
Privacy Issues in Scientific Workflow Provenance

[Position Paper]

Susan B. Davidson, Sanjeev Khanna,
Sudeepa Roy

Department of Computer and Information
Science, University of Pennsylvania

Philadelphia, PA 19104, USA
{susan, sanjeev,

sudeepa}@cis.upenn.edu

Sarah Cohen Boulakia
Laboratoire de Recherche en Informatique

Université Paris-Sud
91405 Orsay cedex, France

cohen@lri.fr

ABSTRACT
A scientific workflow often deals with proprietary modules as well
as private or confidential data, such as health or medical informa-
tion. Hence providing exact answers to provenance queries over all
executions of the workflow may reveal private information. In this
paper we first study the potential privacy issues in a scientific work-
flow – module privacy, data privacy, and provenance privacy, and
frame several natural questions: (i) can we formally analyze mod-
ule, data or provenance privacy giving provable privacy guarantees
for an unlimited/bounded number of provenance queries? (ii) how
can we answer provenance queries, providing as much information
as possible to the user while still guaranteeing the required priva-
cy? Then we look at module privacy in detail and propose a formal
model from our recent work in [11]. Finally we point to several
directions for future work.

1. INTRODUCTION

Provenance in scientific workflows is of great interest, as evidenced
by several recent workshops and surveys on the topic. A number
of tools to capture, query, and manage provenance have also been
developed in workflow systems such as myGrid/Taverna [24], Ke-
pler [7], and VisTrails [15]. By maintaining information about the
processing steps used to produce a data item, as well as the param-
eter settings and intermediate data items passed between steps, the
validity and reliability of data can be better understood and results
be made reproducible.
However, making complete provenance information available may

raise privacy concerns. For example, intermediate data may contain
sensitive information, such as the social security number or a med-
ical record of an individual. Although using the data in an analysis
may be acceptable, revealing the data itself would be a breach of
privacy. A processing step (ormodule) may also be proprietary, and
therefore allowing a user to see its inputs and outputs over a large
number of executions could violate privacy by revealing its behav-
ior. Finally, details of how modules in the workflow are connected

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WANDS Indianapolis, IN, USA, June 6th, 2010
Copyright 2010 ACM 978-1-4503-0188-6 ...$10.00.

may be private, and therefore showing how data is passed between
modules would reveal the structure of the workflow. There is there-
fore a trade off between the amount of provenance information that
can be revealed and the privacy guarantees of the data and modules
comprising the workflow.
While the problem of answering user queries over a private source

of information has been extensively studied (see, for example, [12],
[25]), these results do not address core aspects of privacy in work-
flows. For instance, a commonly used idea is to introduce noise
in the answer to a query. However, in scientific workflows the
accuracy of revealed intermediate data is critical, and thus adding
noise to the output of a module is undesirable. On the other hand,
if intermediate data is revealed with any meaningful precision over
a large number of executions of the workflow, the user may learn
the behavior of private modules in the workflow.
Hence, addressing privacy in workflows requires a formal notion

of privacy and suitable mechanisms for hiding provenance infor-
mation to attain a required privacy guarantee. In this paper, we
will call the part of the workflow or executions of the workflow
that are revealed to the user a privacy-preserving view. Clearly,
providing a view which consists only of the inputs to and outputs
from the workflow, with all details of the workflow execution hid-
den in a “black box” composite module, guarantees any privacy
requirements. However, it does not reveal any provenance infor-
mation. This leads to a natural optimization problem which we call
the secure-view problem - how to find a privacy-preserving view
of the workflow which maximizes the provenance information re-
vealed to the user. In our current research, we focus on obtaining
a mathematical model of privacy in workflows with respect to dif-
ferent private components and finding exact or good approximate
solutions to the secure-view problem.

Related Work.
Privacy-preserving data mining has received considerable attention
in recent years (see surveys [1, 28], and the references therein).
Here, the goal is to hide individual data attributes while retaining
the suitability of the data for mining patterns. For example, the
technique of anonymizing data makes each record indistinguish-
able from a large enough set of other records in certain identifying
attributes [27, 21, 3]. Privacy preserving approaches have been s-
tudied for social networks [19, 4, 25, 9], auditing queries [23, 22]
and in other contexts. Another widely used technique is that of
data perturbation where some noise (usually random) is added to
the the output of a query or to the underlying database. This tech-
nique is often used in statistical databases, where a query computes
some aggregate function on the dataset [2, 12]. Privacy in statisti-

cal databases is often quantified using the framework of differential
privacy, which requires that the output distribution is almost invari-
ant to the inclusion of any particular record (see, for example, the
surveys [13, 14]).

The problem of preserving privacy in a workflow has been con-
sidered in the papers [10, 17, 16]. In [10], the authors discuss a
framework to output a partial view of a workflow that conforms
to a given set of access permissions on the connections between
modules and data on input/output ports. In particular, the authors
define specifications for port level security (for data values pro-
duced or consumed by ports of modules), channel level security
(for the presence of edges between modules) and task level secu-
rity (for all input/output data of a module or sub-workflow). The
problem of ensuring the lawful use of data according to some spec-
ified privacy policies has been considered in [17, 16], even when
access control on the data has been enforced. The relationships a-
mong data and module sets, and their properties relevant to privacy,
is specified by a policy language. Workflow systems incorporated
with privacy awareness properties enable scientists to ensure da-
ta privacy throughout the data analysis process. However, to the
best of our knowledge, a formal study of privacy issues specific to
workflows with provable privacy guarantees has not yet been stud-
ied. Although the above papers address privacy issues in scientif-
ic workflows, the privacy notions are somewhat informal, and no
guarantees on the quality of the solution are provided in terms of
their privacy and utility.
Secure provenance for workflows has been studied [20, 8, 18].

Here the goal is to ensure that provenance information has not
been forged or corrupted, and a variety of cryptographic and trusted
computing techniques are proposed. The secure provenance prob-
lem is quite different from that of privacy in workflow provenance,
where the goal is to ensure that privacy is maintaned while still
maximizing the user’s utility in terms of provenance information.

Contribution and Organization.
The contribution of this paper is a discussion of privacy issues in
workflow provenance, and a description of an approach for preserv-
ing module privacy in workflows with provable guarantees.
We start by describing our workflow model in Section 2, and

discuss privacy issues in workflow provenance in Section 3. In
Section 4, we highlight our recent work [11], which provides a for-
mal definition of module privacy in a workflow and an approach
to guarantee privacy while maximizing the provenance information
revealed. We discuss several interesting and challenging open prob-
lems regarding privacy in workflows in Section 5, and conclude in
Section 6.

2. WORKFLOWMODEL

We describe an abstract model that captures the workflows consid-
ered in most of workflow systems (e.g. MyGrid, Taverna, Vistrails,
etc). A workflow can be thought of as a program, producing a set
of final output data from a set of initial input data in an execution.
Internally, a workflow system comprises a set of modules (i.e. pro-
grams) with input and output data ports. A module receives initial
input data or data generated by other modules on its input ports and
sends its output data or generates final data on its output ports; data
items sent by a module to another module are called intermediate
data. Parameters can also be specified for modules and, for uni-
formity, are considered to be initial inputs as well. In this paper,
we assume that the connections form an acyclic graph on the mod-

ules, which is common in many of the aforementioned workflow
systems [15, 24].





 






 











 












 














Figure 1: Example of a workflow execution

An example of a workflow is shown in Figure 1 which (for sim-
plicity) uses boolean data and functions. There are two initial input
data d1 and d2 on edges e1 and e2, respectively, d5,d6 on edges e6
and e7 are the final output data. The three modules in the workflow
are v1,v2 and v3. Their underlying functions f1, f2 and f3 are de-
fined as follows: (a) f1 computes two intermediate data d3 and d4,
where d3 = d1 and d4 = d1 ∨ d2, (b) f2 = d3⊕ d41 and produces
one output data d5 which is 1 iff d3 #= d4, (c) the other output data
d6 = 1−d4 is produced by f3. Note that the data d4 produced by
v1 acts as input to both v2 and v3; in general, a data output by a
module can act as input to multiple modules as well as (possibly)
be a final output data. We call this phenomenon data sharing. Note
that a data item cannot be output by more than one module. Also,
observe that a workflow may be a multigraph: in this example, v1
sends two data d3 and d4 to v2.
Figure 1 also shows a sample execution of the workflow when

d1 = 0 and d2 = 1 are the initial inputs; then d3 = 0, d4 = 1, d5 = 1
and d6 = 0. In this execution, the provenance of d6 = 0 includes
data values d1 = 0,d2 = 1 and d4 = 1, and modules v1 and v3.
On the other hand, the provenance of d5 = 1 includes data values
d1 = 0,d2 = 1,d3 = 0 and d4 = 1, and modules v1 and v2.
Given a workflow, we assume that there is a workflow owner

and a user. The owner decides which components (data and mod-
ules) in the workflow are private for this user. The user can execute
the workflow on different initial input data an arbitrary number of
times. The user is always able to see the initial input data and the
final output data. Further, the user wants to see some of the inter-
mediate data as the response to a provenance query. However, the
owner may or may not grant the user access to some of the inter-
mediate data to ensure the privacy of the private components in the
workflow. We say that a data is hidden if the user is not granted
the access to see the corresponding data value for all executions of
the workflow, otherwise the data is visible. Note that the user can
always see the connections with the unique identifiers of the data,
only the value of the data may be hidden. The private components
of the workflow and their desired privacy level can be specific to a
particular user; in our current work we have considered a single us-
er and leave the problem of handling multiple users with different
private components, i.e. handling more general role based access
control, for future work.

1a⊕ b denotes the XOR of a and b: If a,b are two bits, a⊕ b = 1
iff a #= b.

3. MOTIVATING EXAMPLES AND PRIVA-
CY ISSUES

Let us first consider some real life scenarios with potential privacy
concerns.

Example 1. A module f in a medical diagnosis workflow detects
the presence of a disease X by taking as input a set of patient at-
tributes (eg. age, gender, smoking habit, blood pressure etc.) and
produces as output the probability that the patient has a particu-
lar disease. The functionality of this module, represented by its
input-output behavior (I, f (I)), may be highly sensitive. However,
if a large enough set of such pairs are publicly available, then f (I)
could be exactly or approximately calculated for some patient in-
put I, which may be socially, legally, or morally unacceptable. The
module may also correspond to a proprietary or private algorithm,
and the owner may be concerned that some approximation of the
algorithm could be reverse-engineered, or that the relative impor-
tance of attributes in I could be revealed, by exposing its function-
ality.

Example 2. In a microarray experiments biologists must cope
with variation in experimental conditions which is unrelated to the
biological differences they seek to understand. Normalization is an
attempt to compensate for experimental variation to enable the bi-
ological differences between samples to be more clearly seen. Mi-
croarray companies (and companies who provide the robots used to
perform the experiments) therefore provide software to normalize
results obtained using their chips/robots, which may then be used
in scientific workflows. However, the software frequently uses pri-
vate data obtained from experiments performed by other groups
using the software, which should not be revealed.
Example 3. With the exponentially growing number of sequenced

genomes that are becoming available, techniques for functional an-
notation – determining the function or role of each protein in a
genome – have become important. To provide annotations of good
quality, annotation workflows are being developed. One such anno-
tation workflow may take as input a protein sequence and produce
an annotation expressed using a set of Gene Ontology (GO) terms.
In one such workflow, three modules are used: (i) ModuleM1 com-
pares the input protein sequence to the sequences of other genomes
that have already been annotated, and provides the annotation of
the closest protein found; (ii) ModuleM2 searches for domains and
outputs the set of sequences representing domains found in the pro-
tein (each domain may have its own function); (iii) Module M3 lo-
cates the sequence in the genome as a whole to make sure that the
sequence is complete, and completes it if not. These three tasks can
be performed in different orders (either sequentially or in parallel),
and some of the tasks may be skipped under certain conditions; in
one workflow execution onlyM1 may be executed, while in another
execution of the workflow bothM1 andM2 may be executed in par-
allel. For example, if M2 provides only one sequence (the protein
is composed of one single domain) then the annotation provided by
M1 is the final output. Otherwise the original result obtained byM1
is flushed, andM1 is executed for all the sequences provided byM2;
the final output is the union of the sets of GO terms of each domain.
The creator of the workflow may be willing to reveal the modules
used in the workflow, but not the order in which they are executed
since this influences the efficiency of their annotation. In this case
the algorithm used in the workflow, or the provenance information
of any annotated genomes is private information.
Motivated by the above examples and the privacy model given in

[10], we list three types of privacy issues in scientific workflows:

Module Privacy: The functionality of one or more modules in a
workflow may be private information, as described in Example 1.
In other words, the user should not be able to guess with a specified
degree of certainty the output f (x) of module f for any input x to
that module. Workflow modules may also involve proprietary code
or algorithms, in which case the algorithm to compute the function
f may be private information.

Data Privacy: A module may consult a private database and out-
put data containing sensitive personal information, e.g. a medical
record or proprietary experimental results (see Example 2). While
the module cannot be used in isolation, it could be used as an in-
ternal component of a workflow, or packaged within a composite
module in which its output data is desensitized by a downstream
module. Thus data flowing between modules in a workflow (inter-
mediate data) may contain private data. For example, in Example
1 the value of f (I) could be private.

Provenance Privacy: Details of how a particular data product has
been generated in an execution of the workflow may also be private
(see Example 3).

To further illustrate these three privacy issues, consider the example
workflow in Figure 1. Suppose that module v2 is proprietary, i.e.
the function f2 is not known and is private. Then module privacy
requires that no adversarial user should be able to guess the value
of f2(d3,d4) with high probability for any given assignment of the
bits d3 and d4. For data privacy, if d5 is a private data then the
value of d5 should not be revealed with high probability in any ex-
ecution. Note the difference between module and data privacy: For
module privacy, we may reveal the value of d5 as long as we do not
know the values of d3,d4 such that f2(d3,d4) = d5. However, for
data privacy d5 can never be revealed. Finally, provenance privacy
for d5 means that how the value d5 = 1 has been generated in this
execution (i.e. the graph itself in Figure 1) must be kept private.
In the next section we highlight our recent work on module priva-

cy [11], in which the functionality of each module in the workflow
is considered private.

4. PRESERVING MODULE PRIVACY

In [11] we model module privacy for workflows in which all mod-
ules are private and the user has no apriori knowledge of their func-
tionality2. Although requiring all modules to be private is a restrict-
ed case, the privacy issues are already complex and yield significant
insight into handling the more general case in which some modules
may be public (i.e. not private).
It is easy to see that if information about all intermediate data is

repeatedly given for multiple executions of a workflow on different
initial inputs, then partial or complete functionality of modules may
be revealed. As an example, suppose that the provenance data for
module v3 includes the following: For input d1 = 0,d2 = 1, d4 = 1
and d6 = 0, while for input d1 = 0,d2 = 0, d4 = 0 and d6 = 1. This
reveals the function f3 (i.e. f3(0) = 1 and f3(1) = 0).
Our mechanism to achieve privacy of modules in a workflow is

to hide a carefully chosen subset of intermediate data, thereby lim-
iting the amount of provenance data shown to the user. Users will

2The functionality of a module with an underlying function f refers
to the input-output behavior of the module (i.e., the (x, f (x)) pairs
for all possible inputs x to the module) and not the underlying al-
gorithm to compute the function f .

always be able to see input and output data for the workflow as
a whole, since they are able to run the workflow. An alternative
approach commonly used in privacy preserving data mining tech-
niques is to add noise to the answer of a query to meet the required
privacy level. While adding noise is reasonable for scenarios like
statistical databases, where the goal is to preserve the answer to the
query within some precision, adding noise to output data for work-
flow modules destroys the integrity of the data and undermines re-
peatability of the experiment. We therefore choose to hide data
rather than add noise.
We also assume that the user can see all connections or edges

between modules in the workflow; only the values (data) associated
with certain edges are hidden. Note that they will be hidden in all
executions of the workflow.
We start by formalizing the notion of Γ-privacy of a module

when it is not part of a workflow (standalone module privacy) as
well as when it is a component of a workflow (in-network module
privacy). Although it would seem that standalone module privacy
should be enough, the interactions between modules in a network
make the in-network setting more complex.
Informally, we say that a standalone module is Γ-private for

some parameter Γ > 0 w.r.t the information visible to the user, if
given any input x to the module, the actual value of f (x) is indis-
tinguishable from at least Γ−1 other potential values of f (x) (this
also implies that the user can guess the correct output f (x) with
probability at most 1Γ). This definition is similar to the concept
of !-diversity [21], which resolves some problems of k-anonymity
[27]3. For example, consider module v1 with f1(d1,d2) = (d3,d4),
where d3 = d1,d4 = d1∨d2; i.e. f1(0,0) = (0,0), f1(0,1) = (0,1),
f1(1,0) = (1,1) and f1(1,1) = (1,1). If we hide the output data d3
or d4, without any apriori knowledge of the function f1, any input
can be mapped to at least two different outputs. For example, when
d3 is hidden then f1(0,0) can be mapped to either (0,0) or to (1,0))
and the user can guess the correct output only with probability 12 .
More precisely, a consistent function for f1 with respect to a set

of hidden input and output data preserves the input-output mapping
with respect to the set of visible data. An example of a consistent
function g for f1 with respect to the hidden data {d3} is g(d1,d2) =
(d3 = 1− d1,d4 = d1 ∨ d2). We say that hiding d3 guarantees Γ-
privacy for standalone module v1 where Γ= 2, since for any assign-
ments of input data d1,d2, the range

⋃
g g(d1,d2) ≥ Γ = 2, where

the union is taken over all consistent functions g with respect to
the hidden data d3 for f1. It can be shown that even if the user
is allowed to see all executions of f1 projected to the visible data,
the actual value of f (x) is indistinguishable from at least one more
value (i.e. he cannot guess the correct output of any input with
probability more than 12).
The standalone privacy requirement of each module in a work-

flow can be specified in the most general form as a list of pairs of
input-output data sets (called set constraints) that need to be hidden
to ensure Γ-privacy. In our example, the sets {d3} or {d4} ensures
2-privacy for v1. A more succinct, but less expressive, representa-
tion is to specify a list of pairs of numbers called cardinality con-
straints for each module. Hiding at least as many input and output
data as specified in any one of the cardinality constraint pairs guar-
antees standalone privacy for that module . For example, hiding
any 1 output data guarantees 2-privacy for v1.
We assume that the standalone privacy requirement of a mod-

3The notion of privacy according to k-anonymity is that, for each
x, there are Γ− 1 other x′ such that (x, f (x)) and (x′, f (x′)) are
indistinguishable w.r.t the visible information. However, it may not
be sufficient to hide the value of f (x) if there is not enough diversity
in the f (x′) values, for example, if f (x′) = f (x) for all such x′

ule is given by the module designer, who has complete knowledge
of its functionality. However, note that in many real life scenarios
the number of input and output data of a module is typically small.
Therefore, given a table completely specifying the the inputs and
outputs of the module, it may be possible to calculate the the stan-
dalone privacy requirement of a module by considering all possible
combinations of input and output data.
The in-network Γ-privacy of a module is defined similarly: For

any input to any module in the workflow, the user should not be
able to guess the correct output of the module with probability >
Γ. The notion of consistent function is extended to a sequence of
consistent functions for the modules in the workflow. Note that we
still consider privacy of individual modules in the workflow, but
that interactions between modules in the workflow can potentially
reveal more information than in the standalone case.
For example, suppose d4 is hidden in the workflow depicted in

Figure 1. Consider functions g1 = (d1,d1∨d2), g2 = d3⊕d4 and
g3 = d4. It can be verified that the visible bits produced by these
functions are identical to those produced by f1, f2, f3, in any exe-
cution of the workflow. Therefore, g = 〈g1,g2,g3〉 is a consistent
sequence of functions for the workflow, with respect to the hidden
data d4.
Although a sequence of consistent functions for the network is

always consistent for the individual standalone modules with re-
spect to the same set of hidden bits, the reverse is not true. In par-
ticular, a sequence of consistent functions for a set of standalone
modules with respect to a set of hidden bits does not guarantee that
the same sequence is consistent in a network setting, when the same
set of bits is hidden.
Consider the following example – we define g = 〈g1,g2,g3〉,

where g1 = f1,g2 = d3⊕d4 and g3 = f3. Note that g1,g2,g3 are
consistent functions for f1, f2, f3 respectively with respect to the
hidden data d4. However, g1,g2,g3 is not a consistent sequence
of functions for the workflow with respect to the hidden data d4.
In this case, if d1 = 0,d2 = 0, then f1(d1,d2) = (d3 = 0,d4 = 1),
f2(0,1) = d5 = 1, whereas g1(d1,d2) = (d3 = 0,d4 = 1), g2(0,1) =
d5 = 0. But d1,d2 and d5 are parts of initial input and final output
data, and hence are always visible. This makes g= 〈g1,g2,g3〉 in-
consistent with the workflow with respect to the hidden data d4.
Returning to the notion of in-network module privacy, let v1, · · · ,vn

be modules in a workflow. We say that a module vi has in-network
Γ-privacy with respect to a set of hidden bits S if

⋃
g=〈g1,...,gn〉 gi(x)≥

Γ, where the union is over all consistent sequence of functions for
the workflow with respect to a hidden set of bits S. While stan-
dalone module privacy can be naturally captured in terms of hiding
input and output bits at the module level, the notion of in-network
privacy of a module is inherently linked to the topology of the net-
work representing the workflow as well as the functionality of the
modules.
In general, it appears that in-network privacy of modules requires

us to consider the input-output behavior of all modules given all
possible initial inputs. This may be computationally infeasible if
the individual data items come from an unbounded or infinite do-
main, even if the number of data items in the initial input is small.
The first question we address in [11] is whether this global pri-

vacy requirement can be captured in terms of the local standalone
privacy requirements of individual modules. Then we define a nat-
ural optimization problem, which we call the secure-view problem,
as follows: what is the minimum cost of intermediate data that can
be hidden while guaranteeing all modules in the workflow have in-
network Γ-privacy for some given parameter Γ > 0? In this prob-
lem the cost of a data item indicates the utility lost to the user in
terms of provenance information when the data item is hidden. The

versions of secure-view problem, where the requirements for indi-
vidual modules are either specified as explicit set constraints or as
cardinality constraints, are shown to be NP-hard, even assuming u-
nit cost and no data sharing. This motivates us to give poly-time
approximation algorithms4 for these problems.

5. FUTUREWORK

There are numerous promising directions for future exploration.
The first question that arises is what happens when both public and
private modules can constitute the workflow. If a module is public
with known underlying function f , then given any input x to the
module f (x) can be computed. We can easily construct workflows
where the presence of such modules provably compromises privacy
of private modules.
For example, suppose in Figure 2 that modules v1,v3 are private

with unknown functionality but that module v2 is public, with un-
derlying function f2 which is a constant function (eg. f2 = (0,0)
for all assignments of its inputs). Since the final output data bits
d3,d4 are always visible, this causes a privacy breach for the pri-
vate module v3 on input d1 = 0 and d2 = 0.





















Figure 2: An example workflow where v1,v3 are private mod-
ules and v2 is a public module

Thus handling privacy in this more general setting requires ei-
ther identifying natural restrictions on the behavior of public mod-
ules (for example, one-one and/or onto functions), or introducing a
parameter in the privacy requirement of the private modules which
depends on some property of the public modules.
A more ambitious question will be to generalize the notion of

private and public modules. For example, how we can guarantee
that the prior knowledge of a user on the functionality of each mod-
ule in the workflow does not change significantly given access to
executions of the workflow on different inputs?
Another interesting open problem is to study whether a privacy

definition similar to differential privacy[13, 14] is possible in the
settings of workflows. A differentially private mechanism answer-
ing queries from a statistical database guarantees that the output
distribution of the mechanism is almost the same on two neighbor-
ing databases that differ in at most one record, thereby ensuring that
the privacy of any single record remains the same whether or not it
participates in the database. However, in the settings of workflows
and the privacy issues we are considering, there is no obvious no-
tion of “neighborhood” since excluding any single module or data
4An algorithm is said to be a µ(n)-approximation algorithm for
some non-decreasing function µ(n) : N+ → N if on every input of
size n it computes a solution where the value is within a factor of
µ(n) of the optimal algorithm.

from a workflow can change the entire semantics of the workflow.
A suitable query mechanismmust also be explored since just hiding
or revealing a single data value may not suffice.
So far we have only focused on preserving module privacy. How-

ever, exploring the mathematical models for data-privacy in work-
flow is another open problem. Note that existing techniques for p-
reserving data privacy in statistical and relational databases do not
directly extend to preserving data privacy in workflows, since stan-
dard provenance queries in workflows require revealing exact data
values. As discussed earlier, adding noise reduces the repeatability
of experiments involving scientific workflows. Also, just hiding a
data value or denying a particular query may not be sufficient to
ensure data privacy due to the dependence of data values on other
modules and data in the workflow.
There may also be mechanisms other than hiding individual data

items that can be used to guarantee privacy, for example, clustering
portions of the workflow into composite modules [5]. It will be
interesting to create a formal privacy model using clustering, and
study issues such as if a privacy-preserving clustering preserves the
mutual data dependency among the intermediate data not hidden
inside clusters [5, 6, 26].
Other examples of future research directions include studying

privacy in the presence of loops and forks (i.e. parallel module
executions over elements of an input set), and handling multiple
users with different privacy components corresponding to different
permissions with possible collusions between users.

6. CONCLUSIONS

In this paper we discussed privacy issues in workflows, and briefly
described a formalization of module privacy which gives high-quality
solutions to the optimization problem that tries to maximize the u-
tility of provenance data while preserving module privacy in the
workflow. We also suggested several promising directions for fu-
ture exploration in this very new area of workflow privacy.

Acknowledgments: We thank the anonymous reviewers for their
detailed comments which helped to improve the presentation of
this paper. This research was supported in part by NSF grant: IIS-
0803524.

7. REFERENCES
[1] Privacy-preserving data mining: Models and algorithms.

www.charuaggarwal.net/toc.pdf, 33(1):50–57, 2004.
[2] N. R. Adam and J. C. Worthmann. Security-control methods

for statistical databases: a comparative study. ACM Comput.
Surv., 21(4):515–556, 1989.

[3] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller,
R. Panigrahy, D. Thomas, and A. Zhu. Achieving anonymity
via clustering. In PODS, pages 153–162, New York, NY,
USA, 2006. ACM.

[4] L. Backstrom, C. Dwork, and J. M. Kleinberg. Wherefore art
thou r3579x?: anonymized social networks, hidden patterns,
and structural steganography. InWWW, pages 181–190,
2007.

[5] O. Biton, S. Cohen-Boulakia, S. Davidson, and C. Hara.
Querying and managing provenance through user views in
scientific workflows. In ICDE, 2008.

[6] O. Biton, S. B. Davidson, S. Khanna, and S. Roy. Optimizing
user views for workflows. In ICDT, pages 310–323, 2009.

[7] S. Bowers and B. Ludäscher. Actor-oriented design of
scientific workflows. In ER, 2005.

[8] U. Braun, A. Shinnar, and M. Seltzer. Securing provenance.
In USENIX HotSec.

[9] A. Campan and T. M. Truta. A clustering approach for data
and structural anonymity in social networks. In PinKDD,
2008.

[10] A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P. Yang.
Scientific workflow provenance querying with security
views.WAIM, pages 349–356, July 2008.

[11] S. B. Davidson, S. Khanna, D. Panigrahi, and S. Roy.
Preserving module privacy in workflow provenance.
Technical Report MS-CIS-10-22, Dept. of Computer and
Information Science, University of Pennsylvania, May 2010.

[12] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS, pages 202–210, New York,
NY, USA, 2003. ACM.

[13] C. Dwork. Differential privacy: A survey of results. In
TAMC, pages 1–19, 2008.

[14] C. Dwork. The differential privacy frontier (extended
abstract). In TCC, pages 496–502, 2009.

[15] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E.
Scheidegger, and H. T. Vo. Managing rapidly-evolving
scientific workflows. In IPAW, 2006.

[16] A. Gil, W. K. Cheung, V. Ratnakar, and K. kin Chan. Privacy
enforcement in data analysis workflows. In PEAS, 2007.

[17] Y. Gil and C. Fritz. Reasoning about the appropriate use of
private data through computational workflows. In Intelligent
Information Privacy Management, Papers from the AAAI
Spring Symposium, pages 69–74, March 2010.

[18] R. Hasan, R. Sion, and M. Winslett. Introducing secure
provenance: problems and challenges. In StorageSS, pages
13–18, New York, NY, USA, 2007. ACM.

[19] A. Korolova, R. Motwani, S. U. Nabar, and Y. Xu. Link
privacy in social networks. In CIKM, pages 289–298, New
York, NY, USA, 2008. ACM.

[20] J. Lyle and A. Martin. Trusted computing and provenance:
Better together. In TaPP ’10: 2nd Workshop on the Theory
and Practice of Provenance, 2010.

[21] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. L-diversity: Privacy beyond
k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1):3, 2007.

[22] R. Motwani, S. U. Nabar, and D. Thomas. Auditing sql
queries. In ICDE, pages 287–296, 2008.

[23] S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and
R. Motwani. Towards robustness in query auditing. In VLDB,
pages 151–162. VLDB Endowment, 2006.

[24] T. Oinn et al. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics,
20(1), 2003.

[25] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship
privacy: output perturbation for queries with joins. In PODS,
pages 107–116, 2009.

[26] P. Sun, Z. Liu, S. B. Davidson, and Y. Chen. Detecting and
resolving unsound workflow views for correct provenance
analysis. In SIGMOD ’09: Proceedings of the 35th SIGMOD
international conference on Management of data, pages
549–562, New York, NY, USA, 2009. ACM.

[27] L. Sweeney. k-anonymity: a model for protecting privacy.

Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
10(5):557–570, 2002.

[28] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza,
Y. Saygin, and Y. Theodoridis. State-of-the-art in privacy
preserving data mining. SIGMOD Rec., 33(1):50–57, 2004.

