
Rapid Convergence versus Policy Expressiveness in
Interdomain Routing

Alexander J. T. Gurney
Comcast

alexander gurney@cable.comcast.com

Sanjeev Khanna
University of Pennsylvania

sanjeev@cis.upenn.edu

Yang Li
University of Pennsylvania

yangli2@cis.upenn.edu

Abstract—In interdomain routing, competing network oper-
ators encode policies about possible routes in routing protocol
configuration. The operation of the protocol should lead to
satisfactory routes for all operators, but this process may not
terminate or take a long time, exploring exponentially many
alternative paths before stabilizing. In this paper, we study
convergence for the partial policy specification model where
preferences are set for only some paths and the ranking for
the remaining paths is indifferent to the network operator. We
consider policy restrictions that ensure a network to stabilize
quickly. Specifically, we show that even when each operator only
specifies preferences for two paths and each path has at most
three hops, a network may still encounter exponentially many
steps before convergence. However, restricting the policy any
further ensures poly-time convergence. From another direction,
it is well known that preferences based only on the ‘next-hop’
node always converge within linear-time. We show that even
relaxing the preference to be based on the ‘next-two-hop’ leads
to exponential-time convergence. Finally, we further study policy
completion that leads to a stable state that minimizes the hop-
length of the longest path, and establish a hardness result along
with an approximation algorithm.

I. INTRODUCTION

The Internet is a network of networks, connected via a
common routing protocol which allows data paths to be found
that meet the local policy of each network. This protocol is
‘BGP’, the Border Gateway Protocol [19]. Its most important
difference from other route-finding methods is the way in
which local policy controls the selection and propagation of
routes: rather than there being a single global definition of
‘best’ route (as in shortest-path protocols), every constituent
network has its own interpretation. This is because of the
asymmetry in the economic relationships among these network
participants; accordingly, BGP is best perceived as a protocol
that tries to compute a Nash equilibrium in a game where all
parties are trying to obtain good routes (by their local defini-
tion) but are constrained by the choices of others (one cannot
pick a route through a neighbor without agreement) [17], [2].

BGP policy configuration can be extremely complex and
nuanced. Preferences among possible network paths may be
set arbitrarily. In practice, typical preferences are rather more
structured. A standard configuration practice is for the first
preference decision to be based on the identity of the neighbor
from which the route was received; and then, among all routes
coming from the most-favored neighbors, other characteristics
such as path length are used to break ties [4], [1], [25]. Note

that even in this restricted case, the preference classes over the
neighbors may not be consistent across the entire network.

In general, network policies can conflict to the extent
that BGP will be unable to find a stable solution: in this
case, the protocol will oscillate indefinitely [13], [12], [16].
Furthermore, a set of policies may support the existence of
multiple possible outcomes, which is typically also felt to
be an error (because policy was not expressed well enough
to yield the truly intended single outcome) [6]. There has
been a great deal of work on identifying sufficient criteria
for BGP to converge to a unique stable state [5], [7], [9],
[23], [4], [22]. Unlike as previously suspected, the observed
issues with convergence may not arise from router bugs or
network anomalies, nor even from mistakes in the protocol
definition, but may be inherent to the nature of the routing
problem being solved. This was shown by the use of abstract
models (in particular, stable paths problems [8]) displaying
the same effects, without any of the complicating apparatus
of BGP or its environment.

Even if BGP does converge, experience shows that it may
take some time to do so [12], [3], and even in the absence of
policy, when link failure occurs, the path-vector protocol used
by BGP may still need exponential time to converge [11]. The
slow convergence causes practical difficulties for network op-
erators, and degradation or loss of service for their customers.
The technology of ‘route flap damping’, which modifies the
timing behavior of BGP in order to avoid propagating tempo-
rary oscillations, has been developed [24], criticized [15], and
readjusted [18], but in a purely empirical fashion that does not
address the root cause of delayed convergence.

The main focus in this paper is on the theoretical aspect
of the convergence time of BGP. In particular, we aim to
understand when convergence is guaranteed, how much time it
requires for the network to actually converge (or to stabilize).
We study convergence time when different restrictions are
applied on the structure of the preferences, and establish both
necessary and sufficient conditions (i.e., dichotomy theorems)
for convergence in polynomial time. To the best of our knowl-
edge, prior to our work, the only related studies concerning
polynomial time convergence are given by [4], [20], which
only established polynomial time convergence for the Gao-

Rexford criteria1.
Our results are backed by a general model of routing pref-

erence, based on the idea of partial policy specification [10],
[25]. While BGP requires all paths to be ranked in a linear
order (as otherwise it cannot choose a single best path in all
circumstances), operators do not actually think of policy in this
way. It is more natural to imagine the linear preference order
as being determined by a combination of a general operator-
determined policy, and subsequent tie-breaking actions that
do not reflect ‘genuine’ preferences. The general policy, as
implemented in standard BGP systems via match-action rules,
amounts to partitioning the set of possible paths into disjoint
classes: within a class, no preference is given, and between
the classes, preferences might exist. For example, ‘all routes
from neighbor 17’ could be a class, which is preferred to the
class ‘all routes from neighbor 4’.

We show that convergence is achieved when all possible
routes can be put into a global linear order consistent with the
given preferences (i.e., a linearization), which also matches
known conditions for the existence of a unique stable so-
lution [10]. We further establish that the construction of a
linearization (when one exists), though the number of paths
being linearized may be exponentially many, can always be
done in time polynomial in the number of explicitly given
preferences (Section III).

For the setting where, instead of linearizing, the routers only
follow the specified partial preferences and act indifferently
between unordered paths (hence never voluntarily switch to a
path that is not strictly better than the current path), we present
a detailed study of convergence time of networks (which are
guaranteed to converge) with restricted preference systems. In
particular, if each node only specifies preference over at most
two paths, where each path has at most three hops, there still
exist instances of networks that may take exponentially many
(in the total number of nodes) steps before convergence. On
the other hand, restricting the preference any further ensures
poly-time convergence (Section IV). If a path’s degree of
preference is determined only by the identity of the next-hop
neighbor, poly-time convergence is guaranteed [21]. However,
using only the next two hops to determine preference already
leads to instances that take exponentially many steps before
convergence (Section V).

Finally, we observe that a given partial policy may admit
many possible linearizations which may result in distinct
stable states for the network. A natural question is if one can
efficiently compute a linearization that results in a stable state
with some desirable properties. We consider the problem of
computing a linearization that minimizes the hop-length of the
longest path in the resulting stable state. We establish a strong
hardness result by showing that the problem is NP-hard to
approximate to within a factor of Ω(n). To complement the
hardness result, we further provide a poly-time algorithm that
finds a path linearization where the length of the longest path

1[20] also contains a general result regarding convergence time in terms of
the number of phases (see Section III-A for the definition and more details).

only incurs an additive error of at most l, where l is the length
of the longest path in the preference.

Organization: The paper is structured as follows. After intro-
ducing some fundamental concepts and notation (Section II),
we explore the linearization concept and its complexity (Sec-
tion III). We then show how possible restrictions of prefer-
ence expressivity affects convergence time (Section IV, V).
Finally, we investigate the problem of completing policies that
minimizes the length of the longest path (Section VI). We
conclude (Section VII) by relating our results to prior work
on the algorithmic complexity of BGP.

II. PRELIMINARIES

In BGP, each network router (node) is capable of express-
ing independent preferences about its paths to each possible
destination. It is well established that it suffices to focus on a
single destination.

Definition II-.1 (Network). A network N is defined as a tuple
〈G(V,E), L, t〉, where G(V,E) is a directed graph, L is the
preference (or policies, see definition below), and t is the
designated destination node.

Throughout this paper, we denote by n the number of nodes
in V . We assume that any v ∈ V is connected to t in G(V,E).
Let P denote the set of all simple paths in G(V,E) that
terminate at t, and let Pv for each v in V , be the set of simple
paths from v to t. The preference L contains path preferences
expressed as partial orders on Pv for each node v in V .

Definition II-.2 (Preference). A preference Lv for a node v
is a partial ordering �v on all simple paths from v to t, Pv .
For any p, q ∈ Pv , p is ‘better’ than q iff p �v q. Otherwise,
p and q are unordered, and v is ‘indifferent’ between them.

Generally, we write p �L q (or p � q if L is clear from
the context) if p is better than q for some v. In addition, we
denote an empty path as ε, which is worse than any path in
P . We say a path p is specified in a preference Lv , denote by
p ∈ Lv , if there exists a path q with p �v q or q �v p.

In the protocol execution, each node tries to find a ‘good’
path to t, according to its own order, but subject to the
requirement that it cannot choose a path unless the relevant
neighbor has chosen the suffix of that path. Since forwarding is
destination-based and hop-by-hop, a node may select a ‘path’,
but data need not be constrained to follow that path if the other
nodes along it have chosen differently. Therefore, it is more
appropriate to say that a node chooses an outgoing edge to
send traffic; it might continue to send traffic along that edge
even after further network events have diverted the path. We
now define the possible routing states in the protocol execution
more precisely.

Definition II-.3 (State). A state of the protocol execution is
a function S from V to E ∪ {⊥}, such that for each node
v, other than t, we either have S(v) = (v, u) when v has
selected the edge (v, u) in E, or S(v) = ⊥ if no neighbor is
assigned to v.

A node v is connected to t in a state S iff v is connected
to t in the graph induced by the edges chosen in S. We will
write PS(v) for the path induced by S from v to t. If v is
not connected, then PS(v) = ε2. If v is connected, PS(v) =
S(v)PS(u) when S(v) = (v, u) (this will always be a simple
path); indeed, any intermediate node appearing on PS(v) is
assigned the corresponding suffix of PS(v). When the network
converges, these paths collectively form a tree directed towards
t. During the execution, a node is constrained to only choose
among the available paths.

Definition II-.4 (Available paths). If a node v has k
out-neighbors u1, u2, . . . , uk in G(V,E), then the set
of available paths for v in state S is AP(S, v) =
{(v, ui)PS(ui) | 1 ≤ i ≤ k, (v, ui)PS(ui) ∈ Pv} ∪ {ε}.

If the preference specifies a total order over all available
paths, a node can always choose the best available path
according to such an order. However, if only given a partial
preference, for the unordered paths, a node still needs to make
a decision among them. We consider the case where for each
node v and paths starting from v, those specified in Lv are
better than the remaining, and a node can change its state (and
hence the state of the network) only if it has an improving
move.

Definition II-.5 (Improvement). A node v has an improving
move in a state S iff there exists a path p∗ = (v, u∗)PS(u∗)
in AP(S, v) such that S(v) 6= (v, u∗) and p∗ is better than
PS(v). The corresponding improved state S′ will have S′(v) =
(v, u∗). A state is stable iff no node has an improving move.

Consequently, whenever v is choosing among a set of paths
without a total order, v can switch to an available path that is
strictly better than his current path if any. If there is no such
path, v will always stick with the current path (and hence has
no improving move).

Remark 1 (The stable paths problem). Our partial preference
system generalizes the case of the well known stable paths
problem (SPP) [8] in the following sense. In SPP, each path
is assigned with a rank (which reflects the priority) and for
each node, paths with the same rank must have the same next-
hop (so called the strictness). Since for each node, different
paths with the same next-hop never appear simultaneously
(the next-hop node can only have one path to t), order them
arbitrarily will not affect the behavior of nodes in SPP. In
other words, the preference of SPP for each node is (implicity)
a total order over all paths. Partial preference system clearly
captures total orders on paths, and it is more general since
paths with different next-hop are allowed to be unordered.

A node can only attempt to make an improvement when it
is activated according to a schedule.

Definition II-.6 (Activation). An activation on v ∈ V at a
state S is a state transformation from S to a state S′ such
that only v can change its state to a improved state (if v has

2Note that ε is an empty path while ⊥ denotes an ‘empty’ edge.

an improving move). We use ρ to denote the transformation
function, i.e., S′ = ρ(S, v).

Definition II-.7 (Schedule). A schedule is a sequence of
activations defined by a function α from N to V , where
α(τ) = v means that the node v is activated at the time step
τ . A schedule is starvation-free if for each node v and each
time τ , there exists some ∆ > 0 such that v = α(τ + ∆). We
will only consider starvation-free schedules.

For an initial state S, we denote by S
(τ)
α the state reached

after activating the list of nodes α(1), α(2), . . . , α(τ) in order
(and S

(0)
α is taken to be S). In other words, S

(τ+1)
α =

ρ(S
(τ)
α , α(τ + 1)), for any positive τ . The following claim is

an immediate consequence of the protocol execution model.

Claim II.1. If PS(v) 6= ε for some node v in some state S,
for any schedule α and any τ > 0, P

S
(τ)
α

(v) 6= ε.

Definition II-.8 (Convergence). A network has converged
given a schedule α at time τ from a starting state S, if for
any ∆ > 0, we have S

(τ)
α = S

(τ+∆)
α .

Claim II.2. If a network converges, it always converges to a
stable state.

Definition II-.9 (Convergence time). Given a starting state
and a schedule, if τ is a time step at which the network N
has converged (τ = +∞ if N never converges), we define the
convergence time to be the number of improvements made up
to τ . The maximum convergence time, denoted by CTmax(N),
of N is the longest convergence time over all possible initial
states and schedules.

Note that since only the improving moves are counted, the
convergence time is not necessarily equal to τ (though it is at
most τ), and the definition of maximum convergence time is
consistent for any τ at which N has converged.

III. PATH LINEARIZATION

In this section, we show that whenever the specified partial
preferences are free of dispute wheels (a particular cyclic
arrangement of preferences), there is always a total order over
all possible paths that is consistent with the preference such
that a unique stable state will be reached after some bounded
amount of time. We refer to such a network as a linearizable
network, and to the process of finding such a total order as path
linearization. Our approach is based on exploiting the structure
of the “path digraph” associated with the input instance, taking
advantage of a well-known connection between path digraphs
and dispute-wheels. Moreover, we provide a path linearization
algorithm that, though computing a total order on possibly
exponentially many paths, runs in time polynomial in the size
of the input graph and the preference.

A. Path Digraph and Dispute Wheels

A path digraph is a graph representation for ‘BGP-like’
path problems, where individual nodes’ preferences govern
route selection in a path-vector algorithm. For a network

〈G(V,E), L, t〉, the nodes of the path digraph are all the simple
paths in G. The nodes for paths p and q are connected by a
directed edge (p, q) if either p is a suffix of q or some node
in G prefers p to q. Thus in the path digraph any suffix p of
a path q (denoted by p→ q) is always considered better than
the path q itself.

Definition III-A.1 (Linearization). For a given network
〈G(V,E), L, t〉, a linearization �P of all paths P is a to-
tal order compatible with both L and the suffix relations.
Specifically, for any p, q ∈ P , (a) if p �L q, then p �P q
(preference compatibility), and (b) if p → q then p �P q
(suffix compatibility).

Define a phase of a schedule to be an interval of time during
which all nodes are activated at least once. Then, linearizable
networks have the following property.

Theorem 1. Any linearizable network will converge to a
unique stable state. Moreover, n phases suffice for any lin-
earizable network on n nodes to converge under any initial
state and any schedule, where n is the number of nodes.

Proof. By [8], [20], absence of dispute wheels implies that the
network always converges to a unique stable state, and con-
vergence will happen in at most n phases. Absence of dispute
wheels is equivalent to acyclicity of the path digraph [10],
which is equivalent to linearizablility of a network.

a0

a2 a1

t

(a) Topology of an unstable net-
work.

a b

t

(b) Topology of an network with
two stable states.

Fig. 1: Some network examples.

On the other hand, without such a global linearization,
convergence is not guaranteed. Figure 1a shows a typical
example where the network will never converge. Assume each
node ai has preference aiai+1t � ait � aiai+1ai+2t, where
subscripts are interpreted modulo 3. In fact, this network has
no stable state, and hence it can never converge. To see this,
consider the number of nodes choosing the direct edge to t in
a stable state if there exists one. If none of the nodes takes the
path ait, any ai will take ait when activated (hence unstable).
If only a0 chooses the direct edge a0t, a2 will choose a2a0t
and leave a1 no choice but also choosing the direct edge to t.
If a0, a1 both choose the direct edges to t, then a0 will switch
to a0a1t. If all nodes choose the direct edge to t, then a0 will
switch to a0a1t.

B. A Polynomial Time Algorithm for Linearization

We assume in the following that the input network is lin-
earizable, and show that an efficiently computable linearization

always exists. As our goal is to create a linearization for
possibly exponentially many paths in polynomial time, the
output can not be an explicit representation of the linear order.
Hence we design a poly-time computable function that takes
as input an ordered pair of simple paths (p, p′) and outputs
yes whenever p is ranked higher than p′ in the linearization,
and no otherwise. We establish the following.

Theorem 2. Any linearizable network has a linearization that
can be computed in polynomial time.

To linearize a network 〈G(V,E), L, t〉, we first consider
the path digraph with respect to only the specified paths PL.
Formally, each path in PL is (i) the trivial path that has only
one node t, (ii) a path in the preference system L, or (iii) a
subpath (i.e., a suffix) of some path in L. We call the following
linear order of PL a spine.

Definition III-B.1 (Spine). A spine on 〈G(V,E), L, t〉 is a
linear order �PL on PL such that for any p, q ∈ PL, (a) if
p �L q then p �PL q, and (b) if p → q then p �PL q. Note
that path t must be the largest element in any spine.

A spine �PL can be created efficiently since the total
number of paths in PL is at most |L| + n|L| + 1 = O(n|L|)
(which respectively corresponds to the paths in L, the suffixes
of paths in L, and the trivial path t) and a topologically sorted
order of PL can found in O(n2|L|2) time.

Now, we show how to use a spine�PL to find a linearization
of the network. For each path p in P \PL, among all suffixes
of p that are in PL, map p to the smallest suffix according
to the order �PL ; the order between two paths p, q that are
mapped to two different paths p′, q′ in PL is compatible with
the order between p′ and q′ in �PL ; all paths assigned to the
same path in PL are ordered lexicographically.

It is not difficult to verify that the above process gives
a linearization of the network in polynomial time. For the
interest of space, we defer to Appendix A for a formal proof
of the correctness, and the running time.

IV. CONVERGENCE TIME FOR RESTRICTED
PREFERENCES: A DICHOTOMY THEOREM

Although path linearization guarantees convergence after n
phases of execution, this does not mean that the convergence
time is polynomially bounded since there could be arbitrarily
long sequences of improving moves during a phase. In this
and the next sections, we study the convergence time of
linearizable, but not linearized, networks (i.e., executing the
protocol under partial preferences) over restricted families of
preference systems.3 We start with the following families of
preference systems.

Definition IV-.1 (〈s, l〉-Preference Systems). A preference L
is a 〈s, l〉-preference system iff for the preference Lv of each

3The execution model for partial preferences implicitly assumes that paths
specified in the preference is better than the rest. By simply examining
the resulting path digraph, it can be verified that having these additional
preferences does not affect the linearizability of a network.

ak bk dk . . . a1 b1 d1 a0

ck c1

tBk B1

Fig. 2: A network with constant preference size and constant-
length paths, that takes an exponentially long time to converge.

node v, (i) there are at most s paths in |Lv|, i.e., |Lv| ≤ s,
and (ii) for each path p in Lv , the length of p is at most l,
i.e., maxp∈Lv {|p|} ≤ l.

We establish here the following dichotomy: even a lineariz-
able network with only a 〈2, 3〉-preference system could en-
counter exponentially many improving moves before conver-
gence, while any linearizable network with a 〈2, 2〉-preference
system (resp. a 〈1, 3〉-preference system) always converges
after at most n2 (resp. 2n) improvements.

A. Exponential Convergence Time for 〈2, 3〉-Preferences

Our first result shows that there exists a family of (even
acyclic) networks such that the preference of any node contains
at most two paths where each path has length at most three,
and yet convergence may take time exponential in the size of
the network.

Theorem 3. For any k ≥ 1, there exists a network
N〈G(V,E), L, t〉, where G is a DAG on n = 4k+2 nodes, and
L is a 〈2, 3〉-preference system, s.t. the maximum convergence
time of N is 2Ω(n).

Note that G is a DAG immediately implies that the net-
work is free of dispute wheel, and hence linearizable. A
network N satisfying the conditions of the above theorem
is depicted in Figure 2, with the destination node t shown
as the ‘ground’. The network consists of a special node a0,
followed by k = bn/4c blocks Bi of four nodes each,
named ai, bi, ci and di. The preferences for each node in
a block Bi are Lai = {aibidit � ait}, Lbi = {bicit � bidit},
Lci = {cidit � cit} and Ldi = {diai−1t � dit}. The number
of paths in the preference of for each node is 2 and every path
has at most 3 hops.

The central idea is a pattern of activations for the nodes in
each block Bi, whereby a ‘flip’ for node ai−1 (that is, when
the node changes its state and then returns to the previous
state) triggers two flips for node ai. Accordingly, the sequence
of blocks can be made to amplify a single flip at a1 into
exponentially many flips for the subsequent ai.

For the interest of space, in the following, we will present
the activation sequence of each block and explain how it
leads to amplification, while a detailed proof of correctness is
supplied in Appendix B1. The order of each block is defined
as follows.

State Activate Old edge New edge Improvement reason
1 di (di, ai−1) (di, t) dit �di diai−1bi−1 · · ·
2 ai (ai, t) (ai, bi) aibidit �ai ait
3 bi (bi, di) (bi, ci) bicit �bi bidit
4 ai (ai, bi) (ai, t) ait �ai aibicit
5 ci (ci, t) (ci, di) cidit �ci cit
6 bi (bi, ci) (bi, di) bidit �bi bicidit
7 ai (ai, t) (ai, bi) aibidit �ai ait
8 di (di, t) (di, ai−1) diai−1t �di dit
9 ci (ci, di) (ci, t) cit �ci cidiai−1 · · ·

10 ai (ai, bi) (ai, t) at �ai aibidiai−1 · · ·

TABLE I: Sequence of improving moves for Lemma IV-A.1.

Definition IV-A.1 (Block Order). For 1 ≤ i ≤ k, let σi be
the following ordering of nodes in Bi:

di, ai, bi, ai, ci, bi, ai, di, ci, ai.

We will refer to this ordering as the block order of Bi.

We consider the block order of activation starting with the
following state.

Definition IV-A.2 (State S1). For any 1 ≤ i ≤ k, the S1

state of the block Bi is defined as S1(ai) = (ai, t), S1(bi) =
(bi, di), S1(ci) = (ci, t), and S1(di) = (di, ai−1).

The activation of the block order on Bi starting from the
state S1 is illustrated in Figure 3, where the red (or thick) edges
represent the current state. The following lemma provides the
essential ‘amplification’ step for the exponential time result.
Recall that we say that a node ‘flips’ when it changes its
assigned edge and then changes back. The lemma shows that
a flip for node ai−1 can cause a double flip for node ai by
activating the nodes in Bi according to the block order (with
the activation of ai−1 interposed). Therefore the node ai+1

can be made to flip four times, and so on.

Lemma IV-A.1. For any 1 < i ≤ k, suppose that the block
Bi is in state S1, the state of ai−1 is (ai−1, bi−1), and the
node ai−1 will shortly change to (ai−1, t). Then there exists a
schedule such that each node makes an improving move when
activated, and the final state of Bi is still S1. Moreover, during
activating under this schedule, the state of di flips once (from
(di, ai−1) to (di, t) and then back), and ai flips twice (from
(ai, t) to (ai, bi) and back, twice).

Proof. The schedule we use will activate the nodes of Bi in
the block order σi with the activation of ai−1 to adopt (ai−1, t)
occurring partway through.

The progression of states leading to required effect is shown
in Figure 3, and explained in detail in Table I. Note that ai−1

will activate and adopt (ai−1, t) after state 2 but before state 9.
Consequently, the transition to state 2, where node di

switches from an unranked path beginning with (di, ai−1) to
its second-best path dit is an improving move, and so is the
transition to state 9, where ai−1 has switched to (ai−1, t) and
so di can improve to its best path, diai−1t.

The claims of the lemma statement can readily be verified
from the presented sequence.

ai bi di ai bi di

ci ci

t tBi - State 1 Bi - State 2

ai bi di ai bi di

ci ci

t tBi - State 3 Bi - State 4

ai bi di ai bi di

ci ci

t tBi - State 5 Bi - State 6

ai bi di ai bi di

ci ci

t tBi - State 7 Bi - State 8

ai bi di ai bi di

ci ci

t tBi - State 9 Bi - State 10

ai bi di

ci

tBi - State 11

Fig. 3: States resulting from applying activation sequence σi
to block Bi.

B. An Upper Bound on Convergence Time

We now investigate the maximum convergence time of
linearizable networks. Firstly, note that any 〈1, l〉-preference
system for any positive integer l, will converge after at most 2n
improvements since a node v can only switch from being not
connected to t to choosing some neighbor u where u has a path
to t, or switch from choosing some neighbor u to choosing
the neighbor of the only path in v’s preference (when this
path becomes available). Hence, we only need to establish
maximum convergence time for 〈2, 2〉-preference systems,
and combining with our construction for showing that 〈2, 3〉-
preference systems lead to exponentially many improvements
(Theorem 3), we have a dichotomy theorem. In fact, we will
establish the maximum convergence time for networks with
〈2, l〉-preference systems for any positive integer l, which,

as a special case, implies poly-time convergence for 〈2, 2〉-
preference systems.

We define the function L(l, n) for any positive integers l
and n, to be the sum of a list of integers L(l, n) =

∑n
i=1 ai,

where a1 = 0 and ai = (l−1)ai−1 + 2 for all i, and establish
the following theorem.

Theorem 4. For any positive integer l, for any linearizable
network N〈G(V,E), L, t〉 where L is a 〈2, l〉-preference sys-
tem, the maximum convergence time of N is at most L(l, n),
where n is the number of nodes in G.

We first establish that the total number of improvements
made by any node v is upper bounded by the total num-
ber of improvements made by the nodes on the best path
of v (Lemma IV-B.1). To utilize this fact, we introduce a
process for finding a sequence of the nodes such that every
node v appears after any other node on the best path of v
(Lemma IV-B.2). Examining the nodes under this sequence,
we show that for any i, the i-th node in the sequence can
make at most ai improvements, hence proving that L(l, n) is
an upper bound of the total number of improvements.

We denote by Imp(v) the maximum number of im-
provements that the node v can make. (The proofs of
Lemma IV-B.1, IV-B.2 are deferred to Appendix B2.)

Lemma IV-B.1. For any node v in a 〈2, l〉-preference sys-
tem network whose best path is denoted by vu1u2 . . . ujt,
Imp(v) ≤

∑j
i=1 Imp(ui) + 2.

We use the notion of “good” node to define/find a sequence
of the nodes when examining their number of improvements.

Lemma IV-B.2. For any linearizable network 〈G(V,E), L, t〉,
for any T (V with t ∈ T , there exists at least one node
v ∈ V \ T s.t. either Lv = ∅, or for the best path of v
vu1 . . . ujt, ui ∈ T for all i. We call such a node v a good
node for T .

Proof of Theorem 4. We will create a list of subsets of
V , {Ai}ni=1 by starting from A1 = {t}, adding one
node every step, and ending with An = V . Let ai =
max {Imp(v) | v ∈ Ai}. We will prove in the following that
ai ≤ (l−1)ai−1 +2. Since the node added at the i-th step can
make at most ai improvements, by summing up the number
of improvements of all nodes, we achieve the upper bound of
L(l, n) total improvements.

Starting from A1 = {t}, we now show the transition from
Ai−1 to Ai, i.e., how to pick a node v that forms Ai = Ai−1∪
{v} with ai ≤ (l − 1)ai−1 + 2. By Lemma IV-B.2 with T =
Ai−1, there exists a node v with either empty preference, or
for v’s best path, vu1u2 . . . ujt, all nodes except v belong
to Ai−1. We pick any such node v (i.e., any good node for
Ai−1). For the first case, v has an empty preference implies
that the only improvement v can make is from ⊥ to one of its
neighbor. For the second case, by Lemma IV-B.1, Imp(v) ≤∑j
i=1 Imp(ui) + 2. Since j ≤ (l − 1) and all ui belongs to

Ai−1, we have Imp(v) ≤
∑j
i=1 ai−1 + 2 ≤ (l − 1)ai−1 + 2.

Since ai = max {ai−1, Imp(v)}, ai ≤ (l − 1)ai−1 + 2.

A simple calculation shows that L(2, n) ≤ n2, and for
any l ≥ 3, L(l, n) ≤ 2(l − 1)n. Therefore, in particular, for
any network with a 〈2, 2〉-preference system, the maximum
convergence time is at most n2. For a network with 〈2, 3〉-
preference system, the maximum convergence time is at most
2n+1. Combined with Theorem 3, which shows that there
exist networks with 〈2, 3〉-preferences that take 2Ω(n) time to
converge, we establish that the convergence time complexity
of networks with 〈2, 3〉-preference systems is 2Θ(n).

V. HOP-BASED PREFERENCE SYSTEMS

In this section we examine the maximum convergence time
of hop-based preference systems.

Definition V-.1 (k-Hop Preference Systems). In a k-hop
preference system, every node chooses paths based only on
the next k hops of the paths.

We use vu1u2 . . . uk∗ �v vw1w2 . . . wk∗ to denote that the
prefix vu1u2 . . . uk is better than vw1w2 . . . wk for the node
v. The well-known preference scheme of Gao and Rexford [4]
is an example of a 2-hop preference system. All adjacencies
are classified as customer-provider or peer-peer. Nodes are
required to prefer customer routes over all others, which is
a 1-hop preference rule. In addition, so-called ‘valley’ paths
are worst of all: a path that go from a provider, ‘down’ to a
customer, and then back ‘up’ to another provider. The extended
transit provider guidelines of Liao et al. [14] can be treated
in the same way. However, it is clear that the definition of
k-hop preference is more general than these, even for the case
when k is 2. The simplest case, when k is 1, covers the pure
local preference scheme where initial preference decisions are
based on the identity of the next-hop neighbor.

We establish here the following dichotomy result: any net-
work with a 1-hop preference system converges in linear time
while there exists a family of linearizable networks with 2-hop
preferences systems such that the maximum convergence time
is exponential.

A. Exponential Convergence Time for 2-Hop Preferences

We start by establishing the exponential convergence time
result for linearizable networks with 2-hop preference systems.
Note that the example shown in Figure 1a can be directly
transformed into a 2-hop preference system which suggests
that there are networks with 2-hop preference systems that
never converge, which of course have unbounded maximum
convergence time. The focus of this section is to show expo-
nential convergence time for networks guaranteed to converge
(in fact, even for DAGs).

Theorem 5. For any k ≥ 1, there exists a network
N〈G(V,E), L, t〉 with n = 4k+2 nodes forming a DAG and a
2-hop preference system such that the maximum convergence
time of N is 2Ω(n).

A slight modification of the construction in Theorem 3 will
demonstrate the same result for 2-hop preference systems.
Consider the network whose topology is shown in Figure 4a.

ak bk dk . . . a1 b1 d1 a0

ck c1

tBk B1

(a) Topology.
Node 1 2 3 4
ai diai−1∗ bidi∗ dit bici∗
bi cit dit cidi∗ diai−1∗
ci dit t diai−1∗
di ai−1di−1∗ t ai−1bi−1∗

(b) Preferences from best (1) to worst (4).

Fig. 4: A network with 2-hop preferences and exponential
convergence time.

The only difference from the network used in Theorem 3 is
that here ai has an edge pointing to di, instead of t. The 2-
hop preferences are shown in Table 4b. In Appendix C1, we
supply a detailed account of the exponential-length activation
sequence, which is based on the same idea as the construction
of the 〈2, 3〉-preference systems.

B. Linear-Time Convergence for 1-Hop Preferences

It is well known that whenever BGP preferences constitute
a 1-hop preference system, the network always converges to
a stable state after a linear number of improvements.

Theorem 6. For any network N〈G(V,E), L, t〉, where L is
a 1-hop preference system, the maximum convergence time of
N is at most n+m.

For completeness, we give a simple proof of this theorem in
Appendix C2. Note that Theorem 6 does not rely on absence
of dispute wheels. This indicates that for 1-hop preference,
there always exists at least one stable state. The network in
Figure 1b is a typical example where there is a dispute wheel
(which leads to multiple stable states) but the network always
converges. Here the nodes a and b prefer each other to the
direct edge to t. There are two stable states: {(a, b), (b, t)}
and {(b, a), (a, t)}. Which one is reached depends on which
node is activated first.

Note that if allowing activation for multiple nodes simulta-
neously for networks with dispute wheels, even if there are sta-
ble states, convergence is not guaranteed. Again, consider the
network in Figure 1b. If we start from the state S(a) = (a, t)
and S(b) = (b, t), and activate both a and b. The path abt is
available to a, and the path bat is available to b. Hence the new
state will be S(a) = (a, b) and S(b) = (b, a). If we activate
both a and b again, both of them will realize that they are not
connected to t, and hence will switch back to S(a) = (a, t)
and S(b) = (b, t). Therefore, the network will keep flipping
between those two states and never converge.

cj

s xi x̄i

t

(a) Basic gadget for
the clause cj = xi.

v1 v2 . . . vl cj

s xi x̄i

t

(b) Final gadget for the clause cj = xi.

Fig. 5: The construction for showing the hardness of PLM.

VI. LINEARIZATION THAT MINIMIZES PATH-LENGTH

In this section, we study the problem of finding a path
linearization that minimizes the length of the longest path
in the stable state, which we refer to as the path-length
minimization problem (PLM). We define the “length” of a
path linearization to be the length of the longest path in the
stable state, and hence PLM is to find a path linearization
with the minimum length. We will only linearize the paths to
the extent where the stable state is unique, and the remaining
paths can either be linearized arbitrarily, or left unordered.

In the absence of preferences, PLM can be solved by simply
performing a breath first search from the sink. Surprisingly, the
presence of preference makes the problem almost impossible
to tackle: it is NP-hard to approximate PLM to within a factor
of Ω(n), (n is the number of nodes in the network). We further
complement the hardness result by presenting an algorithm
that finds a path linearization with length at most (OPT +
l), where OPT is the minimum length achievable by a path
linearization and l is the length of the longest path in the
preference.

A. Hardness of the Path-Length Minimization Problem

Theorem 7. For any 2 ≤ l ≤ Θ(n), it is NP-hard to
distinguish whether the minimum length of a path linearization
for a given network on n nodes is 2 or at least l.

Proof. We use a reduction from 3SAT. Given a 3SAT instance
C = c1 ∧ c2 ∧ . . . cy with variables x1, x2, . . . , xz , we create
the sink t and a special node s with edge (s, t). For each
variable xi, create two nodes that respectively represent xi and
x̄i, with edges (xi, t), (xi, s), (x̄i, t), and (x̄i, xi). For each
clause cj , create a node that represents cj with edges (cj , xi)
if xi is in cj , and (cj , x̄i) if x̄i is in cj (see Figure 5a for
the resulting topology of a simple clause cj = xi). We further
create a list of nodes v1, v2, . . . vl with edges (v1, t), (v2, t)
. . . (vl, t), and (v1, v2), (v2, v3) . . . (vl−1, vl). In addition, for
each cj node, create an edge (vl, cj). The final topology of a
simple clause cj = xi is shown in Figure 5b. The xi nodes
have no preference, each x̄i node has preferences x̄ixit �
x̄it � x̄ixist, each cj node prefers any path of length 2 to
those longer than 2. For any 1 ≤ i ≤ l, vi prefers the path
vivi+1 . . . vlp to the path vit, for any path p starting at a cj
node to t of length 3. It is straightforward to verify that the
reduction is poly-time.

If C is satisfiable by an assignment A, consider the prefer-
ence completion where a xi node prefers the direct path xit to
the path xist iff xi is true in A. The preference of x̄i ensures
that among xi and x̄i, only one can take a path of length 1
and the other will take a path of length 2. Consequently, each
cj node has a path of length 2 (through the literal that satisfies
cj in A), and hence each vi node will take the path vit. The
length of the path linearization is 2. On the other hand, if C is
not satisfiable, for any path linearization, define an assignment
where xi is true iff the node xi prefers the path xit to xist.
At least one cj node is not satisfied by this assignment, and
hence every out-going neighbor of cj has a path of length 2,
and cj must end up taking a path of length 3. Then, the node
vl can take the path through this cj , and each vi will take
the path through vi−1. Consequently, v1 will end up with a
path of length more than l. Since l can be made Ω(n) in this
construction, distinguishing whether the minimum length of a
path linearization is 2 or Ω(n) implies satisfiability of C.

B. Approximate the Path-Length Minimization Problem

Theorem 7 establishes that PLM is hard to approximate to
within a factor of Ω(n). However, note that this hardness result
relies on the length of the longest path in the preference being
large (that is, Ω(n)). We complement the hardness result by
the positive result below.

Theorem 8. There is a poly-time algorithm that for any
linearizable network N〈G(V,E), L, t〉, outputs a path lin-
earization with length at most (OPT + l), where OPT is
the minimum length of a path linearization of N , and l
is the length of the longest path in L. Moreover, in the
path linearization the algorithm outputs, every node only has
preference over at most (|L|+ 1) paths.

We say a path p is compatible with a state S, if for any edge
(u, v) on p, the state of u in S, S(u), is either ⊥ (i.e., no edge
is selected) or (u, v). A path p is said to be fully compatible
with S if for any edge (u, v) on p, S(u) = (u, v). A fully
compatible path in S is always available. In addition, we said
a node v has stabilized at a state S if v will not change its
state under any schedule.

Proof. To find a path linearization with the properties stated
in the theorem, we first create a spine (see Definition III-B.1)
for the given network 〈G(V,E), L, t〉, and argue that the spine
guarantees a unique stable state S for a subset T of nodes
where (i) for each node v in T , the path of v in the state S
belongs to the spine, and (ii) for any node u in V \ T , no
path specified in the preference of u, i.e., Lu, is compatible
with S. Since all paths in the graph induced by S belong to
the spine, the longest path among them has length at most l.

For the remaining nodes, since for any node v in V \ T ,
no path in Lv is compatible with S, any path p (starting at v)
compatible with S can essentially be made the best path of v in
S by letting p be less preferred than any path (starting at v) in
the spine, but better than the rest. To find a path compatible
with S for each node in V \ T such that the length of the

longest path is bounded, we treat all nodes in T as a ‘super
sink’, and perform a BFS from the super sink to the remaining
nodes. Consequently, every path in the resulting graph would
be a combination of a path induced by S and a path in the
BFS tree. Since the depth of the BFS tree is a lower bound
of the minimum length of a path linearization by adding the
path of each node v in the resulting graph to the preference
of v, we achieve a stable state where path-length are at most
OPT + l. For every node v, since every path in L can add
at most one new path from v to t to the spine, v will have
preferences on at most (|L|+1) paths. It remains to show how
to find such a state S and a set of nodes T . We establish the
following lemma where the proof is deferred to Appendix D.

Lemma VI-B.1. Given a network with a spine, where the
original preference is replaced by the spine, in any state S,
if T is a subset of nodes that have stabilized, then either (i)
there exists a node v ∈ V \ T , where the best compatible
(with S) path in Lv (if any) is fully compatible, or (ii) for
any v ∈ V \ T , no path in Lv is compatible with S.

Then, starting from T = {t} and an empty state S, we
can repeatedly apply Lemma VI-B.1, find nodes whose best
fully compatible path is available (which will be selected
eventually), add them to T , and update S accordingly, until for
any remaining node, no path in the preferences is compatible
with S.

VII. CONCLUSIONS

Partially specified preferences match the way that router
configuration is envisaged: definite policy is established at
coarse granularity, and further tie-breaking decisions are essen-
tially arbitrary. In this paper, we studied convergence time for
partial routing preference systems and introduced the notion of
linearizability to connect partial preference systems to earlier
work on routing correctness and convergence.

We formally established that the routing convergence time
is exacerbated by the complexity of the routing policy. This
demonstrates that in order to improve the convergence speed of
BGP, we must think not only about the router implementations,
the network environment, and the protocol design, but also
about the nature of the specified policies. In particular, our
result in Section IV shows that the real source of slow
convergence is not the number of alternative paths, nor the
length of paths, nor the presence of cycles, but the ability to
express ‘fine-grained’ route preferences. Even if preferences
are only allowed to be based on the two-hop neighborhood,
exponential convergence time is possible.

On the positive side, restricting the preference system does
help, though consequently, nodes might be only allowed to
specify preference over either the next hop or a few short
paths. Our work on 1-hop preference systems generalizes
Schapira et al. [21]; they additionally require that path prefer-
ences follow the guidelines of Gao and Rexford [4]. The next-
hop restriction is in fact a reasonable one, since it matches a
typical first-cut BGP policy—setting local preference based on
the neighbor’s identity.

In other prior works, Fabrikant et al. [3] consider a braid-
like network that may encounter exponentially many improve-
ments before convergence, using essentially a 〈4, 3〉-preference
system. Our work completes theirs by clarifying how much
restriction one needs to place on the preference system in order
to guarantee poly-time convergence.

Acknowledgement. Supported in part by National Science
Foundation grants CCF-1116961, CCF-1552909, and IIS-
1447470.

REFERENCES

[1] CAESAR, M., AND REXFORD, J. BGP routing policies in ISP networks.
IEEE Network 19, 6 (Nov/Dec 2005), 5–11.

[2] FABRIKANT, A., AND PAPADIMITRIOU, C. H. The complexity of game
dynamics: BGP oscillations, sink equilibria, and beyond. In Proc. ACM
SODA (2008), pp. 844–853.

[3] FABRIKANT, A., SYED, U., AND REXFORD, J. There’s something about
MRAI: Timing diversity exponentially worsens BGP convergence. In
Proc. IEEE INFOCOM (2011).

[4] GAO, L., AND REXFORD, J. Stable internet routing without global
coordination. IEEE/ACM Transactions on Networking (2001), 681–692.

[5] GRIFFIN, T., AND WILFONG, G. T. An analysis of BGP convergence
properties. In SIGCOMM (1999), pp. 277–288.

[6] GRIFFIN, T. G., AND HUSTON, G. RFC 4264: BGP wedgies, 2005.
[7] GRIFFIN, T. G., SHEPHERD, F. B., AND WILFONG, G. Policy disputes

in path vector protocols. In IEEE ICNP (1999).
[8] GRIFFIN, T. G., SHEPHERD, F. B., AND WILFONG, G. The stable

paths problem and interdomain routing. IEEE/ACM Transactions on
Networking 10, 2 (2002), 232–243.

[9] GRIFFIN, T. G., AND WILFONG, G. A safe path vector protocol. In
Proc. IEEE INFOCOM (2000).

[10] GURNEY, A. J. T., JIA, L., WANG, A., AND LOO, B. T. Partial
specification of routing configurations. In Workshop on Rigorous
Protocol Engineering (WRiPE) (2011).

[11] KARLOFF, H. J. On the convergence time of a path-vector protocol. In
SODA (2004), J. I. Munro, Ed., SIAM, pp. 605–614.

[12] LABOWITZ, C., AHUJA, A., ABOSE, A., AND JAHANIAN, F. An
experimental study of BGP convergence. In ACM SIGCOMM (2000).

[13] LABOWITZ, C., MALAN, G. R., AND JAHANIAN, F. Internet routing
instability. IEEE/ACM Transactions on Networking (1998).

[14] LIAO, Y., GAO, L., GUERIN, R. A., AND ZHANG, Z.-L. Safe inter-
domain routing under diverse commercial agreements. IEEE/ACM
Transactions on Networking 18, 6 (2010), 1829–1840.

[15] MAO, Z. M., GOVINDAN, R., VARGHESE, G., AND KATZ, R. H. Route
flap damping exacerbates Internet routing convergence. In Proc. ACM
SIGCOMM (2002).

[16] MCPHERSON, D., GILL, V., WALTON, D., AND RETANA, A. RFC
3345: Border Gateway Protocol (BGP) persistent route oscillation con-
dition, 2002.

[17] PAPADIMITRIOU, C. H. Algorithms, games, and the Internet. In Proc.
ACM STOC (2001).

[18] PELSSER, C., MAENNEL, O., MOHAPATRA, P., BUSH, R., AND PATEL,
K. Route flap damping made usable. In PAM (2011).

[19] REKHTER, Y., LI, T., AND HARES, S. RFC 4271: A Border Gateway
Protocol 4 (BGP-4), 2006.

[20] SAMI, R., SCHAPIRA, M., AND ZOHAR, A. Searching for stability in
interdomain routing. In Proc. IEEE INFOCOM (2009), pp. 549–557.

[21] SCHAPIRA, M., ZHU, Y., AND REXFORD, J. Putting BGP on the right
path: the case for next-hop routing. In ACM HotNets (2010).

[22] SOBRINHO, J. Network routing with path vector protocols: Theory and
applications. In Proc. ACM SIGCOMM (2003), pp. 49–60.

[23] VARADHAN, K., GOVINDAN, R., AND ESTRIN, D. Persistent route
oscillations in interdomain routing. Computer Networks (2000).

[24] VILLAMIZAR, C., CHANDRA, R., AND GOVINDAN, R. RFC 2439:
BGP route flap damping, 1998.

[25] ZHAO, M., ZHOU, W., GURNEY, A. J. T., HAEBERLEN, A., SHERR,
M., AND LOO, B. T. Private and verifiable interdomain routing
decisions. In Proc. ACM SIGCOMM (2012).

APPENDIX

A. Omitted Details from Section III

We present here the omitted details from Section III-B,
completing the proof of Theorem 2. We start by reviewing
the high-level overview of the steps used in our linearization
algorithm, and then proceed to a formal description and
analysis.

(a) Create a linear order, called a spine, on PL, i.e., the set
of paths that either appear in L or are a suffix of some path
in L.

(b) Every other path p ∈ P , is mapped to a unique path p′

on the spine, ordering p between p′ and the successor of p′

on the spine (if there exists one).
(c) All paths assigned to the same path p′ on the spine are

ordered lexicographically.
We write p ≥lex q for the relation on paths that holds

whenever p is shorter than q, or they are the same length and p
lexicographically precedes q (considering them as words over
the alphabet V , with some arbitrary fixed order on V).

Claim A.1. If a network 〈G(V,E), L, t〉 is linearizable, there
must exist a spine on PL.

In fact, the restriction of any linearzation to PL is a spine,
by Definitions III-A.1 and III-B.1.

Definition A.1 (Vertebra). For any path p in P \ PL, the
vertebra of p is v(p) = min�PL

{q ∈ PL | q → p}, i.e., the
minimal spine path among all of its suffixes. Note that because
t is in PL, v(p) is always well defined.

We now prove Theorem 2 by demonstrating the following
order.

Definition A.2 (Spinal order). Given a spine �PL on network
〈G(V,E), L, t〉, define the spinal order �P on P by p �P q
if and only if v(p) �PL v(q), or v(p) = v(q) and p ≥lex q.

We introduce the following three lemmas to prove Theo-
rem 2.

Lemma A.1. The spinal order is a linearization of P .

Proof. We must show that the order �P is a total order that
is consistent with preference and suffix compatibility rules.

First of all, the order �P is indeed a total order.

• Reflexivity. Obvious from the definition.
• Transitivity. Suppose p �P q �P r; consider v(p),
v(q) and v(r). If v(p) = v(q) = v(r), we must have
p ≥lex q ≥lex r and so p ≥lex r. Hence p �P r.
If v(p) �PL v(q), then either v(q) �PL v(r) or
v(q) = v(r). For the first case, since the spine is
transitive, we have v(p) �PL v(r); in the second case,
v(q) �PL v(r) trivially. Thus v(p) �P v(r). The
argument for v(q) �PL v(r) is exactly parallel.

• Antisymmetry. Suppose p �P q and q �P p. Clearly
we must have v(p) = v(q), from which it follows that
p ≥lex q and q ≥lex p. Hence p = q as required.

• Totality. Recall that v is defined for all paths. Suppose
that ¬(p �P q), for some distinct p and q. Then
¬v(p) �PL v(q), and since the spine is a total order,
we have either v(q) �PL v(p) or v(p) = v(q). The first
case directly implies q �P p. In the second, it must be
that ¬(p ≥lex q) according to the definition of this order.
Since ≥lex is a total order, we must have q ≥lex p, from
which it follows that q �P p, as required.

Secondly, the order is compatible with the preferences in L.
Suppose that p �L q. Then p = v(p), q = v(q) and v(p) �PL
v(q), so p �P q as required.

Finally, the order is compatible with the suffix relation.
Suppose that p → q. By definition of vertebra, it must be
that v(p) is at least as good as v(q) on the spine, because any
suffix of p is also a suffix of q. If v(p) �PL v(q) then p �P q
and we are done. Otherwise, v(p) = v(q); but in this case, p
is a shorter path than q and so lexicographically precedes it.
We have p ≥lex q and p �P q as required.

Lemma A.2. If a spine exists, then it can be constructed in
O(|PL|2) time.

Proof. Recall that a spine is a linear order on PL, which
extends both the preferences in L and the suffix relations. Let
Π be a binary relation on PL which contains exactly those
pairs of paths (p, q) for which p �L q or p→ q. A topological
sort of Π will either fail, indicating the presence of a cycle
and hence nonexistence of a spine, or succeed, and produce a
spine.

Extending L to Π can be done in O(|PL|2) time. A topo-
logical sort of all paths in Π can be done in O(|PL|+ |PL|2)
time, where |PL|2 is an upper bound on the number of
relations in Π. Therefore, the entire running time is bounded
by O(|PL|2).

Lemma A.3. Given any two paths p and q from P , the
determination of whether p �P q or q �P p holds can be
made in polynomial time.

Proof. We may assume a spine has already been constructed,
since this takes polynomial time in any case. To identify
the ordering of p and q, we must evaluate and compare
v(p) and v(q), and if they are equal, then compare p and
q lexicographically.

It takes O(|V |) time to evaluate v(p) for a given p. The
length of p is at most |V |, since P contains only simple paths.
We can find v(p) by enumerating all suffixes of p, beginning
at p itself, and returning the first one that is in PL.

Comparison of v(p) and v(q) is done according to the spine.
If they are equal, lexicographic comparison of p and q takes
O(|V |) time.

We conclude that preference queries, for two given paths,
take O(|V |) time overall, once a spine has been constructed.

Proof of Theorem 2. Lemma A.1 guarantees that there exists
at least one spine. By Lemma A.1, the corresponding spine
order is a linearization of P . In addition, by Lemma A.2

and A.3, we can construct as well as determine preferences
between two paths in polynomial time.

B. Omitted Details From Section IV

We now present a detailed analysis of the restricted family
of instances described in Section IV that take exponentially
long to converge in the worst-case.

1) Exponentially Many Improvements for 〈2, 3〉-Preference
Systems: Recall from Section IV-A the example depicted in
Figure 2.

To prove Theorem 3, we will construct an activation se-
quence for this network of exponential length: specifically,
each node ai will make an improving move 2i times.

Lemma B.1. Any improving move by a node in a block Bi
does not affect the state of a node in a block B` with ` < i.

Proof. As the graph G is a DAG, each node in B` appears
before any node in Bi in the topologically sorted order. Thus
an improving move by a node in Bi cannot affect the choice
of nodes in B`.

The pieces are now in place for the presentation of the
main result. The proof below provides an activation sequence
with exponentially many improving moves. Specifically, the
ai nodes will each activate and improve 2i times.

Proof of Theorem 3. Consider the network with graph shown
in Figure 2 and preference described above.

We start with the following initial state of the network. For
all i > 1, Bi is in state S1 and B1 is in State 2 of Figure 3,
i.e., a1 takes (a1, t), b1 takes (b1, d1), c1 takes (c1, t), and d1

takes (d1, t).
The reason why we treat B1 differently is that the block

Bi can be used to trigger improving moves in Bi+1 when the
node ai flips. But for B1, a0 only has one outgoing edge and
will never be able to improve. But since the ultimate goal is
just to flip a1 twice, and the improvement occurs at State 3,
5, 8 and 11, starting from State 2 is enough.

For any sequence σ, let σR denote the sequence σ in reverse.
Also, let σ′1 denote the block order σ1 with the first occurrence
of d1 removed.

We now create the activation sequence Σ using a stack of
nodes O, and a counter χi to record the number of times
that each node ai has been popped. We start by pushing the
sequence σ′1

R on to the stack; so the sequence will get popped
out as σ′1. We now start popping nodes from the stack, and
each popped node is appended to the sequence Σ. If it is one
of the ai nodes, then we increment and examine χi.
• If χi is odd (that is, if ai has been activated an odd

number of times), and if i 6= k, then we push the sequence
(di+1, ai+1, bi+1, ai+1, ci+1, bi+1, ai+1)R into the stack
O. This corresponds to σi+1 restricted to the transitions
from state 1 to state 8.

• If χi is even, and if i 6= k, then we push the sequence
(di+1, ci+1, ai+1)R into the stack O. This corresponds
to the remaining steps of σi+1, going from state 8 to
state 11.

The process continues until the stack is exhausted.
We now establish that (a) every appearance of the node ai

in Σ leads to an improving move, and (b) χi will end up
as 2i. Since n = 4k + 2, it follows that the node ak makes
2Ω(n) improving moves in the sequence Σ and hence we get
exponentially long convergence time.

We start by establishing the assertion (a) above by induction
on i where i ranges from 1 to k. The state transformation in
Lemma IV-A.1 implies that for any block Bi, starting from
the state S1, every appearance of a node in the block order
leads to an improving move, including ai.

For the base case, we consider the node a1. The nodes in
B1 start in state S2 instead of S1. However, the construction in
Lemma IV-A.1 shows that skipping the transition from state 1
to state 2 does not affect the subsequent transitions from state
2 through to state 11, and so the appearance of each a1 will
still make an improving move when applying the block order
σ′1. The process defined above will push additional nodes on
to the stack when pushing σ′1

R. However, for any 1 ≤ i < k,
when seeing a node ai, the process only pushes nodes in B`
where ` > i. Now by Lemma B.1, any improving moves by
nodes in B` where ` > i do not affect the state of nodes in
B1. Thus a1 will still make an improving move whenever it
is given the chance. Second, no more occurrences of the node
a1 will be pushed onto the stack, besides the initial push of
the sequence σ

′R
1 .

As a result, every appearance of the node a1 in Σ leads
to an improving move. Observe furthermore that the node
a1 has only two out-neighbors and the initial state ensures
that it starts with the edge (a1, t). Each improving move
causes a1 to switch between its neighbors. Therefore, between
any successive odd appearance and even appearance of a1, it
changes from (a1, t) to (a1, b1) and back.

For the inductive step, assume that every appearance of
nodes a1 to ai in the sequence Σ leads to an improving move.
We furthermore assume that for 1 ≤ j ≤ i, between any
successive odd appearance and even appearance of the aj , it
changes from (aj , t) to (aj , bj) and then back to (aj , t). We
establish that the same property holds for the node ai+1.

Node ai+1 can get pushed into the stack only when
node ai is popped. Consider a pair of successive odd
and even appearances of node ai. In the construction of
Σ, upon an occurrence of ai with χi odd, we push the
sequence {di+1, ai+1, bi+1, ai+1, ci+1, bi+1, ai+1}R onto the
stack. Each pop of an ai+1 corresponds to an improving move,
by Lemma IV-A.1. During popping of these nodes from the
stack, additional nodes from blocks Bi+2 to Bk might be
pushed into the stack. But as before, any improving moves
by nodes in the blocks Bi+2 to Bk cannot affect the state of
Bi+1, and moreover, no further occurrences of ai+1 will get
pushed into the stack.

The next occurrence of ai (which will be even) happens
after each of the above seven nodes has been popped, and
Bi+1 is in state 8. This activation of ai results in its adoption
of (ai, t), which is what enables di+1 to make an improving
move, and reach state 9 of Bi+1 (as in Lemma IV-A.1).

Accordingly, the sequence (di+1, ci+1, ai+1)R is pushed onto
the stack, so that di+1 will be the next node popped, improving
from di+1t to di+1ait, after which Bi+1 will be in state 9,
allowing ci+1 and then ai+1 to make their improving moves.
So ai+1 has improved again.

As in the case above for odd χi, the additional nodes pushed
do not affect the state of Bi, and no more occurrences of
ai+1 are pushed into the stack. Therefore every occurrence
of the node ai+1 corresponds to an improving move. and
furthermore, ai+1 changes from (ai+1, t) to (ai+1, bi+1) and
then back to (ai+1, t).

We next establish assertion (b), that is, the node ai appears
2i times in the sequence Σ. Whenever we pop an odd
occurrence of node ai−1, three occurrences of ai will be
pushed into the stack. Whenever we pop an even occurrence
of ai−1, one occurrence of ai is pushed into the stack.
Therefore, any successive odd and even occurrence of ai−1

results in four occurrences of ai getting pushed into the stack.
Considering the final values of the χi counters, if χi is even
then χi+1 = 2χi. Since χ1 = 2, which is even, it follows that
χi = 2i for all i.

Therefore, the total number of improvements is at least∑
χi > 2k, and hence the maximum convergence time

CTmax(N) = 2Ω(n).

2) The Maximum Convergence Time for Restricted Prefer-
ence Systems:

Proof of Lemma IV-B.1. For any node v, the first improve-
ment could be switching from ⊥ to some neighbor u with
a valid path. To make any more improvements, since v will
always have a valid path through u (Claim II.1), at least one
path from Lv with next-hop different than u must be available.
Therefore, if Lv = ∅, v can make no more improvement, and
if |Lv| = 1, v can make at most two improvements.

For |Lv| = 2, assume the best path is p1 and the second
best path is p2, and the next hop of p1 is w1 and the next hop
of p2 is w2. After making at most two improvements, v must
choose either (v, w1) or (v, w2) and the corresponding path is
available when the previous improvement is made.

To make any more improvement, we argue that it can only
happen after some node in p1 make some improvement first.
If the current state is (v, w1), the only neighbor v could
switch to is w2 (when p1 is no longer available and p2

becomes available). Since at the time v chooses w1, p1 must
be available, v can make such improvement only after some
node in p1 made an improvement and switched to another
path.

If the current state is (v, w2), by Claim II.1, the path through
w2 to t is always valid. Hence the only neighbor v can switch
to is w1 (when p1 becomes available). Since at the time v
chooses w2, p1 must not be available, v can switch only after
every node in p1 (except v) is choosing its next-hop in p1.

Either case, v can make an improvement only after at least
one node in p1 (except v itself) made at least one improvement.
Hence, if p1 = vu1u2 . . . ujt, the total improvements v can
make is Imp(v) ≤

∑j
i=1 Imp(ui) + 2.

Proof of Lemma IV-B.2. We can assume that for every node
v ∈ V \ U , vt is not the best path, since otherwise, v is a
good node (hence, if l = 1, where the only possible path in L
is of form vt, all nodes in V \ U are good). Now we assume
l ≥ 2 and prove by contradiction. Suppose none of the nodes
in V \U is good. Denote p[v] the sub-path of p starting from
node v, if v ∈ p.

Pick any node v1 ∈ V \U . There exists a node v2 in v1’s best
path p1 s.t. v2 ∈ V \ U . By suffix relationship, p1[v2] → p1.
Since v2 ∈ V \U , there exists a node v3 in v2’s best path p2 s.t.
v3 ∈ V \U . By suffix relationship and preference relationship,
respectively, p2[v3] → p2 and p2 � p1[v2]. Eventually, this
process will encounter the same node twice. If we denote the
nodes we encountered by v1, v2, . . . , then there exists some
k s.t., the best path of vk, pk contains the node vi for some
i < k. Hence,

pi � pk[vi] → pk � · · · → pi+1 � pi[vi+1] → pi

This is a dispute wheel by definition, which contradicts the
fact that the network is linearizable.

C. Omitted Details From Section V
1) 2-Hop Preference Systems: As before, we break the

network into blocks and denote them as Bi and define a new
S1 state similar to the previous case.

Definition C.1 (S1 state, 2-hop case). The state S1 of Bi is
the state S1(ai) = (ai, di), S1(bi) = (bi, di), S1(ci) = (ci, t),
and S1(di) = (di, ai−1).

Lemma C.1. For any Bi, starting from state S1, there is an
activation sequence of improving moves, terminating in S1

again, during which node di changes from (di, ai−1) to (di, t)
and back, and node ai changes from (ai, di) to (ai, bi) and
back, twice.

State ai bi ci di
1 (ai, di) (bi, di) (ci, t) (di, ai−1)
2 (ai, di) (bi, di) (ci, t) ?(di, t)
3 ?(ai, bi) (bi, di) (ci, t) (di, t)
4 (ai, bi) ?(bi, ci) (ci, t) (di, t)
5 ?(ai, di) (bi, ci) (ci, t) (di, t)
6 (ai, di) (bi, ci) ?(ci, di) (di, t)
7 (ai, di) ?(bi, di) (ci, di) (di, t)
8 ?(ai, bi) (bi, di) (ci, di) (di, t)
9 (ai, bi) (bi, di) (ci, di) ?(di, ai−1)

10 (ai, bi) (bi, di) ?(ci, t) (di, ai−1)
11 ?(ai, di) (bi, di) (ci, t) (di, ai−1)

TABLE II: State sequence of block Bi.

Proof. We use the same block order as before (Defini-
tion IV-A.1). Table II shows the resulting states; the annotation
‘?’ shows which node made the improving move.

When ai changes to (ai, bi), di+1 will lose its best path and
switch to the second best (di, t), which is always available.
When ai flips back to (ai, di), the best path of di+1 appears
again, and di+1 will change to it. As a result, each flip of di
will cause ai to flip twice and each flip of ai will cause di+1

to flip twice. The construction proceeds as in Theorem 3.

2) 1-Hop Preference Systems – Proof of Theorem 6:

Proof. We prove this through a simple potential function
argument. For any state S of the network, we define an n-
dimensional vector W that records the ‘quality’ of the current
solution for each node. Specifically, for each node v ∈ V , we
set entry W (v) = i if S(v) is the i-th best next hop for v,
and W (v) = |kv| + 1 otherwise (i.e. if S(v) = ⊥); here kv
denotes the number of out-neighbors of v.

By Claim II.1, after making an improvement, v will be
connected to t and can always stick with its current path, and
hence the value W (v) is non-increasing over time.

On the other hand, whenever v makes an improvement, it
must switch to a better neighbor, and the value of W (v) will
strictly decrease. It follows that the total number of improving
moves is bounded by∑

v∈V
W (v) ≤

∑
v∈V

(kv + 1) ≤ m+ n

Hence the system always converges to a stable state in n+m
steps.

D. Omitted Details From Section VI

Proof of Lemma VI-B.1. We prove by contradiction. For sim-
plicity, a (fully) compatible path always refers to a path (fully)
compatible to the state S. Suppose that for any node v ∈ V \T ,
the best compatible path in Lv (if any) is not fully compatible,
and there exists a node v0 ∈ V \ T who has compatible paths
in Lv0 , and the best compatible path is p0. By our assumption,
p0 is not fully compatible. Hence, there exists a sub-path of
p0 denoted by v1q0 where q0 is a path to t induced by S and
v1 /∈ T (i.e., the shortest sub-path to t not induced by S). Since
the path v1q0 is on the spine, it is a path in the preference of
v1, Lv1 that is fully compatible. By our assumption, v1q0 is not
the best compatible path in Lv1 . Consider the best compatible
path p1 of Lv1 , and using the same process, we can find a sub-
path of p1, vq1, where the best compatible path of v2 is p2.
Eventually, the process must reach the same node twice and
the paths {pi, vi+1qi} forms a dispute wheel, which contradicts
the fact that the network is linearizable.

