
Approximating Pure Nash Equilibrium in Cut, Party
Affiliation, and Satisfiability Games

Anand Bhalgat
∗

University of Pennsylvania
bhalgat@cis.upenn.edu

Tanmoy Chakraborty
†

University of Pennsylvania
tanmoy@cis.upenn.edu

Sanjeev Khanna
‡

University of Pennsylvania
sanjeev@cis.upenn.edu

ABSTRACT
Cut games and party affiliation games are well-known classes
of potential games. Schaffer and Yannakakis showed that
computing pure Nash equilibrium in these games is PLS-
complete. In general potential games, even the problem of
computing any finite approximation to a pure equilibrium
is also PLS-complete. We show that for any ε > 0, we de-
sign an algorithm to compute in polynomial time a (3 + ε)-
approximate pure Nash equilibrium for cut and party affil-
iation games. Prior to our work, only a trivial polynomial
factor approximation was known for these games. Our ap-
proach extends beyond cut and party affiliation games to a
more general class of satisfiability games.

A key idea in our approach is a pre-processing phase that
creates a partial order on the players. We then apply Nash
dynamics to a sequence of restricted games derived from
this partial order. We show that this process converges
in polynomial-time to an approximate Nash equilibrium by
strongly utilizing the properties of the partial order. This is
in strong contrast to earlier results for some other classes of
potential games that compute an approximate equilibrium
by a direct application of Nash dynamics on the original
game. In fact, we also show that such a technique cannot
yield FPTAS for computing equilibria in cut and party af-
filiation games.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; J.4 [Social
and Behavioral Sciences]: Economics

∗Supported in part by NSF Awards CCF-0635084 and IIS-
0904314.
†Supported in part by NSF Award CCF-0635084.
‡Supported in part by NSF Awards CCF-0635084 and IIS-
0904314.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’10, June 7–11, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-60558-822-3/10/06 ...$10.00.

General Terms
Algorithms, Economics, Theory

Keywords
Approximation Algorithms, Cut Games, Party Affiliation
Games, Potential Games, Pure Nash equilibrium

1. INTRODUCTION
Designing efficient algorithms to compute equilibrium of

games in polynomial time is one of the fundamental goals of
algorithmic game theory. In this paper, we focus on the com-
putation of pure Nash equilibrium, where players play de-
terministic strategies. An extensively studied class of games
with a guaranteed pure Nash equilibrium is potential games,
introduced by Monderer and Shapley [13]. Potential games
are games with finite strategy space where one can define a
potential function on the pure joint strategies of the players,
also referred to as states of the game, such that if any player
switches its strategy, the change in potential is equal to the
change in the payoff of that player. Examples of potential
games include well-studied classes of games such as conges-
tion games [15, 8], cut games [7, 18], party affiliation games
[8, 4], fair cost sharing games [2] and market sharing games
[9], to name a few. Congestion games form the most promi-
nent class, and every potential game can be shown to be
isomorphic to a congestion game [13]. Existence of a poten-
tial function implies a local search algorithm for computing
pure Nash equilibrium in potential games: start from any
arbitrary state, and repeatedly switch the strategy of some
player whose payoff improves due to the switch, till no player
improves its payoff by deviating. Since the potential of the
game monotonically changes at each step, this algorithm
terminates in finitely many steps. This generic algorithm is
also known as Nash dynamics. However, it can take expo-
nential number of steps to converge in the description of the
game, if the payoffs are exponential.

Johnson, Papadimitriou and Yannakakis [10] introduced
the complexity class PLS, which includes all problems that
have a local search algorithm where each step can be com-
puted in polynomial time. It is believed that a PLS-complete
problem is unlikely to have a polynomial time algorithm.
Indeed, computing pure equilibrium in many classes of po-
tential games is known to be PLS-complete [10, 12, 18, 8]. In
this paper, we focus on one of the fundamental PLS-complete
problems, namely, computing a local optimum for finding a
maximum cut in a graph [18]. In this problem, an undi-
rected graph with non-negative weights on edges is given as

73

input. Let wuv ≥ 0 denote the weight of the edge between
vertices u and v. A cut is a partitioning of the vertices into
two groups. Let sv ∈ {−1, 1} denote the partition to which
vertex v belongs. The size of the cut is the sum of weights
of edges that go across the cut, that is,

∑
{u,v:su 6=sv} wuv.

A single step of the local search algorithm is defined as a
vertex switching sides to increase the sum of the weight of
edges incident on the vertex that go across the cut, and thus
increasing the weight of the cut. This inspires the definition
of cut games [7], where each vertex v is viewed as a player,
whose strategy is choosing one of the two partitions of the
cut, and whose payoff is

∑
{u:su 6=sv} wuv. Each player wishes

to maximize its payoff.
Party affiliation games is another class of games that is

closely related to cut games [8, 4]. These games also in-
volve the partitioning of vertices in an undirected graph with
weights on edges, where the vertices act as players. There
are two definitions of party affiliation games found in liter-
ature. Fabrikant et. al. [8] allowed weights of edges to be
both positive as well as negative, and defined payoff of a
player v to be sgn(

∑
u susvwuv). The payoff is thus either

+1 or −1, and in fact, a payoff of +1 for a player playing
one strategy implies a payoff of −1 for its other strategy.
So the concept of approximation is redundant here – the
only approximate equilibria are the exact equilibria. We in-
stead use the definition used in Balcan et. al. [4]. Here all
edges weights are non-negative, and edges are partitioned
into two groups: friend edges Ef and enemy edges Ee. The
payoff of a player v is defined to be

∑
{u:(u,v)∈Ee,si 6=sj} wuv+∑

{u:(u,v)∈Ef ,su=sv} wuv i.e. a friend edge contribute to the

players’ payoff when its endpoints are on the same side of
the cut, and an enemy edge contribute to the players’ pay-
off when its endpoints are across the cut. Party affiliation
games are also potential games, and party affiliation games
with only enemy edges correspond to cut games, so com-
puting equilibrium in these games is PLS-complete. It is
worth noting that party affiliation and cut games admit a
trivial mixed Nash equilibrium, where every player plays ei-
ther strategy with probability half each, irrespective of the
structure of the graph. In the remainder of this paper, any
mention of an equilibrium will refer to a pure Nash equilib-
rium.

Inspired by these negative results on computing equilib-
rium in potential games, the concept of α-approximate equi-
librium has been recently developed [9, 16], which is a state
where no player can improve its payoff by a factor of α > 1
or more by unilaterally deviating from its strategy. Unfortu-
nately, computing an α-approximate equilibrium in conges-
tion games, for every α, was also shown to be PLS-complete
[19]. Though for some restricted classes of congestion games,
Nash dynamics has been shown to converge to an exact
equilibrium in polynomial time (eg. [1]) or to a (1 + ε)-
approximate equilibrium in time polynomial in size of the
input and ε−1 [6, 5], thus yielding an FPTAS. However,
negative results tend to dominate this research area, and
almost all positive results have been achieved by Nash dy-
namics. To the best of our knowledge, the only example
of an algorithm that is not Nash dynamics for computing
equilibrium or approximate equilibrium in a potential game
is that for symmetric network congestion games [8], which
involves a maximum flow computation.

Other Related Work: The only positive result pertain-

ing to cut games is by Poljak [14], who showed that a pure
equilibrium of a cut game can be computed in polynomial
time if the maximum degree of any vertex in the graph is at
most 3. However, for graphs with maximum degree d > 3,
while it is easy to compute a d-approximate equilibrium (d
can be as large as n − 1), nothing better is known. On the
other hand, nothing is known about the inapproximability
of cut games or party affiliation games. It is worth noting
that there are many results on cut games and party affilia-
tion games in which Nash dynamics and other decentralized
mechanisms lead to states that have high social value (sum
of payoff of all the players) [7, 3, 4], but these dynamics
fail to reach an approximate equilibrium (for any small ap-
proximation factor), and instead leave some player(s) grossly
unsatisfied.

1.1 Our Results
Our first main result is a polynomial-time algorithm to

computes an O(1)-approximate Nash equilibrium for cut
and party affiliation games. It should be noted that any
α-approximate equilibrium in these games is also a state
whose social payoff (sum of payoffs of all the players) is at
least 1/(α + 1) fraction of the optimal social payoff, so the
state computed by our algorithm also has a good social pay-
off.

Theorem 1.1. For any ε > 0, there is a polynomial-time
algorithm to compute a (3 + ε)-approximate pure Nash equi-
librium for cut and party affiliation games.

We cast these well-known potential games as special cases
of a more general setting, that of satisfiability games. Here,
a collection of boolean constraints are given as input, and
each constraint has non-negative weight. Every variable is a
player, and has two strategies, namely {True, False}, which
indicates its assignment. Thus, a state of the game corre-
sponds to an assignment of all the variables. Payoff of a vari-
able is defined as the sum of the weights of all constraints
in the given collection that are satisfied, i.e., evaluate to
True. Each player wishes to maximize its payoff. Equilib-
rium of satisfiability games were studied as local optimum
of various classes of satisfiability problems in [10, 12, 18],
and computing them are known to be PLS-complete. Let
NAE k-FLIP denote the class of satisfiability games where
each constraint is a collection of at most k literals and eval-
uates to True if and only if at least one of the literals is
True and one other is False. Let POSNAE k-FLIP denote a
subclass of NAE k-FLIP, comprising only those games where
each constraint in the input has only positive literals. These
classes were studied in [18]. It is quite easy to see that
POSNAE 2-FLIP captures cut games, while NAE 2-FLIP cap-
tures party affiliation games (see Section 2).

Let P-FLIP denote the class of satisfiability games where
all constraints in the given collection satisfy some prop-
erty P. The approximability of equilibrium in satisfiability
games appears to depend on the property P, analogous to
the approximability of constraint satisfaction problems [17,
11]. We identify a property Pk for which our techniques
yield an algorithm to compute a (2k − 1 + ε)-approximate
equilibrium in Pk-FLIP. A constraint F is said to satisfy the
property Pk if it has at most k variables, and for any assign-
ment of the variables such that F is unsatisfied, changing the
assignment of any one variable satisfies the constraint. In

74

other words, in any state of the game, any variable can uni-
laterally select its strategy to receive payoff from a specific
constraint. Examples of constraints that satisfy Pk include
NOT-ALL-EQUAL, OR of literals, and PARITY, which is
a collection of literals and is satisfied if the number of satis-
fied literals is odd (or even). Note that a single instance of
Pk-FLIP may contain different types of constraints, eg. some
of the constraints may be PARITY, while some other ones
may be NOT-ALL-EQUAL, and some other ones may be
OR.

Theorem 1.2. For any ε > 0, there is a polynomial-time
algorithm to compute a (2k − 1 + ε)-approximate pure Nash
equilibrium for Pk-FLIP.

Thus, NAE 2-FLIP (which captures both party affiliation
games and cut games) is a sub-class of P2-FLIP, and our ap-
proximation results for equilibrium in cut games and party
affiliation games follow as corollaries of this result, by putting
k = 2.

Theorem 1.2 implies an algorithm to compute a (2k− 1 +
ε)-approximate equilibrium for NAE k-FLIP. However, we
are able to obtain a stronger approximation guarantee for
this case.

Theorem 1.3. For any ε > 0, there is a polynomial-time

algorithm to compute a (2k

k−1
+ ε)-approximate pure Nash

equilibrium in NAE k-FLIP, provided every constraint has at
least k literals.

Note that players wish to maximize their payoff in all
the above games. However, there are many potential games
where players have no payoff, but only a cost that they wish
to minimize. It is worth noting that our techniques do not
actually depend on the games being maximization games;
they also apply to related minimization games, where play-
ers experience cost that they wish to minimize. If we treat
the payoff of players in Pk-FLIP as cost which they wish to
minimize, then we can compute a (2k − 1 + ε)-approximate
equilibrium for these games in time polynomial in n,m and
ε−1.

Finally, we prove the following inapproximability result for
cut games. Each step of α-greedy Nash dynamics improves
the payoff of the player that switches its strategy, by a factor
of at least α.

Theorem 1.4. For each n0 ≥ 10 and ε < 1
2n0

, there ex-
ists a cut game Gn0,ε with 4n0 + 2 players with an initial
state for which any sequence of (1 + ε)-greedy Nash dynam-
ics takes exponentially many steps to converge.

Before this paper, the only known positive results for com-
puting approximate equilibrium in potential games (where
computing exact equilibrium is PLS-complete) were some
restricted cases of congestion games, and they were FPTAS
that are obtained by (1 + ε)-greedy Nash dynamics [6, 5],
and this construction shows that such a result cannot hold
for cut games, and thus for any of the games discussed in
this paper.

1.2 Our Techniques
We now briefly sketch the ideas underlying our algorithm

for party affiliation games; the algorithms for other games
in this paper build on these ideas. We define the weight

w(v) of a vertex v as the sum of weights of all the edges
incident on it; it is the maximum payoff the vertex can get.
We seek to compute a partition of vertices into layers, which
are ordered, such that weights of the vertices within a layer
are polynomially related, and for any vertex, a significant
fraction (half, by weight) of its edges are incident on vertices
in its layer or higher layers (we say that the vertex is upper-
satisfied. If we can find such layers, then we can iteratively
find an approximate equilibrium by computing approximate
equilibrium in each layer, starting from the highest layer,
and freezing vertices in all higher layers when introducing a
layer. This approximate equilibrium is computed by (1+ ε)-
Nash dynamics, and neglects edges that are incident on lower
layers. Note that (1 + ε)-greedy moves in these dynamics
may not even be improving moves in the entire graph. Fast
convergence for each layer is guaranteed by the fact that
weights of vertices are polynomially related.

To achieve this layer decomposition, we divide the ver-
tices into layers according to their weights, where each layer
includes all vertices with weights within a sufficiently large
polynomial range, and a higher layer contains vertices of
higher weight. However, this layer decomposition may not
satisfy the required condition. Now, we move a vertex down
by a layer if it is not satisfying the condition, and keep re-
peating this step till the required condition is achieved for all
vertices. The key lemma behind our algorithm is that each
vertex moves at most once in this process. The proof of this
lemma crucially depends on the properties of party affilia-
tion and other games studied in this paper, and establishing
similar lemmas for other potential games (such as fair cost
sharing games) is likely to yield approximate equilibrium for
those games.

A crucial property of party affiliation games is that in any
state, if cv is the payoff of vertex v, then its payoff would be
w(v)−c(v) if it switches its strategy. This guarantees that in
any (1 + ε)-approximate equilibrium, the payoff of a vertex
is at least w(v)/(2 + ε). As a result, even though in the
layer-wise dynamics, a vertex neglects a constant fraction of
its weight, it is guaranteed a constant fraction of its weight
as payoff. Thus an O(1)-approximation is achieved.

1.3 Organization
We start by formally defining various games in our study

and highlighting their relationship to each other in Section 2.
In Section 3 we give a poly-time algorithm to compute a
(3+ε)-approximate for cut and party affiliation games (The-
orem 1.1). We extend these results to satisfiability games,
establishing Theorems 1.2 and 1.3. In Section 5, we estab-
lish similar results for minimization versions of satisfiability
games. In Section 6, we show that (1 + 1

2n
)-greedy Nash

dynamics takes exponential time to converge for cut games
(Theorem 1.4). Finally, we conclude with some directions
for future work in Section 7.

2. PRELIMINARIES
A state of a game is a joint strategy profile of players

consisting of a pure strategy for each player. The payoff of a
player is a function of the state of the game. An improving
move in a state is a change of strategy for a player that
increases its payoff, thus changing the state. A pure Nash
equilibrium is a state where no player can make an improving
move. An α-greedy move is a change of strategy for a player
such that its payoff in the resulting state is at least α > 1

75

times its playoff in the previous state. A sequence of α-
greedy moves starting from some initial state is referred to
α-Nash dynamics. An α-approximate pure Nash equilibrium
is a state where no player can make an α-greedy move. We
denote strategy of a player v in a state s by sv.

Definition 2.1. A game is said to be a potential game
if there exists a potential function Φ on the states of the
game, such that if a player v changes its strategy and the
game moves from state s to the state s′, then Φ(s) − Φ(s′)
is equal to the change in the payoff of v.

Potential games are sometimes referred to as exact poten-
tial games. Nash dynamics always converges to a pure Nash
equilibrium in potential games since each improving move
reduces the potential. More generally, α-Nash dynamics
converges to an α-approximate pure Nash equilibrium for
any α > 1.

Since our focus is on computation of a pure equilibrium,
in the remainder of the paper, we will omit explicit mention
of the word “pure” in referring to an equilibrium.

2.1 Cut, Party Affiliation, and Consensus Games
Let G be an undirected graph with n vertices, with non-

negative weights on edges. Let wuv ≥ 0 denote the weight
on the edge between vertices u and v (wuv = 0 if there is no
edge between i and j).

Definition 2.2. A party affiliation game on an undi-
rected weighted graph G is a game where vertices in G act
as players, with the strategy set {−1, 1}, and edges in G are
partitioned into friend edges Ef and enemy edges Ee. The
payoff of a vertex v is∑

{u:(u,v)∈Ee
∧
su 6=sv}

wuv +
∑

{u:(u,v)∈Ef
∧
su=sv}

wuv,

and each vertex seeks to maximize its payoff.

A party affiliation game is a potential game with the poten-
tial function Φ(s) =

∑
{(u,v)∈Ee:su 6=sv} wuv+

∑
{(u,v)∈Ef :su=sv} wuv.

Definition 2.3. A cut game is a party affiliation game
where all edges are enemy edges.

Definition 2.4. A consensus game is a party affiliation
game where all edges are friend edges.

2.2 Satisfiability Games

Definition 2.5. An instance of a satisfiability game con-
sists of a collection of boolean constraints with non-negative
weights assigned to them. Each constraint F in the collec-
tion is a function of a subset of the variables. The variables
act as players, with the strategy set {True, False}, which
indicates their assignment. F is satisfied in a given state if
the corresponding assignment of variables make F evaluate
to True. Payoff of a variable x is the sum of weights of all
constraints in the given collection where x appears and eval-
uate to True. Each variable seeks to maximizes its payoff.

A satisfiability game is a potential game, and the potential
function Φ(s) is the sum of weights of all satisfied constraints
in the given collection.

Definition 2.6. Let P-FLIP denote the class of satisfi-
ability games where all constraints in the given collection
satisfy some property P.

Definition 2.7. An NAE k constraint is a collection of
at most k literals which evaluates to True if and only if at
least one literal is True and at least one literal is False. A
POSNAE k constraint is an NAE k constraint where none of
the literals is negated.

Definition 2.8. A boolean constraint F is said to satisfy
the property Pk if it has at most k literals, and for any as-
signment of the variables such that F is unsatisfied, changing
the assignment of any one variable satisfies the constraint.

Note that party affiliation games constitute a special case
of P2-FLIP: represent an enemy edge between two vertices u
and v by a constraint uv+uv and a friend edge by uv+uv,
both of which are P2 constraints.

3. APPROXIMATE EQUILIBRIUM FOR PARTY
AFFILIATION GAMES

In this section, we describe our algorithm for comput-
ing (3 + ε)-approximate Nash equilibrium for cut and party
affiliation games for any ε > 0 (Theorem 1.1). Since cut
games are special cases of party affiliation games with only
enemy edges, it suffices to show the result for party affilia-
tion games. This algorithm also provides the framework for
other algorithmic results mentioned in later sections.

We are given an undirected weighted graph G(V,E) with
n vertices. For any vertex v, we define its weight, denoted
by w(v), to be the sum of weights of all edges incident on
it. Let wmax and wmin be the maximum and minimum
weight over all vertices respectively. We start with an ini-
tial partition of vertices into layers V0, V1, V2, . . . , V` created
as follows. We assign all vertices with weight in the interval
[wminp(n)i, wminp(n)i+1) to the layer Vi, where p(n) = 3n.

The total number of layers ` is thus log
(
wmax
wmin

)
, hence poly-

nomial in the input description. It will be clear from the
algorithm that there will be at most 2n layers of interest.
For any i, let V≥i, V≤i, V>i, V<i indicate the set of lay-
ers {Vi, Vi+1 . . . V`}, {Vi, Vi−2 . . . V0}, {Vi+1, Vi+2 . . . V`} and
{Vi−1, Vi−2 . . . V0}, respectively. The algorithm will move
vertices across layers. We use the phrase layer of a vertex
to refer to the layer in which the vertex is currently present,
and similarly, the phrase set of vertices in a layer refers to
the set of all vertices currently present in that layer.

We say that a vertex v in layer Vi is upper-satisfied if
at least half of its weight is contributed by edges to ver-
tices in layers V≥i. Our algorithm has two stages, namely, a
rearrangement phase and top-down layer dynamics. In the
rearrangement phase, we move vertices across layers so as to
ensure the following two properties simultaneously for every
layer Vi: (a) each vertex v ∈ Vi is upper satisfied, and (b)
the maximum and minimum weight of vertices in Vi is poly-
nomially related. Note that the initial partitioning satisfies
the property (b) but not necessarily property (a).

During the top-down layer dynamics, for each i in decreas-
ing order from ` to 0, given (fixed) strategies of vertices in
layers V>i, we compute (1 + ε)-approximate Nash equilib-
rium for vertices in layer Vi using (1 + ε)-Nash dynamics,
where for a vertex v ∈ Vi, the payoff is computed only based
on edges incident on vertices in layers V≥i.

76

We now describe the process of rearranging the vertices
to ensure both properties (a) and (b) mentioned above.

3.1 Rearrangement Phase
In this phase, we perform the following simple operation

repeatedly until it can no longer be applied. While there
exists a vertex v, say in layer Vi, that is not upper-satisfied,
move v to Vi−1. Clearly, this process terminates in at most
n` steps as any vertex can participate at most ` times. Also,
since any vertex in V0 is necessarily upper-satisfied, property
(a) is satisfied by all vertices upon termination. It remains to
show that property (b) is satisfied as well. We will establish
this by proving a stronger statement: every vertex moves
down at most once. This is a key insight in this algorithm,
and it implies that the weights of vertices in any single layer
will be within a factor (p(n))2 of each other.

With respect to the partitioning of the vertices into layers,
we define an influence vector ϕ = (ϕ0, ϕ1 . . . ϕ`), where ϕi
denotes the sum of the weights of edges which have one end-
point in a vertex in V≥i and the other in V<i. Note that as
vertices move across layers, the influence vector changes.

Lemma 3.1. When a vertex v in a layer Vi is moved down
to layer Vi−1, for any j 6= i, ϕj remains unchanged and ϕi
does not increase.

Proof. If v moves from Vi to Vi−1, then for any layer
Vj , j 6= i, the set of edges from vertices in layers V<j to V≥j
remains unchanged. Hence ϕj , j 6= i does not change.

Now we analyze the change in the value of ϕi. Edges with
one end-point in v and other end-point in layers Vi−1 or
below, will no longer contribute to ϕi, and their total weight
is at least w(v)/2 by the rule for moving down a vertex. The
edges with one end-point in v and other end-point in layers
Vi or above, will start contributing to ϕi, and total weight
of these edges is at most w(v)/2. Hence net increase in ϕi
is at most 0.

Lemma 3.2. During the rearrangement phase, every ver-
tex moves down a layer at most once.

Proof. Note that at the beginning of the rearrangement
phase, ϕi can also be bounded by the sum of weights of all
vertices in Vi−1 or below. Before the rearrangement phase,
maximum weight of any vertex in layer i − 1 or below is
wmin(p(n))i. Hence the value of ϕi at the beginning of
the rearrangement phase is at most n · wmin(p(n))i. By
Lemma 3.1, this upper bound holds throughout the process.

Thus, if a vertex v was originally in layer Vi, and is now
in Vi−1, then the weights of edges from v to vertices in
Vi−2, Vi−3 . . . V0, at any future time in the process, is at most
ϕi−1 ≤ nwmin(p(n))i−1. Note that w(v) ≥ wmin(p(n))i. As
p(n) = 3n, we get ϕi−1 < w(v)/2. Thus v must be upper-
satisfied at any future time in the process, and so will not
move again.

3.2 Top-down Layer Dynamics
We now use the partial order on players computed by the

rearrangement phase to apply Nash dynamics on a sequence
of restricted games. The following simple lemma will be
useful in our analysis.

Lemma 3.3. Given a graph G′(V ′, E′), consider the re-
stricted party affiliation game where only vertices in S ⊂ V ′
are allowed to move selfishly. Moreover, let the ratio of the

weight of the heaviest vertex in S to that of the lightest vertex
in S be at most M > 1. Then, for any ε > 0, any sequence
of (1+ε)-greedy moves by vertices in S converges to a (1+ε)-
approximate Nash equilibrium in at most O(nM/ε) moves.

Proof. This restricted game is also an exact potential
game, with the potential being the sum of weights the of
enemy edges across the cut and friend edges on the same
side of the cut, that have one end-point in S.

Let the lightest vertex in S be vmin. Then the maximum
value of the potential is at most the sum of weights of all
vertices in S, which is at most nMwmin, while the minimum
potential is zero. Note that in party affiliation games, for
any vertex v, for any strategies of remaining vertices, sum
of payoffs for v in its two strategies is w(v). Hence when
any vertex v in S, makes an (1 + ε)-greedy move, v’s payoff
(and the potential) increases by Ω(εw(v)) = Ω(εwmin). The
lemma follows.

We now describe the top-down layer dynamics phase. The
algorithm proceeds in rounds, in each round it assigns strate-
gies to all vertices in a particular layer. Once a vertex is as-
signed a strategy, it is not changed in the subsequent rounds.
The algorithm has `+ 1 rounds, and processes the layers in
the order V`, V`−1 . . . V0. To assign strategies to vertices in
Vi, the algorithm plays (1 + ε/2)-Nash dynamics in a re-
stricted cut game, denoted by Gi, on the subgraph induced
by V≥i, where only vertices in Vi are allowed to changed
their strategies and vertices in V>i use the (fixed) strate-
gies computed by the algorithm in the previous rounds. For
the restricted game Gi, the payoffs of the vertices in Vi are
computed only based on their edges incident on vertices in
V≥i. When this Nash dynamics converges (to a (1 + ε/2)-
approximate Nash equilibrium of the restricted game), the
strategies selected by vertices in Vi are assigned as their final
strategies.

Now we prove the polynomial time convergence of the
algorithm. Since within any layer all weights are within a
factor of (p(n))2 = O(n2) of each other, by Lemma 3.3, the
dynamics within each restricted game terminates in O(n3/ε)
steps. At the end of rearrangement phase, there are at most
n layers which have at least one vertex, hence the number
of moves in the process is at most O(n4/ε). We claim that
at the end of the restricted game G0, we have a (3 + ε)-
approximate Nash equilibrium. This is because, for a vertex
v in layer Vi, it has weight at least w(v)/2 in the induced
subgraph on vertices in V≥i, and hence its payoff at the end

of Gi is at least w(v)/2
2+ε/2

= w(v)/(4 + ε). The payoff of v

remains at least w(v)/(4 + ε) through the remainder of the
algorithm. Hence, upon termination, the payoff for v in the

other strategy is at most w(v) − w(v)
4+ε

= 3+ε
4+ε

w(v), which

implies that the computed state is a (3 + ε)-approximate
equilibrium. This completes the proof of Theorem 1.1.

4. APPROXIMATE EQUILIBIRUM FOR SAT-
ISFIABILITY GAMES

We now establish Theorems 1.2 and 1.3. At a high-level,
our algorithm for both these results has a similar structure
as the algorithm for party affiliation games. Throughout
this section, we will denote by n the number of variables,
and by m the number of constraints.

For a variable v, we denote by F (v), the set of all con-
straints in which v occurs, and we define weight of v, de-

77

noted by w(v), to be the sum of weights of all constraints
in F (v). We perform an initial partitioning of the variables
into layers V0, V1, . . . , V` based on their weight: variables
with weight in the interval [wminp(n)i, wminp(n)i+1) belong
to the layer Vi, where wmin is the minimum weight of any
variable and p(n) = 3nk. For a variable v in Vi, we say that
a constraint in F (v) is active for v, if all other variables in
the constraint are in layers V≥i, otherwise we call the con-
straint to be inactive for v. Note that the definition of an
active constraint for a variable depends upon the layer to
which the variable currently belongs.

4.1 Approximate Equilibrium for Pk-FLIP

Recall that a constraint F is said to satisfy the property
Pk if it has at most k variables, and for any assignment of the
variables such that F is unsatisfied, changing the assignment
of any one variable satisfies the constraint.

Rearrangement Phase: In the rearrangement phase, if
there is a variable v, such that at least (k−1)/k fraction (by
weight) of the constraints in F (v) are inactive constraints for
v, then we move v to layer Vi−1. We keep repeating this rule,
until it can no longer be applied.

Similar to Lemma 3.2, we now claim that each variable
will move down by at most one layer. To prove this claim,
we define the influence vector ϕ = (ϕ0, ϕ1, . . . , ϕ`) as follows.
For a given i, if constraint with weight w has at least one
variable in V<i, and the number of variables in the constraint
in V≥i is k′, then contribution of that constraint to ϕi is
k′w. ϕi is the sum of total contribution of all constraints
to ϕi. Note that, for any i, a constraint with weight w
can contribute at most (k − 1)w to ϕi. This happens when
the constraint has k − 1 variables in V≥i or above and one
variable in V<i.

Lemma 4.1. When a variable v in a layer Vi is moved to
layer to Vi−1, then for any j 6= i, ϕj remains unchanged and
ϕi does not increase.

Proof. For any j 6= i, contribution from each constraint
to ϕj remains unchanged because for each constraint γ, the
number of variables in γ that are in V<j , and the number of
variables in γ that are in V≥j , remain unchanged.

Now we analyze the change in the value of ϕi. For every
constraint in F (v), which has at least one variable in V<i be-
fore v’s move, its contribution to ϕi will reduce by quantity
equal to its weight as a result of v’s move. This quantity is at
least (k− 1)w(v)/k by the rule for moving down a variable.
The constraints which were active constraints for v before
v moved down, will start contributing to ϕi. Total weight
of such constraints is at most w(v)/k. Each such constraint
can contribute at most k − 1 times its weight to ϕi. This
quantity is at most (k− 1)w(v)/k. Thus the net increase in
ϕi is at most 0.

Note that for any i, the value ϕi for any i can be at
most (k − 1) times weight of all variables in V<i. Hence
for each i, before the rearrangement phase, ϕi ≤ n(k −
1)w(vmin)(p(n))i, and this bound holds throughout the pro-
cess. Thus, if a variable v was originally in layer Vi, and
is now in Vi−1, then the total weights of constraints to
which v belongs, and that have a variable in V≤i−2, at
any future time in the process, is at most ϕi−1 ≤ n(k −
1)w(vmin)(p(n))i−1. Note that w(v) ≥ w(vmin)p(n)i. As
p(n) = 3nk, we have ϕi−1 < w(v)/2, and thus v cannot

move again. Consequently, each variable can move down
a layer at most once. Hence at the end of the rearrange-
ment phase, within each layer, the weight of variables will
be within (p(n))2 times of each other.

Top-down layer dynamics: In decreasing order of i (from
` to 0), we consider a restricted game Gi on variables in
V≥i. The variables in V>i have fixed assignment in Gi. The
variables in Vi play (1 + ε/k)-Nash dynamics in any order,
where for any variable v ∈ Vi, the payoff is computed only
based on active constraints for v.

Note that this restricted game is an exact potential game,
with weights of all variables polynomially related. We now
crucially use the defining property of constraints of type Pk,
namely, for any variable v and for any given assignment
of other variables, any constraint containing variable v is
satisfied by at least for one of two assignment for v. Hence
when v has a (1 + ε/k)-greedy move, it implies that increase
in its payoff is at least Ω(εw(v)/k). Thus (1 + ε/k) Nash
dynamics for the restricted game converges in time that is
polynomial in n, 1/ε, and k.

Approximation Factor: Now we analyze the approxima-
tion factor for the state computed by our algorithm. For
a variable v in Vi, as v is in (1 + ε/k)-approximate Nash
equilibrium in the restricted game for layer Vi, its payoff,

say cv, satisfies the inequality cv + (1 + ε
k

)cv ≥ w(v)
k

. Thus
cv ≥ w(v)/(2k + ε), and the total possible payoff from the
other strategy (in the original game) is thus bounded by
(1 + ε/k)cv + (k− 1)w(v)/k, which is at most (2k− 1 + ε)cv.
Thus the state computed is a (2k−1+ ε)-approximate Nash
equilibrium, establishing Theorem 1.2.

4.2 Improved Approximation for NAE k-FLIP

We now show that a much stronger approximation can be
achieved for NAE k-FLIP, a special case of Pk-FLIP. Specifi-

cally, we compute a (2k

k−1
+ ε)-approximate pure Nash equi-

librium for NAE k-FLIP, provided every constraint has at
least k literals (Theorem 1.3). Interestingly, in contrast to
Pk-FLIP, the approximation ratio for NAE k-FLIP improves
as k̄ increases, and converges to 2 as k →∞.

The algorithm is similar to the one for Pk-FLIP, and we
simply highlight the differences. As before, we denote by
F (v) the set of all constraints in which v occurs. For a
variable v in Vi, we say that a constraint in F (v) is active for
v if there is at least one more variable in the constraint which
is in V≥i, otherwise we call the constraint to be inactive for
v.

Rearrangement Phase: In the rearrangement phase, for
any layer Vi, if there is a variable v ∈ Vi, such that at
least 1/k fraction (by weight) of the constraints in F (v) are
inactive constraints for v, then we move v to layer Vi−1. We
keep repeating this rule, until it can no longer be applied.

The influence vector ϕ = (ϕ0, ϕ1, . . . , ϕ`) is defined as
follows. A constraint with weight w that has at least k1 ≥ 1

variables in V≥i, contributes to ϕi a weight of (k−k1)w

k−1
. All

other constraints contribute 0 to ϕi, and the value ϕi is
defined to be the sum of contributions of all constraints. The
proof of the lemma below is is deferred to the Full Version.

Lemma 4.2. When a variable v in a layer Vi is moved to
Vi−1, for any j 6= i, ϕj remains unchanged and ϕi does not
increase.

78

Now similar to the argument used for Pk-FLIP, we can
show that each variable moves down a layer at most once.
Thus upon termination, the weight of variables within any
layer are polynomially related to each other.

Top-down layer dynamics: In decreasing order of i (from
` to 0), we consider a restricted game Gi on variables in
V≥i. The variables in V>i have fixed assignment in Gi. The
variables in Vi play (1 + ε/k̄)-Nash dynamics in any order,
where for any variable v ∈ Vi, the payoff is computed only
based on active constraints for v. Since for each variable
v ∈ Vi, the total weight of active constraints for v is at

least (k−1

k
)w(v), the payoff for v upon termination of Nash

dynamics is at least
(

(k−1

k
)w(v)

)
/(2 + ε

k̄
).

The maximum possible payoff for any variable v in any
strategy is at most w(v). Note that, we cannot bound the
payoff in other strategy for a variable v by its payoff in the
other strategy in the restricted game plus weight of inac-
tive constraints for v, as the constraints which were unsat-
isfied in the other strategy for v in the restricted game, can
now be satisfied by variables in lower layers. Hence the ap-

proximation factor for the Nash equilibrium is
(

2k

k−1
+ ε
)

,

establishing Theorem 1.3.

5. APPROXIMATE EQUILIBRIUM IN MIN-
IMIZATION GAMES

All games considered thus far are maximization games in
which an edge or a constraint gives a payoff under certain
conditions, and each player seeks to maximize its payoff. For
each of these games, there is a natural minimization variant
where the payoffs are treated as costs, and each player seeks
to minimize its cost. For example, the cost minimization
version of Pk-FLIP, denoted by MIN-Pk-FLIP, is defined as
follows. As before, we are given a collection of constraints
of type Pk, and there is a player for each variable. The total
cost for a player is the sum of weights of all constraints which
evaluate to True, and each player now seeks to minimize its
cost. We refer to such games as minimization games.

The cost minimization version of cut games (also known as
consensus games [4]) has a trivial pure Nash equilibrium – all
vertices can be assigned to the same side of the cut, giving a
solution where each player has and zero cost. We show that
computing pure Nash equilibrium in the cost minimization
version of party affiliation games is PLS-complete, implying
the same result for MIN-Pk-FLIP. We also show how our
technique can be used to compute (2k− 1 + ε)-approximate
Nash equilibrium for MIN-Pk-FLIP, and the computation re-
sults for approximate Nash equilibrium for other problems
will follow. Proofs of the following theorems below are de-
ferred to the Full Version.

Theorem 5.1. Computing pure Nash equilibrium in the
cost minimization version of party affiliation games is PLS-
complete.

Theorem 5.2. For any ε > 0, there is a polynomial time
algorithm to compute (2k− 1 + ε)-approximate Nash equilib-
rium for MIN-Pk-FLIP.

It is worth noting that the problem of computing α-approximate
equilibrium in the maximization and minimization versions
of party affiliation games reduce to each other. However, it

is not clear whether computing α-approximate equilibrium
in Pk-FLIP and MIN-Pk-FLIP are reducible to each other. In
particular, in party affiliation games, for any pair of variables
u, v, for any value of v, there is exactly one value of u which
the edge contributes to payoff. However the same is not true
for constraints of type Pk. If we were to consider only those
constraints with k literals, where for any constraint contain-
ing a variable v, for any assignment of values of the remain-
ing variables, there is exactly one value of v for which the
constraint is true, then the maximization and minimization
versions become equivalent, i.e. an α-approximate equilib-
rium in one of them will be α-approximate equilibrium in
the other and vice versa. However, one can observe that the
only constraint that satisfies this condition is PARITY.

6. INAPPROXIMABILITY OF CUT GAMES
BY NASH DYNAMICS

We shall now describe the construction used for establish-
ing Theorem 1.4.

Let α be any number such that 1 < α ≤
(
1 + 1

2n

)
, and

let γ = 10
(α−1)3

. Our cut game will have n groups of vertices

B1, B2 . . . Bn, which we shall interpret as bits of an n-bit
counter. Every few steps in the α-Nash dynamics increments
the counter, and we will show that every α-greedy improving
sequence from a chosen start state requires Ω(2n) moves to
converge. A bit Bi is said to be a lower bit than Bj if
i < j and a higher bit otherwise. We shall ensure in our
construction that the weight of any player in a higher bit
is more than that in the lower bit by a sufficiently large
polynomial factor.

We note that there are similar bit-counter constructions
in literature that show exponential convergence of dynam-
ics for potential games (mostly in subclasses of congestion
games), but several of those constructions show the exis-
tence of one such sequence (eg. [1, 2]) from an initial state.
In the latter, there may be a polynomial sequence from that
initial state that converges. On the other hand, in most PLS-
complete problems, it has been shown that all sequences are
exponential from some initial state. A few constructions
(eg. [19, 1]) show that all sequences are exponential in a
class of congestion games that are not, or not known to be,
PLS-complete. A notable aspect of our hardness construc-
tion is that there are many sequences of α-greedy improving
moves, all of which are of exponential length, unlike some
previous constructions ([19]), which are based on showing
that there exists only one sequence of α-greedy improving
moves possible from a given initial state. We recognize expo-
nential number of states as synchronization points, and any
sequence starting from our initial state must go through all
the synchronization points in a fixed order.

Each bit Bi has 4 bit players pi, p
′
i, T ri, T r

′
i. The latter

two are called trigger players, while the former two are called
regular players. In addition, there are two anchor players X
and Y , yielding a total of 4n+ 2 vertices in our constructed
graph. We use the terms left and right to indicate two sides
of the cut.

We now proceed to describe all the edges in the graph.
There is an edge with weight γ6n between X and Y , and
in the initial state, X is on the left side and Y is on the
right side of the cut. This is far greater than the weight of
any other edge in the graph, so X or Y cannot move in any
α-Nash dynamics. All references to a move in the remain-

79

ing part of the construction refer to an α-greedy improving
move, unless otherwise mentioned. Remaining edges in the
construction are of three types. Intra edges refer to edges
between players of the same bit. Cross edges refer to edges
between players of the different bit. Anchor edges refer to
edges between bit players and anchor players.

These edges and their weights are listed in Tables 1, 2 and
3. These tables should be interpreted as follows. Each cell
in the table specifies the weight of the an edge between given
players, and an optional condition (mentioned in the bracket
in the cell) when the edge is present. When the cell has word
“None”, then there is no edge between those players. When
the condition is false, the edge is not present. e.g. In the
Table 2, the cell corresponding to row Tr′i and column Tr′j
has value γ−max(i,j) (∀i 6= j). This implies that, for each
1 ≤ i ≤ n, for each 1 ≤ j ≤ n, if j 6= i, then there is an edge
between player Tr′i and Tr′j of weight γ−max(i,j) if and only
if i 6= j.

We also call edges with weight less than one as supplemen-
tary edges – some of the intra edges and cross edges belong
to this class. Supplementary edges have fractional weights
and are minuscule compared to the weights of any other
edge. They can influence whether some player has a move,
only when that player can switch its strategy to improve its
payoff by a factor of “almost” α, but is slightly short, and
needs the influence of supplementary edges to reach the re-
quired payoff. Intuitively, supplementary edges provide the
means for a lower bit player to influence the movement of
a higher bit player. Even if our construction were to not
use supplementary edges, a mild modification of the weights
on the other edges will ensure that there exists an expo-
nentially long sequence of α-Nash dynamics. However, such
a construction will not ensure that all sequences from some
state would be exponential. This is the main purpose behind
having supplementary edges. To the best of our knowledge,
such edges (or resources in congestion games) of minuscule
influence have not been used in any previous construction of
exponential dynamics sequence in potential games.

In Table 4, we give list of facts which are easily verifiable
from the weights on the edges and the condition that X is
on the left side and Y is on right side. These facts will help
us prove that all sequences are exponential. Each row of
the table gives a fact, and should be interpreted as follows:
the first column gives a label to the fact for later reference,
the second column gives a condition about a state of the
game (a condition specifies, for some vertices, which side
of the cut it lies), and the third column gives a statement
(usually involving whether some player has a move or not,
perhaps subject to position of yet more players), which holds
whenever the condition holds (irrespective of the position of
players not mentioned in the fact or the condition).

Note that some of the facts are labeled Tight. Supple-
mentary edges are responsible and necessary for the truth
of these facts. The anchor edges, i.e. edges between bit
players and anchor players, are also crucial to our construc-
tion. They ensure that behavior of bit players is not sym-
metric for left and right side of the cut, other conditions
being the same. For instance, anchor edges are required for
Facts (Tri, 2) and (Tri, 3) to hold simultaneously. Finally,
we briefly explain why the factor α is limited to 1 + O(1

n
).

This is because in our construction, we need Tr′i to get uni-
laterally influenced by each player pj , j > i. That is, the
moving of any one of the players pj , j > i, should affect

which strategy gives higher payoff for Tr′i. Thus, each of the
influencing players must have an edge of fairly high weight,
say W , to this trigger player. But in that case, the total
weight of the trigger player is at least n′W , so if one of the
players in the set changes its strategy, payoff of the trigger
player changes only by a fraction of 1

n′ of its weight. Such

a small change will be effective only when α is 1 + O(1
n′).

To summarize, we need α to be small for Facts (Tr′i, 2) and
Facts (Tr′i, 3) to hold simultaneously.

Interpretation of Bits: We interpret each group Bi as
the ith bit of an n-bit counter, and strategies of the Trigger
players define the configuration of a bit. There are four
possible configurations. We name them as follows:

• Zero config: Tri is on the right side, and Tr′i is on
the left side.

• Intermediate config: Both Tri and Tr′i are on the
left side. We shall ensure that at most one bit is in
this config in any state of the game throughout any
sequence.

• Insignificant config: Tri lies on the left side, and
Tr′i is on the right side. This is an insignificant state
for us and will not affect the understanding of the con-
struction.

• One config: Both Tri and Tr′i are on the right side.

We say that pi or p′i is stable in a given state if it lies on
the opposite side of Tri. A bit Bi is stable if both pi and p′i
are stable. We call zero config of a bit Bi as a stable zero
config if Bi is in zero config and pi, p

′
i are stable. Similarly,

we define stable one config, stable intermediate config, stable
insignificant config.

We first note that in any state of the cut game, the strat-
egy of p1 does not affect whether any other player can make
a move. This is because p1 has only one edge incident on
it, whose other endpoint is Tr1. So Tr1 is the only player
whom it may influence. However, Facts (Tr1, 3) and (Tr1, 4)
imply that Tr1 has a move if and only if p1 has a move, so
p1 does not influence whether Tr1 has a move. Thus, p1

shall henceforth be entirely ignored. We say that B1 is in a
stable config if and only if p′1 is on the opposite side of Tr′1,
and neglect what side p1 lies in. Henceforth we will assume
can assume that p1 does not exists.

Now we state a few more basic properties related to configs
of bits, which will be useful in our proof.

Lemma 6.1. For any i, if a bit Bi is stable, then regular
players in Bi cannot make a move.

Proof. Proof follows from Fact (pi, 1) and Fact (p′i, 1).

Lemma 6.2. For any i, if Bi is in stable zero config, then
Tri can move if and only if both of the following conditions
are true.

1. All other bits are in zero or one config.

2. All lower bits are in one config.

Proof. Lemma follows from Fact (Tri, 4).

Lemma 6.3. For any i, if Bi is in stable one config, then
Tri cannot move.

80

pi Tri p′i Tr′i

pi None γ3i None None

Tri γ3i None α(γ3i + 2γ−i) γ−i

p′i None α(γ3i + 2γ−i) None γ3i+1

Tr′i None γ−i γ3i+1 None

Table 1: Intra edges: Edges between bit players in Bi.

pj Trj p′j Tr′j

pi None None γ−2n (∀ i > j)) γ3j+2 (∀ i > j)

Tri None γ−2n (∀ i 6= j) None γ−2n (∀ i > j)

p′i γ−2n (∀ i < j) None None None

Tr′i γ3i+2 (∀ i < j) γ−2n (∀ i < j) None γ−max(i,j) (∀ i 6= j)

Table 2: Cross edges: Edges between bit players in Bi and Bj, i 6= j.

X Y

pi
γ3i+(i−1)γ−2n

α
−∑i−1

j=0 γ
3j+2

None

Tri γ−i + (n+i−2)γ−2n

α
None

p′i None None

Tr′i None
(n−i)γ3i+2+(i− 1

2)γ−i

α
−

γ3i+1

Table 3: Anchor edges: Edges between bit players in Bi and anchor players.

Fact Number Condition Fact

Fact (pi, 1) pi is on the opposite side of
Tri

pi cannot move

Fact (pi, 2) pi is on left, Tri is on left pi can move
Fact (pi, 3)
[Tight]

pi is on right, Tri is on right.
Plus, Tr′j is on left ∀j < i

pi can move iff p′j ∀j < i are
on right

Fact (Tri, 1) Tri is on the opposite side of
p′i

Tri cannot move

Fact (Tri, 2) Tri is on left, p′i is on left Tri can move
Fact (Tri, 3) Tri is on right, p′i is on right.

Plus, pi is on right
Tri can move

Fact (Tri, 4)
[Tight]

Tri is on right, p′i is on right.
Plus, pi is on left, Tr′i is on
left

Tri can move iff Trj ∀j 6= i
and Tr′j ∀j < i are on right

Fact (p′i, 1) p′i is on the opposite side of
Tr′i

p′i cannot move

Fact (p′i, 2) p′i is on left, Tr′i is on left p′i can move
Fact (p′i, 3) p′i is on right, Tr′i is on right p′i can move

Fact (Tr′i, 1) Tr′i is on left, pj is on right
for some j > i

Tr′i cannot move

Fact (Tr′i, 2) Tr′i is on right, pj is on right
for some j > i

Tr′i can move

Fact (Tr′i, 3) Tr′i on right, ∀j > i, pj is on
left.

Tr′i cannot move

Fact (Tr′i, 4)
[Tight]

Tr′i is on left, pj ∀j > i is on
left. Plus, p′i is on right

Tr′i can move iff Tr′j ∀j < i
and Tri are on left

Table 4: List of facts for each i. A fact holds when the corresponding condition is satisfied. Tight facts are
those in which supplementary edges play a role.

81

Proof. In stable one config, P ′i is on the opposite side of
Tri. Now the lemma follows from Fact (Tri, 1).

Lemma 6.4. For any i, if Bi is in stable zero config, then
Tr′i cannot move.

Proof. Consider the first case, when there is a j > i for
which pj is on right. Then by Fact (Tr′i, 2), lemma follows.
In the second case, where ∀j > i, pj is on left, then since
Bi is in stable config, p′i is on right. Now the lemma follows
from Fact (Tr′i, 3).

Lemma 6.5. For any i, if Bi is in stable one config, then
Tr′i can move if and only if for some j > i, pj is on right.
Consequently, if all bits Bj , j > i are stable, then Tr′i can
move if and only if there is a bit Bj , j > i which is in inter-
mediate or insignificant config.

Proof. Lemma follows from Fact (Tr′i, 2) and definition
of stable config.

A state is called distinguished if all bits are stable and
either zero or one. A distinguished state can be interpreted
as a binary string of length n, bnbn−1 . . . b1, such that bi = 0
if Bi is in Zero config, and bi = 1 if Bi is in One config. We
interpret this binary string as an integer expressed in binary,
with b1 as the least significant bit. We refer to this integer
as the binary interpretation of the distinguished state. The
proof of the following Theorem 6.1 involves a step-by-step
analysis based on the facts and lemmas established above,
and is deferred to the full version due to space limitations.

Theorem 6.1. Any sequence of α-Nash dynamics start-
ing from a distinguished state whose binary interpretation is
an odd integer z, must reach a distinguished state whose bi-
nary interpretation is z+2 before going to an α-approximate
Nash equilibrium, provided that z < 2n − 1.

Theorem 6.1 implies that if we start from a distinguished
state whose binary interpretation is 1, then any sequence of
α-greedy moves must go through distinguished states whose
binary interpretations are 3, 5, 7 . . . (2n−1). So any sequence
must go through 2n−1 distinguished state, and its length is
exponential in n, which implies Theorem 1.4.

7. CONCLUSION
We have taken a step towards understanding the approx-

imability of pure Nash equilibrium in natural classes of po-
tential games. In particular, for cut and party affiliation
games, we obtain a (3 + ε)-approximation for any ε > 0,
improving upon the previous best known polynomial factor
approximation. To the best of our knowledge, our work pro-
vides first examples of algorithms that compute an approxi-
mate Nash equilibirum by performing a global computation,
in contrast to simply analyzing the convergence rate of Nash
dynamics. We also showed that a direct application of Nash
dynamics can not give an FPTAS for cut games. A major
open problem is to decide if the cut games admit a PTAS or
for any ε > 0, computing a (1 + ε)-approximate pure Nash
equilibrium is PLS-complete. Another interesting direction
is to explore if some of the ideas developed in this work can
be used to get constant factor approximation to equilibirum
for other well-known classes of potential games, such as fair
cost sharing and market sharing games.

8. REFERENCES
[1] H. Ackermann, H. Röglin, and B. Vöcking. On the

impact of combinatorial structure on congestion
games. In FOCS, pages 613–622, 2006.

[2] E. Anshelevich, A. Dasgupta, J. M. Kleinberg,

É. Tardos, T. Wexler, and T. Roughgarden. The price
of stability for network design with fair cost
allocation. In FOCS, pages 295–304, 2004.

[3] B. Awerbuch, Y. Azar, A. Epstein, V. S. Mirrokni,
and A. Skopalik. Fast convergence to nearly optimal
solutions in potential games. In ACM Conference on
Electronic Commerce, pages 264–273, 2008.

[4] M.-F. Balcan, A. Blum, and Y. Mansour. Improved
equilibria via public service advertising. In SODA,
pages 728–737, 2009.

[5] A. Bhalgat, T. Chakraborty, and S. Khanna. Nash
dynamics in congestion games with similar resources.
In WINE, pages 362–373, 2009.

[6] S. Chien and A. Sinclair. Convergence to approximate
nash equilibria in congestion games. In SODA, pages
169–178, 2007.

[7] G. Christodoulou, V. S. Mirrokni, and
A. Sidiropoulos. Convergence and approximation in
potential games. In STACS, pages 349–360, 2006.

[8] A. Fabrikant, C. H. Papadimitriou, and K. Talwar.
The complexity of pure nash equilibria. In STOC,
pages 604–612, 2004.

[9] M. X. Goemans, E. L. Li, V. S. Mirrokni, and
M. Thottan. Market sharing games applied to content
distribution in ad-hoc networks. In MobiHoc, pages
55–66, 2004.

[10] D. S. Johnson, C. H. Papadimitriou, and
M. Yannakakis. How easy is local search? J. Comput.
Syst. Sci., 37(1):79–100, 1988.

[11] S. Khanna, M. Sudan, and D. P. Williamson. A
complete classification of the approximability of
maximization problems derived from boolean
constraint satisfaction. In STOC, pages 11–20, 1997.

[12] M. W. Krentel. On finding and verifying locally
optimal solutions. SIAM J. Comput., 19(4):742–749,
1990.

[13] D. Monderer and L. S. Shapley. Potential games.
Games and Economic Behavior, 14:124–143, 1996.

[14] S. Poljak. Integer linear programs and local search for
max-cut. SIAM J. Comput., 24(4):822–839, 1995.

[15] R. W. Rosenthal. A class of games possessing
pure-strategy nash equilibria. International Journal of
Game Theory, 2:65–67, 1973.

[16] T. Roughgarden and É. Tardos. How bad is selfish
routing? J. ACM, 49(2):236–259, 2002.

[17] T. J. Schaefer. The complexity of satisfiability
problems. In STOC, pages 216–226, 1978.

[18] A. A. Schäffer and M. Yannakakis. Simple local search
problems that are hard to solve. SIAM J. Comput.,
20(1):56–87, 1991.

[19] A. Skopalik and B. Vöcking. Inapproximability of pure
nash equilibria. In STOC, pages 355–364, 2008.

82

