v, y). That is, the set of items is I = {i(v, y) | v ∈ V, y ∈ [∆]}.

Similarly, the set of customers contains, for each vertex v ∈ V , for each index x ∈ [∆], a customer
c(v, x). That is, the set of customers is C = {c(v, x) | v ∈ V, x ∈ [∆]}.

The item set Sc(v,x) for the customer c(v, x), contains the item i(v, x), and additionally, for each
neighbor u of vertex v in graph G, for each index y ∈ [∆], item i(u, y) belongs to Sc(v,x). Formally,
Sc(v,x) = {i(u, y) | (u, v) ∈ E, y ∈ [∆]} ∪ {i(v, x)}. Notice that

∣∣Sc(v,x)

∣∣ ≤ ∆2 + 1 for all customers
c(v, x) ∈ C. Moreover for each item i(v, y) ∈ I, there are at most ∆2 + 1 customers c′ ∈ C such
that i(v, y) ∈ Sc′ .

We partition the set C of customers into ∆ subsets C1, . . . , C∆, such that for each 1 ≤ h ≤ ∆, set
Ch contains customers c(v, h) for all v ∈ V . Finally, for each 1 ≤ h ≤ ∆, each customer c ∈ Ch is
assigned budget Bc = 1/2h.

This finishes the definition of the intermediate instance. For convenience, we call the customers in
set C virtual customers. In our final instance, we replace each virtual customer with a number of
new customers.

In order to define the final instance, for each 1 ≤ h ≤ ∆, we replace each virtual customer c ∈ Ch
with a set G(c) =

{
c(1), . . . , c(2h)

}
of 2h identical new customers. Each new customer c(h′), for

1 ≤ h′ ≤ 2h has budget Bc(h′) = Bc and Sc(h′) = Sc. The final set of customers is C′ =
⋃
c∈C G(c)

and the final set of items remains unchanged, I ′ = I. The number of customers in the final instance
is m̃ = |C′| = O(2∆ |C|) = |V | ·∆ · 2O(∆) = |V | · 2O(∆), while the number of items is ñ = |V | ·∆.
Moreover, for each customer c ∈ C′, we have |Sc| ≤ ∆2 + 1. This completes the construction
description.

5

2.2 Analysis

We analyze the construction in the following two lemmas.

Lemma 6 In the Yes-Instance, there is a solution to the UDPMIN problem instance whose value
is at least |V |∆1−ε.

Proof: Let U ⊆ V be a maximum independent set of size |V |/∆ε in G. We set the prices of the
items i(u, y) ∈ I ′ as follows. If u 6∈ U , then the price of i(u, y) is set to ∞. Otherwise, if u ∈ U ,
then we set the price of i(u, y) to 1/2y. Notice that, since |U | ·∆ ≥ |V | ·∆1−ε, there are |V | ·∆1−ε

items of finite prices. We now show that this solution has value at least |V | ·∆1−ε.

Indeed, for each vertex u ∈ U and an index y ∈ [∆], consider the virtual customer c′ = c(v, y) ∈ Cy.
Notice that Sc′ contains item i(v, y) whose price is 1/2y, but all other items in Sc′ have price ∞.
Therefore, each customer c ∈ G(c′) buys the item i(v, y), and pays 1/2y for it. The total profit
collected from customers in G(c′) is 1, and so the total profit collected from all customers is at least
|U |∆ ≥ |V | ·∆1−ε.

Lemma 7 In the No-Instance, the value of the optimal solution is at most O(|V | ·∆ε).

Proof: Let p∗ be an optimal solution, and let r∗ be its revenue. We first argue that we can assume
w.l.o.g. that for each item i ∈ I ′, either p∗(i) ∈

{
1/2h | 1 ≤ h ≤ ∆

}
, or p∗(i) =∞.

Indeed, suppose there is an item i ∈ I ′ with p∗(i) ∈ (1/2h, 1/2h−1). Then any customer who
buys item i must have budget at least 1/2h−1, so increasing p∗(i) to 1/2h−1 does not affect these
customers, and may only increase the revenue. Therefore, from now on we assume that for each
item i ∈ I ′, p∗(i) ∈

{
1/2h | 1 ≤ h ≤ ∆

}
∪ {∞}.

Notice that for each virtual customer c ∈ C, all customers in G(c) contribute the same amount to
the total revenue. Let kc denote this amount. We now let C∗ ⊆ C be the set of virtual customers
for which kc = Bc. Equivalently,

C∗ =

{
c ∈ C : min

i∈Sc
{p∗(i)} = Bc

}
Claim 8 The customers in

⋃
c′∈C∗ G(c′) contribute at least r∗/2 to the total revenue.

Proof: Assume otherwise. Then the customers in
⋃
c∈C\C∗ G(c) contribute more than r∗/2 to the

total revenue.

We partition the set C \ C∗ of virtual customers into two subsets: C1 contains all virtual customers
c ∈ C \ C∗ with mini∈Sc {p∗(i)} > Bc, while C2 contains all virtual customers c ∈ C \ C∗ with
mini∈Sc {p∗(i)} ≤ Bc/2. Notice that C \ C∗ = C1 ∪ C2.

Define a new price p̃ = 2p∗, where the prices of all items are scaled up by factor 2. For each
virtual customer c ∈ C1, the total contribution of the customers in G(c) remains 0. For each virtual
customer c ∈ C2, the total contribution of the customers in G now doubles. Therefore, the value of
the solution p̃ is greater than r∗, a contradiction.

6

Notice that |C∗| ≥ r∗/2, since for each virtual customer c ∈ C∗, the total budget of all customers in
G(c) is 1.

From now on, we focus on finding an independent set U in graph G of size at least (r∗/2− |V |)/∆
from C∗. Since in the No-Instance, G does not contain an independent set of size more than
|V |/∆1−ε, this implies that (r∗/2− |V |)/∆ ≤ |V | /∆1−ε, and hence r∗ ≤ O(|V |∆ε).

We construct an independent set U ⊆ V (G), together with a partition (C1, C2) of C∗, as follows.
Start with U, C1, C2 = ∅. We then perform ∆ iterations, where in iteration y, we consider each
virtual customer c(v, y) in C∗ ∩ Cy, and do the following:

• If vertex v is already in U , we add virtual customer c(v, y) into C1.

• If vertex v is not in U and U ∪{v} remains an independent set, we add vertex v to set U and
add c(v, y) to C1. We say that c(v, y) is responsible for adding vertex v into U .

• Otherwise, v 6∈ U , but there is a vertex u ∈ U such that (u, v) ∈ E(G). We add c(v, y) to C2

in this case and say that vertex u prevents the algorithm from adding v into U .

In the end, when all customers in C∗ are processed, each virtual customer in C∗ is added to either
C1 or C2, so C∗ = C1 ∪ C2. Moreover, for each virtual customer c(v, y) in C1, the corresponding
vertex v belongs to U , so |U | ≥ |C1|/∆. The following claim will complete the proof of the lemma.

Claim 9 |C2| ≤ |V |, and so |U | ≥ |C∗ \ C2|/∆ ≥ (r∗/2− |V |)/∆.

Proof: It is sufficient to show that for each vertex v ∈ V , no two virtual customers c(v, y), c(v, y′)
with y 6= y′ belong to C2. Assume otherwise, and let c(v, y), c(v, y′) ∈ C2. By our construction, we
have c(v, y) ∈ Cy and c(v, y′) ∈ Cy′ . Assume w.l.o.g. that y < y′, so c(v, y) was processed before
c(v, y′).

Let u ∈ U be a vertex such that (u, v) ∈ E(G), and vertex u prevents the algorithm from adding
v to set U . Let c(u, x) be the customer responsible for adding u to U . Then c(u, x) was processed
before c(v, y), and so x ≤ y < y′.

Notice that the item i(v, y′) belongs to Sc(u,x). The price of i(v, y′) then must be set to at least

Bc(u,x) = 1/2x > 1/2y
′

= Bc(v,y′), since otherwise the customers in G(c(u, x)) would have paid
below Bc(u,x) for item i(v, y′), contradicting the fact that c(u, x) ∈ C∗. But then customer c(v, y′)
must buy some item i′ 6= i(v, y′). Assume that i′ = i(w, z). Then w must be a neighbor of v in G,
w 6= v, and so i′ ∈ Sc(v,y) must hold. But the price of i′ must be Bc(v,y′) = 1/2y

′
< 1/2y = Bc(v,y),

and so the customers in G(c(v, y)) should have paid below Bc(v,y) for item i′, contradicting the fact
that c(v, y) ∈ C∗.

Hardness factors: The gap between Yes-Instance and No-Instance costs is ∆1−2ε, while the
number of customers in the instance is m̃ = |V (G)|·2O(∆), and the number of items is ñ = |V (G)|·∆.

We first prove Theorem 1. We choose the parameter λ = O(log log n) such that ∆ = (log n)b, where
b > 1

2ε . The hardness factor then becomes g = ∆1−2ε ≥ logb−1 n, while m̃ + ñ = |V (G)|2O(∆) ≤

7

2O(∆ logn) ≤ 2logb+2 n ≤ 2g
1+O(ε)

. Taking logarithm on both sides will give g = log1−O(ε)(m̃ + ñ).

The deterministic reduction takes time 2O(∆) = n(logn)f(ε) for some function f , so we have proved
the first part of Theorem 1.

To prove the second part, we use the randomized version of Theorem 5, and choose λ = (log n)b for
some large constant b, while ε is set to be any small enough constant for which Theorem 5 works.
In this case, we have ∆ = 2O((logn)b) and ñ ≤ |V (G)|∆ ≤ 2(logn)b+2

, while g = ∆1−2ε ≥ 2O((logn)b).

It is easy to check that g ≥ 2log1−O(1/b) ñ, as desired. Since we use the randomized reduction, the
running time of the reduction is 2(logn)O(b)

, and so the result holds under the assumption that
NP 6⊆ ZPTIME(n(logn)O(b)

).

To prove Theorem 2, we choose λ in Theorem 5 to be any sufficiently large constant. Denote by
k = maxc∈C′ |Sc|. Since the construction guarantees that k ≤ 2∆2, we have the hardness factor
of ∆1−2ε ≥ k1/2−ε. In this case, the deterministic reduction only takes polynomial time, so this
hardness result holds under the assumption that P 6= NP.

3 Tollbooth Pricing

In this section we prove Theorem 3. It will be useful to introduce the notion of fractional coverage
and show how to convert fractional coverage to an integral one. Given an instance of Unique
Coverage and a fractional solution that assigns a non-negative weight w(S) to every set S ∈ S, we
say that an element u ∈ U is fractionally covered if and only if 1/4 ≤

∑
S:u∈S w(S) ≤ 1. We argue

that any good fractional coverage can be converted into a good integral coverage with a constant
loss in the solution value. The proof of the following lemma appears in Appendix.

Lemma 10 There is an efficient randomized algorithm, that, given a fractional solution of value
βn to any instance of the Unique Coverage problem, w.h.p. finds an integral solution of value Ω(βn)
to the Unique Coverage instance.

3.1 Construction

Let (U,S) be an instance of Unique Coverage, where |U | = n and |S| = m. We construct an
instance of Tollbooth Pricing as follows. Graph G = (V,E) consists of m+1 vertices v0, . . . , vm. Let
h = dlogme. For each consecutive pair (vi−1, vi) of vertices, 0 < i ≤ m, we add h+ 1 parallel edges
ei0, . . . , e

i
h. These edges are viewed as representing the set Si ∈ S. We now define the set of paths

(or customers) in the graph. All paths start from v0 and end at vm. For each element u ∈ U , for
each j : 1 ≤ j ≤ h, we have a set P(u, j) of 2h−j paths. The budget of each path in P(u, j) is 2j ,
the source vertex is v0, and the sink is vm. Each path in P(u, j) consists of edges e1

i1
, e2
i2
, . . . , emim ,

where for all 1 ≤ ` ≤ m, if u ∈ S` then i` = j, or otherwise i` = 0. This completes the description
of the construction. Notice that the total budget is B = nh2h. Let m̃ and ñ denote the number of
customers (i.e. the number of paths) and items, respectively. Notice that m̃ ≤ O(nm logm), and
ñ ≤ nh ≤ O(n logm) ≤ O(n2), since we can assume w.l.o.g. that |S| ≤ 2n.

8

3.2 Analysis

The analysis consists of two parts. First we show that if there is a solution to Unique Coverage that
satisfies a β-fraction of the elements, then there is a solution to Tollbooth Pricing of value at least
β · B. In the second part, we show an efficient randomized algorithm, that, given any solution to
Tollbooth Pricing instance G of value α · B, w.h.p. finds a solution to the Unique Coverage problem
that satisfies Ω(αn) elements.

Lemma 11 If there is a solution to the Unique Coverage instance (U,S) that satisfies at least
βn-elements, then there is a solution to the Tollbooth Pricing instance of value βB.

Proof: Let S ′ ⊆ S be a solution to the Unique Coverage problem, and let U ′ ⊆ U be the set of
elements uniquely covered by S ′, |U ′| ≥ βn. For each Si ∈ S ′, for each j : 1 ≤ j ≤ h, we set the
price of the edge eij to 2j . The prices of all other edges (including the edges ei0 for all i) are set to
0. For each u ∈ U ′ and j : 1 ≤ j ≤ h, we consider the revenue collected from the paths in P(u, j).
Let Si be the set that uniquely covers u in the solution. Then for each path in P(u, j), exactly one
edge eij on the path has a non-zero price. This price is 2j - the same as the budget of the path,

while all other edges have price 0. Therefore, each such path contributes 2j to the solution value,
and the total contribution of the paths in P(u, j) is 2h. This implies the lemma.

Lemma 12 There is an efficient randomized algorithm, that, given any solution to the Tollbooth
Pricing instance G of value αB, w.h.p. finds a solution to the Unique Coverage instance (U,S) that
satisfies Ω(αn) of the elements.

Proof: Let p∗ : E → R≥0 be any solution of value αB to the Tollbooth Pricing problem. Let P1 be
the set of paths, such that each P ∈ P1 contributes at least half of its budget to the solution. Our
first observation is that the profit collected from the paths in P1 must be at least αB/2 (otherwise,
we can multiply the price of each edge by a factor of two and get a better solution). From now on,
we will only focus on paths in P1 and we will discard all other paths. We say that a path P ∈ P1 is
of type 1 if at least half the cost it pays goes to edges in set E0 =

{
ei0 : 1 ≤ i ≤ m

}
, and it is of type

2 otherwise. Let P ′ and P ′′ denote the set of paths of type 1 and 2 respectively. We distinguish
between two cases.

Case 1: Paths of type 1 contribute at least αB/4 to the solution value. We claim that in this
case the solution value is at most O(B/ logm), and therefore it is sufficient to find a solution to
Unique Coverage instance that satisfies a Ω(1/ logm)-fraction of the elements. We then show an
algorithm to find such a solution.

Indeed, consider some element u ∈ U . Recall that, for all j, every path in the sets P(u, j) traverses
all edges in the set E0(u) =

{
ei0 : u 6∈ Si

}
, and these are the only edges from E0 traversed by these

paths. Let Cu =
∑

e∈E0(u) p
∗(e) be the total price of these edges. A path P ∈ P(u, j) can belong

to P ′ only if 2j/4 ≤ Cu ≤ 2j . This means that there are at most 3 values of j : 1 ≤ j ≤ h for
which P(u, j)∩P ′ 6= ∅, so for each u ∈ U , the paths in set

⋃h
j=1 P(u, j) only contribute at most an

O(1/h) = O(1/ logm)-fraction of their total budget to the solution. Therefore, the solution value
is at most O(B/h) = O(B/ logm). Now we show an algorithm for the Unique Coverage problem

9

instance that satisfies an Ω(1/ logm)-fraction of the elements. From Lemma 10, it is enough to
construct a fractional solution of value Ω(n/ logm). For each element u ∈ U , let δ(u) be the
number of sets in S to which element u belongs. We partition the elements into h = dlogme
classes C1, . . . , Ch where class Cj contains elements u with 2j ≤ δ(u) ≤ 2j+1. Let j∗ be the class
containing the maximum number of elements, so |Cj∗ | ≥ Ω(n/ logm). We set the weight of every
set S to be w(S) = 1/2j

∗+1. This ensures that all elements in Cj∗ are fractionally covered. Applying
Lemma 10, we obtain an integral solution of value Ω(n/ logm).

Case 2: Assume now that the paths in P ′′ contribute at least αB/4 to the solution value. Let r′′

denote the total revenue collected from these paths by edges in E1 = E \ E0. Then we have that
r′′ ≥ Ω(αB) = Ω(αnh2h). Notice that by the definition of set P ′′, each path P ∈ P ′′ pays at least
1/4 of its budget for the edges in set E1 that lie on path P .

We now partition the paths in P ′′ into sets P ′′1 , . . . ,P ′′h where set P ′′j contains all type-2 paths whose

budget is 2j . Let j∗ be the index for which the profit contributed by the paths in P ′′j∗ is maximized.

This profit is at least αn2h.

We say that element u is good if 2j
∗
/4 ≤

∑
i:u∈Si p

∗(eij∗) ≤ 2j
∗
. From the above arguments, for

each path P ∈ P ′′, if P ∈ P(u, j∗), then the corresponding element u must be good. Moreover,
if u is good, then all paths in P(u, j∗) belong to P ′′j∗ . Therefore, at least Ω(αn) of the elements
in U must be good. We now define a fractional solution to the Unique Coverage problem, where
every the weight of every set Si ∈ S is set to w(Si) = p(eij∗)/2

j∗ . Notice that all good elements are
fractionally covered, thus giving us a fractional solution where Ω(αn) elements are satisfied. We
finally invoke Lemma 10 to complete the proof.

Acknowledgement: The first author thanks Khaled Elbassioni for introducing him to pric-
ing problems and for explaining the differences between various pricing models. He also thanks
Danupon Nanongkai and Khaled Elbassioni for useful discussions about UDPMIN and SMP.

References

[1] Gagan Aggarwal, Tomás Feder, Rajeev Motwani, and An Zhu. Algorithms for Multi-product
Pricing. In ICALP, pages 72–83, 2004.

[2] Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal Talwar,
and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion routing on undi-
rected graphs. Combinatorica, 30(5):485–520, 2010.

[3] Matthew Andrews and Lisa Zhang. Logarithmic hardness of the undirected edge-disjoint paths
problem. J. ACM, 53(5):745–761, 2006.

[4] Maria-Florina Balcan and Avrim Blum. Approximation algorithms and online mechanisms for
item pricing. Theory of Computing, 3(1):179–195, 2007.

[5] Patrick Briest. Uniform budgets and the envy-free pricing problem. In ICALP (1), pages
808–819, 2008.

10

[6] Patrick Briest and Piotr Krysta. Buying cheap is expensive: hardness of non-parametric
multi-product pricing. In SODA, pages 716–725, 2007.

[7] Ning Chen and Xiaotie Deng. Envy-free pricing in multi-item markets. In ICALP (2), pages
418–429, 2010.

[8] Ning Chen, Arpita Ghosh, and Sergei Vassilvitskii. Optimal envy-free pricing with metric
substitutability. SIAM J. Comput., 40(3):623–645, 2011.

[9] Maurice Cheung and Chaitanya Swamy. Approximation algorithms for single-minded envy-free
profit-maximization problems with limited supply. In FOCS, pages 35–44. IEEE Computer
Society, 2008.

[10] Erik D. Demaine, Uriel Feige, MohammadTaghi Hajiaghayi, and Mohammad R. Salavatipour.
Combination can be hard: Approximability of the unique coverage problem. SIAM J. Comput.,
38(4):1464–1483, 2008.

[11] Khaled M. Elbassioni, Rajiv Raman, Saurabh Ray, and René Sitters. On profit-maximizing
pricing for the highway and tollbooth problems. In SAGT, pages 275–286, 2009.

[12] Khaled M. Elbassioni, René Sitters, and Yan Zhang. A quasi-ptas for profit-maximizing pricing
on line graphs. In ESA, pages 451–462, 2007.

[13] Uriel Feige. Relations between average case complexity and approximation complexity. In
STOC, pages 534–543, 2002.

[14] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. J. ACM, 43:268–292, March 1996.

[15] Iftah Gamzu and Danny Segev. A sublogarithmic approximation for highway and tollbooth
pricing. In ICALP (1), pages 582–593, 2010.

[16] Fabrizio Grandoni and Thomas Rothvoß. Pricing on paths: A ptas for the highway problem.
In SODA, pages 675–684, 2011.

[17] Venkatesan Guruswami, Jason D. Hartline, Anna R. Karlin, David Kempe, Claire Kenyon,
and Frank McSherry. On profit-maximizing envy-free pricing. In SODA, pages 1164–1173,
2005.

[18] Jason D. Hartline and Vladlen Koltun. Near-optimal pricing in near-linear time. In In 9th
Workshop on Algorithms and Data Structures, pages 422–431, 2005.

[19] Rohit Khandekar, Tracy Kimbrel, Konstantin Makarychev, and Maxim Sviridenko. On hard-
ness of pricing items for single-minded bidders. In APPROX, pages 202–216, 2009.

[20] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing, STOC ’02, pages 767–775, New York,
NY, USA, 2002. ACM.

[21] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph prod-
uct, and new constant-degree expanders and extractors. In FOCS, pages 3–13. IEEE Computer
Society, 2000.

11

[22] Paat Rusmevichientong. A non-parametric approach to multi-product pricing: Theory and
application. Ph. D. thesis, Stanford University, 2003.

[23] Paat Rusmevichientong, Benjamin Van Roy, and Peter W. Glynn. A nonparametric approach
to multiproduct pricing. Oper. Res., 54:82–98, January 2006.

[24] Alex Samorodnitsky and Luca Trevisan. A pcp characterization of np with optimal amortized
query complexity. In STOC, pages 191–199, 2000.

[25] Luca Trevisan. Non-approximability results for optimization problems on bounded degree
instances. In STOC, pages 453–461, 2001.

A Proof of Lemma 10

Let U ′ be the set of elements that are fractionally covered. We perform randomized rounding of
the fractional solution in two stages. In the first stage, each set S is selected independently with
probability min {1, 8w(S)}. Let S ′ be the collection of selected sets. For each element u that
is covered by the fractional solution, let xu = | {S ∈ S ′ : u ∈ S} |. We have that 1 ≤ E [xu] ≤ 8.
Moreover, from Markov inequality, Pr [xu ≥ 32] ≤ 1/4. We also need to bound the probability that
xu = 0. Let Su = {S ∈ S : u ∈ S}. Then xu = 0 can only happen if, for all S ∈ Su, w(S) < 1/8.
In this case, µ = E [xu] = 8

∑
S∈Su w(S) ≥ 2. If we denote by yS the indicator variable of whether

or not S is chosen, then Var(xu) =
∑

S∈Su Var(yS) ≤
∑

S∈Su E [yS] ≤ µ. Therefore,

Pr [xu = 0] ≤ Pr [|xu − µ| ≥ µ] ≤ Var(xu)

µ2
≤ 1/µ ≤ 1/2

Let U ′′ be the subset of elements for which 1 ≤ xu ≤ 32. For u ∈ U ′, the probability that u ∈ U ′′
is at least 1/4 and thus the expected number of elements in U ′′ is at least |U ′|/4. As a second step
of the rounding process, each set S ∈ S ′ is randomly selected to be in S ′′ with probability 1/32.
The final output is set S ′′. It is easy to see that, for each element u ∈ U ′′, the probability that u
is covered by exactly one set in S ′′ is a constant. Thus, the number of elements uniquely covered
in the final solution is Ω(|U ′|).

B Proof of Theorem 5

The proof here is almost identical to [25], except that we need to allow super-constant vertex
degrees, and slightly change the parameters. We present the proof for completeness. We note that
the presentation in this section follows [2, 3].

B.1 Samorodnitsky-Trevisan PCP

The reduction starts from the PCP characterization of NP, due to Samorodnitsky and Trevisan [24].
Let ϕ be the instance of 3SAT on n variables. For any constant ` > 0, the ST construction gives
a PCP verifier that uses r = O(log n) random bits to generate q = `2 locations to probe the proof.

12

The verifier reads these q bits in the given proof Π and decides whether or not ϕ is satisfiable.
Given a random string r of the verifier, let b1(r), . . . , bq(r) be the indices of the proof bits read (we
abuse the notation by using r to denote both a random string and the total number of random
bits). A configuration is (r, a1, . . . , aq), where a1, . . . , aq ∈ {0, 1} are values of Πb1(r), . . . ,Πbq(r). We
say that a configuration (r, a1, . . . , aq) is accepting if, for a random string r of the verifier and the
values a1, . . . , aq of the corresponding proof bits, the verifier accepts. The properties of the PCP
are summarized in the following theorem.

Theorem 13 ([24]) For any constant µ > 0, ` > 0, there is a PCP verifier for 3SAT with the
following properties:

• If ϕ is a Yes-Instance, accepts with probability at least 1− µ, for some proof Π.

• If ϕ is a No-Instance, accepts with probability at most µ+ 2−`
2
, for any proof Π.

• Read 2`+ `2 query bits and tosses r = O(log n) random coins.

• For each random string r, there are 22` accepting configurations.

• For each random string r, for every j : 1 ≤ j ≤ q, the number of accepting configurations
where the value of Πbj(r) = 0 equals the number of accepting configurations where Πbj(r) = 1.

We fix the value µ = 2−`
2

and ` to be a large enough constant. Therefore, in the Yes-Instance,
we have the acceptance probability of at least 1/2, while the acceptance probability in the No-
Instance is at most 2 · 2−`2 .

Observe that the length of the proof is bounded by 2r(2` + `2). For convenience, we would like
to ensure that each proof bit participates in many accepting configurations, and this can be done
as follows. The verifier works as before, except that now it also randomly chooses one additional
proof bit and accepts if and only if the original verifier accepts. Observe now that the length of the
random string becomes r′ ≤ r + r + 3 log `, and the number of query bits read is `2 + 2` + 1. Let
Πj be some proof bit and nj be the number of accepting configurations in which the value of Πj is
zero. We have that nj ≥ 2r22`−1 ≥ 2r

′/2. We summarize the properties of the PCP construction
below (after substituting the values of r and ` by the new values r′ and `′ = `+ 1).

• The verifier reads at most `2 query bits and tosses r = O(log n) random coins.

• (Yes-Instance:) The acceptance probability is at least 1/2.

• (No-Instance:) The acceptance probability is at most 2−`
2/2.

• For each random string, there are 22`−1 accepting configurations.

• For each random string r, for each j : 1 ≤ j ≤ q, the number of accepting configurations
where the value of Πbj(r) = 1 equals the number of accepting configurations where the value
of Πbj(r) = 0.

• For each proof index j, we have nj ≥ 2r/2

13

We repeat this protocol independently λ times, and the verifier accepts if and only if the original
verifier accepts in each protocol repetition. The resulting PCP has the following properties:

• Random Bits: λr. Let R denote the set of all possible random strings, |R| = 2λr.

• Query Bits: q = λ`2. Assume w.l.o.g. that the verifier reads exactly q bits of proof for
every random string.

• Completeness: Yes-Instance is accepted with probability at least 2−λ.

• Soundness: No-Instance is accepted with probability at most 2−λ`
2/2.

• For each random string, there are 2λ(2`−1) accepting configurations.

• For each proof index j, let Zj be the set of all accepting configurations in which proof bit
Πj participates with value 0 and Oj be the set of all accepting configurations in which Πj

participates with value 1. We denote nj = |Zj | = |Oj | ≥ 2λr/2.

B.2 Construction and Analysis

Following [25, 3], we perform the reduction of Feige et al. [14], to construct the graph G = (V,E).
For each random string r ∈ R, for each accepting configuration C = (r, a1, . . . , aq), we add a
vertex v(r, C) to G, representing this configuration. Therefore, the number of the graph vertices,
N = |V (G)| = |R|2λ(2`−1) = 2λ(r+2`−1). For each index j in the proof Π, we let Oj and Zj be the
subsets of vertices of G representing the configurations where the value of the bit Πj is 1 and 0
respectively. We add a set Ej of edges between the vertices of Oj and the vertices of Zj , using the
following lemma, due to Andrews and Zhang [3]:

Lemma 14 (Lemma 11 in [3]) For all γ > 0 and sufficiently large n′, we construct a bipartite
graph ([n′], [n′], E′) where the edges in E′ are obtained by taking δ = 3

γ log 1
γ random bipartite

matchings. We say that the algorithm succeeds if for all subsets A,B ⊆ [n′], |A| , |B| ≥ γn′,
there is an edge (i, j) ∈ E′ connecting i ∈ A and j ∈ B. Then the above algorithm succeeds with
probability at least 1− e−n′γ(log(1/γ)−2).

For each proof index j, we invoke the above lemma to construct the set of edges Ej connecting Oj
and Zj . The final set of edges is E =

⋃
j Ej . This completes the construction of graph G = (V,E).

We first argue that the algorithm succeeds with high probability. Recall that nj ≥ 2λr/2 ≥ nΩ(λ).
Our choice of γ will be 2−O(λ) (to be made precise later), so the lemma only fails with exponentially
small probability for each proof bit Πj . Since there is a polynomial number of proof bits, we can
apply the union bound to ensure that the algorithm succeeds for all proof bits with high probability.
Notice that, each vertex has degree at most O(qγ log(1/γ)), because for each random string r, only
q proof bits are read.

Claim 15 In the Yes-Instance, there is an independent set of size at least 2λ(r−1).

Proof: Fix the proof Π∗ that is optimal in the Yes-Instance. We say that a random string r ∈ R
is good if it causes the verifier to accept given the proof Π. Recall that the number of good random

14

strings is at least |R|2−λ = 2λ(r−1). For each good random string r ∈ R, we can add, to set S, one
vertex v(r, C) where configuration C = (r,Π∗b1(r), . . . ,Π

∗
bq(r)

) encodes the corresponding answers.

So we have |S| ≥ 2λ(r−1). Since the edges in E only connect conflicting configurations, set S must
be an independent set.

Claim 16 In the No-Instance, any independent set has size at most 2λ(r−`2/2) + qγN .

Proof: Assume that S ⊆ V is an independent set of size larger than 2λ(r−`2/2) + qγN . For each
j, we know that min {|S ∩ Zj |, |S ∩Oj |} ≤ γnj because otherwise (from Lemma 14) there would
have been an edge between S ∩Zj and S ∩Oj . If |S ∩Zj | < |S ∩Oj |, we remove vertices in S ∩Zj
from S and define the value Π′j = 1; otherwise, we remove vertices in S ∩ Oj from S and define
Π′j = 0. Once we have processed all the proof bits, we have removed at most

∑
j γnj ≤ qγN

vertices from set S, and have obtained the proof Π′. The resulting set S̃ satisfies |S̃| > 2λ(r−`2/2).

We now define set R′ =
{
r ∈ R : (∃C)v(r, C) ∈ S̃

}
, so we have |R′| ≥ |S̃| > 2λ(r−`2/2). Notice that

the verifier accepts proof Π′ whenever r ∈ R′. Hence the verifier accepts proof Π′ with probability
|R′|/|R| > 2−`

2/2, a contradiction.

Finally we analyze the parameters. We set ` = 8/ε, where ε is the parameter from the statement of

Theorem 5. Recall that N = 2λ(r+2`−1) = nλpoly(1
ε
). We choose γ = 2λ(r−`2/2)/qN = 2λ(−`2/2−2`)/q,

so we have qγN = 2λ(r−`2/2). We write all parameters in terms of ε and λ below:

• Degree: Recall that the maximum vertex degree in graph G is ∆ = O(qγ log(1/γ)). By

plugging in the values γ = 2λ(−`
2/2−2`)

q and q = λ`2, we have ∆ = O(λ3`6) · 2λ`/2+2λ`−1, so for

a large enough λ, 2λ(`2/2+`) ≤ ∆ ≤ 2λ(`2/2+2`).

• Completeness: The value of Yes-Instance is 2λ(r−1) = N/22λ`. From the choice of ` = 8/ε,
we have ∆ε ≥ 2ελ(`2/2+2`) ≥ 2λ(2`+1), so completeness parameter is at least N/22λ` ≥ N/∆ε.

• Soundness: The value of the No-Instance is at most 2 · 2λ(r−`2) ≤ N/2λ(`2/2+2`+1). Since
∆1−ε ≤ 2λ(`2/2+2`)(1−8/`) ≤ 2λ`

2/2, the soundness value is at most N/∆1−ε.

• Running time: Creating the vertex set in FGLSS graph can be done in time 2λ(r+2`−1) =
nλpoly(1

ε
). Adding edges into the graph can be done in time polynomial in N , so the total

running time is nλ poly(1
ε
).

Derandomization: We can make this reduction deterministic by replacing Lemma 14 with the
following deterministic counterpart.

Lemma 17 ([21], as stated in Lemma 8 in [25]) For any γ and sufficiently large n, there is
a bipartite graph ([n′], [n′], E) of degree O(1

γ poly log(1/γ)) such that, for each subsets A,B ⊆ [n′],

|A| , |B| ≥ γn′, there is an edge (i, j) ∈ E connecting i ∈ A and j ∈ B. Such a graph can be
constructed in time poly(n′, 21/γ).

Using this lemma will cause the running time of 21/γ poly n = 2O(∆) poly n.

15

C Hardness of SMP

The construction here is very similar to the hardness construction of UDPMIN, except that here the
budgets of virtual customers are defined differently. For SMP, each virtual customer c ∈ Ch has

Bc = |C|−2h, and G(c) =
{
c(1), . . . , c(|C|2h)

}
. For completeness, we describe the construction and

its analysis below.

C.1 Construction

Let G = (V,E) be the instance of Maximum Independent Set obtained from Theorem 5, where the
value of λ (and ∆) will be fixed later. We first define an intermediate instance of SMP, which is
then converted into a final instance.

The intermediate instance is defined as follows. The set of items contains, for each vertex v ∈ V ,
for each index y ∈ [∆], an item i(v, y). That is, I = {i(v, y) | v ∈ V, y ∈ [∆]}.

Similarly, the set of customers contains, for each vertex v ∈ V , for each index x ∈ [∆], a customer
c(v, x). That is, C = {c(v, x) | v ∈ V, x ∈ [∆]}.

The item set Sc(v,x) for the customer c(v, x), contains the item i(v, x), and additionally, for each
neighbor u of vertex v in graph G, for each index y ∈ [∆], item i(u, y) belongs to Sc(v,x). Formally,
Sc(v,x) = {i(u, y) | (u, v) ∈ E, y ∈ [∆]} ∪ {i(v, x)}. Notice that

∣∣Sc(v,x)

∣∣ ≤ ∆2 + 1 for all customers
c(v, x) ∈ C. Moreover for each item i(v, y) ∈ I, there are at most ∆2 + 1 customers c′ ∈ C such
that i(v, y) ∈ Sc′ .

We partition the set C of customers into ∆ subsets C1, . . . , C∆, such that for each 1 ≤ h ≤ ∆, set
Ch contains customers c(v, h) for all v ∈ V . Finally, for each 1 ≤ h ≤ ∆, each customer c ∈ Ch is
assigned budget Bc = 1/|C|2h.

This finishes the definition of the intermediate instance. For convenience, we call the customers in
set C virtual customers. In our final instance, we replace each virtual customer with a number of
new customers.

In order to define the final instance, for each 1 ≤ h ≤ ∆, we replace each virtual customer c ∈ Ch
with a set G(c) =

{
c(1), . . . , c(|C|2h)

}
of |C|2h identical new customers. Each new customer c(h′), for

1 ≤ h′ ≤ |C|2h has budget Bc(h′) = Bc and Sc(h′) = Sc. The final set of customers is C′ =
⋃
c∈C G(c)

and the final set of items remains unchanged, I ′ = I. The number of customers in the final instance
is m̃ = |C′| = O(|C|O(∆) |C|) = |V | ·∆ · |C|O(∆) = |V |O(∆), while the number of items is ñ = |V | ·∆.
Moreover, for each customer c ∈ C′, we have |Sc| ≤ ∆2 + 1.

C.2 Analysis

The analysis is very similar to the analysis of UDPMIN.

Lemma 18 In the Yes-Instance, there is a price function that collects revenue at least |V |∆1−ε.

Proof: Let U ⊆ V be a maximum independent set of size |V | /∆ε. For each item i(u, y), u ∈ U, y ∈
[∆], we set the price p(i(u, y)) = Bc(u,y) = |C|−2y. We set the prices of other items to 0. Now we

16

argue that the total revenue made by price function p is at least |V |∆1−ε.

Fix v ∈ U, y ∈ [∆]. Consider virtual customer c′ = c(v, y) ∈ Cy. Notice that Sc′ contains item
i(v, y) but not any other item of positive price. Therefore each customer in G(c′) buys the set Sc′ ,
and we can collect the total revenue of 1 from customers in G(c′). The total profit collected from
customers in C′ is at least |U |∆ ≥ |V |∆1−ε.

Lemma 19 In the No-Instance, the value of the optimal solution is at most O(|V | ·∆ε).

Proof: Let p∗ be the optimal solution and r∗ be its revenue. We say that a virtual customer c ∈ C
is good if and only if Bc ≥

∑
i∈Sc p

∗(i) ≥ Bc
2|C| . Denote by C∗ ⊆ C the set of good virtual customers.

We first claim that |C∗| ≥ r∗/2. Indeed, for each bad virtual customer c ∈ C \ C∗, customers
in G(c) altogether contribute at most 1/(2|C|) to the profit, and therefore the total revenue from
customers in

⋃
c′∈C\C∗ G(c′) is at most 1/2 ≤ r∗/2. Hence the revenue of at least r∗/2 must come

from customers in
⋃
c′∈C∗ G(c′), and so |C∗| ≥ r∗/2.

From now on, we focus on constructing an independent set U in graph G of size at least (r∗/2 −
|V |)/∆ from C∗. Since in the No-Instance, G does not contain an independent set of size more
than |V |/∆1−ε, this implies that (r∗/2− |V |)/∆ ≤ |V | /∆1−ε, and hence r∗ ≤ O(|V |∆ε).

We construct an independent set U ⊆ V (G), together with a partition (C1, C2) of C∗, as follows.
Start with U, C1, C2 = ∅. We then perform ∆ iterations where, in iteration h, we consider all virtual
customers in C∆−h+1. When customer c(v, y) in C∗ ∩ Cy is considered, we do the following:

• If vertex v is already in U , we add virtual customer c(v, y) into C1.

• If vertex v is not in U and U ∪{v} remains an independent set, we add vertex v to set U and
add c(v, y) to C1. We say that c(v, y) is responsible for adding vertex v into U .

• Otherwise, v 6∈ U , but there is a vertex u ∈ U such that (u, v) ∈ E(G). We add c(v, y) to C2

in this case and say that vertex u prevents the algorithm from adding v into U .

In the end, when all customers in C∗ are processed, each virtual customer in C∗ is added to either
C1 or C2, so C∗ = C1 ∪ C2. Moreover, for each virtual customer c(v, y) in C1, the corresponding
vertex v belongs to U , so |U | ≥ |C1|/∆. The following claim will complete the proof of the lemma.

Claim 20 |C2| ≤ |V |, and so |U | ≥ |C∗ \ C2|/∆ ≥ (r∗/2− |V |)/∆.

Proof: It is sufficient to show that for each vertex v ∈ V , no two virtual customers c(v, y), c(v, y′)
with y 6= y′ belong to C2. Assume otherwise and let c(v, y), c(v, y′) ∈ C2. By our construction, we
have c(v, y) ∈ Cy and c(v, y′) ∈ Cy′ . Assume w.l.o.g. that y > y′, so c(v, y) was processed before
c(v, y′).

Let u ∈ U be a vertex such that (u, v) ∈ E(G), and vertex u prevents the algorithm from adding
v to set U . Let c(u, x) be the customer responsible for adding vertex u to U . Then c(u, x) was
processed in iteration x : x ≥ y > y′.

Notice that the item i(v, y′) belongs to Sc(u,x). The price of item i(v, y′) must be at most Bc(u,x) ≤
Bc(v,y′)/|C|2. Now consider virtual customer c(v, y′). Since it is a good customer and |Sc(v,y′)| ≤ 2∆2,

17

some item in Sc(v,y′) must cost at least Bc(v,y′)/(2∆2|C|), and this item cannot be i(v, y′). Let i′ be
such an item and assume that i′ = i(w, z). Then w is a neighbor of v in G, w 6= v, and so i′ ∈ Sc(v,y)

must hold. Since the price of i′ is p∗(i′) ≥ Bc(v,y′)/(2∆2|C|) > Bc(v,y), customers in G(c(v, y)) buy
nothing in this solution, contradicting the fact that c(v, y) ∈ C∗.

As in the analysis presented in Section 2, the gap that we obtain is g = ∆1−2ε, while the sizes of the
sets Sc are bounded by ∆2 +1, and the number of items is ñ = |V | ·∆. The number of customers is
slightly higher, m̃ = |V |O(∆). It is still immediate to verify that the same analysis of the parameters
as in Section 2 works for this construction, giving the required hardness of approximation factors.

18

