Report on Real-Time Java Development

ETRI & RT-Java Team at PENN

12/20/2001

0. Researchers from ETRI and Penn had meetings(12/09/01 – 12/19/01):

· Reviewed work done by both parties

· Examined effective ways for integration

· Exchanged ideas on the features to add and/or update

· Planned new goals and set the timeline

1. RT-Java team at PENN

· Goal

Extend existing KVM to support real-time Java based on RTSJ

· Work accomplished

i. Understanding of KVM

ii. Design of a 2-level scheduler for KVM

iii. Skeletal implementation of real-time priority-based scheduler

iv. Part of API’s for RT-threading and memory management

v. Incremental GC based on Baker’s three-coloring algorithm

vi. Immortal (Physical) memory management

vii. High-resolution clocks and timers

viii. Research on OS/platforms to port KVM-RT

· Under construction

i. Complete API’s supporting RTSJ

ii. Concretization of the OS/VM threading models to support

iii. Thread scheduling policies

iv. Various schedulers

v. Scoped memory and other memory models

vi. Asynchronous event handling

vii. Explore various RTOS’s for porting

viii. Examples for validation of on-going RTSJ implementation

2. JVM team at ETRI

· Goal

Construct in-house JVM with better performance and real-time extension

· Work accomplished

i. Understanding of Kaffe

ii. Java API’s

iii. 2 versions of class loaders

iv. Interpreter

· Plans

i. Integration of current implementation with thread mechanism and GC

3. Proposed requirements to RTOS team at ETRI

· As part of joint effort between the two groups, we have discussed eligibility of threading models supported by various OS’s

· Both teams preferred “Java to OS-thread mapping” to “Green thread model” to relieve complex(and tricky) scheduling burden from Java side

· We identified the features that would expedite the implementation of RT-Java:

i. Finer granularity of timer/clock related system calls

1. micro seconds or finer would work nicely

2. alarm/sleep and other system calls based on finer time

ii. Schedulability of threads based on time quantum

1. VM sets thread release/deadline using the time quantum

2. OS takes over the scheduling duties of threads

iii. Negotiable process time allocation per thread and thread-group

1. In RT-JVM, threads belong to user-assigned scheduler group

2. Timing guarantee becomes realistic if OS can assign specified portion of CPU time or absolute processing time to a thread and/or threading group

iv. Application-level scheduler plug-in

1. OS provides a mechanism where an application can plug in its own scheduling policy for scheduling its own threads

2. OS may provide a mechanism where the application can install a callback function through which the IS can identify which thread to run in the next time slot

4. Other discussions

· The ETRI team switching from Kaffe to KVM for the reference implementation

· Finer grain monitor lock management

· Future integration of work done by both teams

5. Deliverables

· RT-Java team at PENN will open a web site where all the documents, slides, and source code are accessible

· The Penn group will do some research on the newly released reference implementation of RT-Java from TimeSys and share it with ETRI

· The Java team at ETRI will provide detail documentation on internal data structures and explanations on the JVM being developed at ETRI

