Implementing EDF Scheduler with CVM

Real-Time Java Working Group
Scheduling Mechanism in CVM

Unlike KVM that has an explicit control over scheduling Java threads, CVM does not have such an explicit control. KVM has only one native thread in interpreting an Java application that can consist of multiple Java threads. The native thread in KVM is capable of scheduling Java threads at any time under any scheduling policy. There is one-to-one mapping between Java threads and native threads when CVM interpretes an Java application. CVM creates a pthread for interpreting one Java thread. The pthreads created by CVM are scheduled by the OS under a priority-based scheduling policy.

Priority Scheduer in CVM

CVM sets the priority of each pthread proportional to the priority of its corresponding Java thread. This way ensures the priority-based scheduling of Java threads is accomplished by the priority-based scheduling of pthread.

Issues of Implementing EDF Scheduler in CVM

EDF scheduling policy is a dynamic priority scheduling policy. The earlier deadline a thread has, the higher priority it has. The priority of a thread dynamically changes when a thread gets available for its execution or a thread becomes unavailable for its execution.

One idea to implement EDF scheduler with CVM is to use the priority scheduling architecutre dynamically changing the priorities of pthreads such that the priority-based scheduling of pthreads ensures the EDF-based scheduling of Java threads. We explore some issues related with dynamically changing the priorities of pthreads.

· How
One issue is how to determine the priority of each pthread. Since the priorities of pthreads represent the deadlines of Java threads, one way to do is to sort Java threads in an increasing order of their deadlines and to assign the priorities of pthreads such that the priority of each pthread represents the rank of its corresponding Java thread in the sorted list.

Another issue is how we control block-waits of earlier deadline threads by later deadline threads. We propose to utilize the priority inheritance mechanism to resolve the issue. For example, when a thread with an earlier deadline is blocked by a thread with a thread with the later deadline, then the priority of the thread with the later deadline will be escalated to the blocked thread.
· When
Each pthread needs to change its priority when

1. a new thread is created,
2. an existing thread becomes ready from being blocked,
3. the current running thread gets blocked,
4. the current running thread finishes its execution.
· When a new Java thread is created, the pthread creating the Java thread puts this Java thread into a sorted Java thread list and changes the priorities of all pthreads.

· When an existing pthread becomes ready from being blocked, SOMEONE puts its corresponding Java thread into the sorted list and changes the priorities of all pthreads.

· When the current running thread gets blocked or finishes its execution, it removes itself out of the sorted list and changes the priorities of all the other pthreads. However, changing the priorities of all the other pthreads may be unnecessary.

· Who
Another issue is who sorts Java threads and determines the priorities of pthreads according to the ranks of corresponding Java threads. We can have each pthread do it or can create a VM-level pthread that does not have one-to-one mapping with a Java thread. If each pthread can do it, does each thread have a duplicate code for this?

· Open Problems
Two issues really must be addressed. First and foremost, how we are going to assign predetermined time slice for an EDF scheduler? For example, if we assign 20% of CPU time, and that is going to be used for feasibility check, we need a way to restrict the resource usage consumed by all threads controlled under the EDF, but we do not know how. Second, yet related, how we are going to coordinate multiple(and possibly different type of) schedulers is not clear at this moment.
