Library Environment

Operations, lemmas, and tactics for working with environments, association lists whose keys are atoms. Unless stated otherwise, implicit arguments will not be declared by default.

Authors: Brian Aydemir and Arthur Charguéraud, with help from Aaron Bohannon, Benjamin Pierce, Jeffrey Vaughan, Dimitrios Vytiniotis, Stephanie Weirich, and Steve Zdancewic.

Table of contents:

Require Export List.
Require Export ListFacts.
Require Import Atom.

Import AtomSet.F.
Hint Local Unfold E.eq.


Overview


An environment is a list of pairs, where the first component of each pair is an atom. We view the second component of each pair as being bound to the first component. In a well-formed environment, there is at most one binding for any given atom. Bindings at the head of the list are "more recent" than bindings toward the tail of the list, and we view an environment as growing on the left, i.e., at its head.

We normally work only with environments built up from the following: the empty list, one element lists, and concatenations of two lists. This seems to be more convenient in practice. For example, we don't need to distinguish between consing on a binding and concatenating a binding, a difference that Coq's tactics can be sensitive to.

However, basic definitions are by induction on the usual structure of lists (nil and cons).

To make it convenient to write one element lists, we define a special notation. Note that this notation is local to this particular library, to allow users to use alternate notations if they desire.

Notation Local "[ x ]" := (cons x nil).

In the remainder of this library, we define a number of operations, lemmas, and tactics that simplify working with environments.


Functions on environments


Implicit arguments will be declared by default for the definitions in this section.

Set Implicit Arguments.

Section Definitions.

Variables A B : Type.

The domain of an environment is the set of atoms that it maps.

Fixpoint dom (E : list (atom * A)) : atoms :=
  match E with
  | nil => empty
  | (x, _) :: E' => union (singleton x) (dom E')
  end.

map applies a function to all bindings in the environment.

Fixpoint map (f : A -> B) (E : list (atom * A)) : list (atom * B) :=
  match E with
  | nil => nil
  | (x, V) :: E' => (x, f V) :: map f E'
  end.

get returns the value bound to the given atom in an environment or None if the given atom is not bound. If the atom has multiple bindings, the one nearest to the head of the environment is returned.

Fixpoint get (x : atom) (E : list (atom * A)) : option A :=
  match E with
  | nil => None
  | (y,a) :: E' => if eq_atom_dec x y then Some a else get x E'
  end.

End Definitions.

Unset Implicit Arguments.


Relations on environments


Implicit arguments will be declared by default for the definitions in this section.

Set Implicit Arguments.

Section Relations.

Variable A : Type.

An environment is well-formed if and only if each atom is bound at most once.

Inductive ok : list (atom * A) -> Prop :=
  | ok_nil :
      ok nil
  | ok_cons : forall (E : list (atom * A)) (x : atom) (a : A),
      ok E -> ~ In x (dom E) -> ok ((x, a) :: E).

An environment E contains a binding from x to b, denoted (binds x b E), if and only if the most recent binding for x is mapped to b.

Definition binds x b (E : list (atom * A)) :=
  get x E = Some b.

End Relations.

Unset Implicit Arguments.


Properties of operations


Section OpProperties.
Variable A B : Type.
Implicit Types E F : list (atom * A).
Implicit Types a b : A.

Facts about concatenation


Lemma concat_nil : forall E,
  E ++ nil = E.
Proof.
  auto using List.app_nil_end.
Qed.

Lemma nil_concat : forall E,
  nil ++ E = E.
Proof.
  reflexivity.
Qed.

Lemma concat_assoc : forall E F G,
  (G ++ F) ++ E = G ++ (F ++ E).
Proof.
  auto using List.app_ass.
Qed.

map commutes with environment-building operations


Lemma map_nil : forall (f : A -> B),
  map f nil = nil.
Proof.
  reflexivity.
Qed.

Lemma map_single : forall (f : A -> B) y b,
  map f [(y,b)] = [(y, f b)].
Proof.
  reflexivity.
Qed.

Lemma map_push : forall (f : A -> B) y b E,
  map f ([(y,b)] ++ E) = [(y, f b)] ++ map f E.
Proof.
  reflexivity.
Qed.

Lemma map_concat : forall (f : A -> B) E F,
  map f (F ++ E) = (map f F) ++ (map f E).
Proof.
  induction F as [|(x,a)]; simpl; congruence.
Qed.

Facts about the domain of an environment


Lemma dom_nil :
  @dom A nil = empty.
Proof.
  reflexivity.
Qed.

Lemma dom_single : forall x a,
  dom [(x,a)] = singleton x.
Proof.
  simpl. intros. fsetdec.
Qed.

Lemma dom_push : forall x a E,
  dom ([(x,a)] ++ E) = union (singleton x) (dom E).
Proof.
  simpl. intros. reflexivity.
Qed.

Lemma dom_concat : forall E F,
  dom (F ++ E) = union (dom F) (dom E).
Proof.
  induction F as [|(x,a) F IH]; simpl.
  fsetdec.
  rewrite IH. fsetdec.
Qed.

Lemma dom_map : forall (f : A -> B) E,
  dom (map f E) = dom E.
Proof.
  induction E as [|(x,a)]; simpl; congruence.
Qed.

Other trivial rewrites


Lemma cons_concat_assoc : forall x a E F,
   ((x, a) :: E) ++ F = (x, a) :: (E ++ F).
Proof.
  reflexivity.
Qed.

End OpProperties.


Automation and tactics (I)


simpl_env


The simpl_env tactic can be used to put environments in the standardized form described above, with the additional properties that concatenation is associated to the right and empty environments are removed. Similar to the simpl tactic, we define "in *" and "in H" variants of simpl_env.

Definition singleton_list (A : Type) (x : atom * A) := x :: nil.
Implicit Arguments singleton_list [A].

Lemma cons_concat : forall (A : Type) (E : list (atom * A)) x a,
  (x, a) :: E = singleton_list (x, a) ++ E.
Proof.
  reflexivity.
Qed.

Lemma map_singleton_list : forall (A B : Type) (f : A -> B) y b,
  map f (singleton_list (y,b)) = [(y, f b)].
Proof.
  reflexivity.
Qed.

Lemma dom_singleton_list : forall (A : Type) (x : atom) (a : A),
  dom (singleton_list (x,a)) = singleton x.
Proof.
  simpl. intros. fsetdec.
Qed.

Hint Rewrite
  cons_concat map_singleton_list dom_singleton_list
  concat_nil nil_concat concat_assoc
  map_nil map_single map_push map_concat
  dom_nil dom_single dom_push dom_concat dom_map : rew_env.

Ltac simpl_env_change_aux :=
  match goal with
    | H : context[?x :: nil] |- _ =>
      progress (change (x :: nil) with (singleton_list x) in H);
      simpl_env_change_aux
    | |- context[?x :: nil] =>
      progress (change (x :: nil) with (singleton_list x));
      simpl_env_change_aux
    | _ =>
      idtac
  end.

Ltac simpl_env :=
  simpl_env_change_aux;
  autorewrite with rew_env;
  unfold singleton_list in *.

Tactic Notation "simpl_env" "in" hyp(H) :=
  simpl_env_change_aux;
  autorewrite with rew_env in H;
  unfold singleton_list in *.

Tactic Notation "simpl_env" "in" "*" :=
  simpl_env_change_aux;
  autorewrite with rew_env in *;
  unfold singleton_list in *.

rewrite_env


The tactic (rewrite_env E) replaces an environment in the conclusion of the goal with E. Suitability for replacement is determined by whether simpl_env can put E and the chosen environment in the same normal form, up to convertability in Coq. We also define a "in H" variant that performs the replacement in a hypothesis H.

Tactic Notation "rewrite_env" constr(E) :=
  match goal with
    | |- context[?x] =>
      change x with E
    | |- context[?x] =>
      replace x with E; [ | try reflexivity; simpl_env; reflexivity ]
  end.

Tactic Notation "rewrite_env" constr(E) "in" hyp(H) :=
  match type of H with
    | context[?x] =>
      change x with E in H
    | context[?x] =>
      replace x with E in H; [ | try reflexivity; simpl_env; reflexivity ]
  end.

Hints


Hint Constructors ok.

Hint Local Extern 1 (~ In _ _) => simpl_env in *; fsetdec.


Properties of well-formedness and freshness


Section OkProperties.
Variable A B : Type.
Implicit Types E F : list (atom * A).
Implicit Types a b : A.

Facts about when an environment is well-formed.

Lemma ok_push : forall (E : list (atom * A)) (x : atom) (a : A),
      ok E -> ~ In x (dom E) -> ok ([(x, a)] ++ E).
Proof.
  exact (@ok_cons A).
Qed.

Lemma ok_singleton : forall x a,
  ok [(x,a)].
Proof.
  auto.
Qed.

Lemma ok_remove_mid : forall F E G,
  ok (G ++ F ++ E) -> ok (G ++ E).
Proof with auto.
  induction G as [|(y,a)]; intros Ok.
    induction F as [|(y,a)]; simpl... inversion Ok...
    inversion Ok. simpl...
Qed.

Lemma ok_remove_mid_cons : forall x a E G,
  ok (G ++ (x, a) :: E) ->
  ok (G ++ E).
Proof.
  intros. simpl_env in *. eauto using ok_remove_mid.
Qed.

Lemma ok_map : forall E (f : A -> B),
  ok E -> ok (map f E).
Proof with auto.
  intros.
  induction E as [ | (y,b) E ] ; simpl...
  inversion H...
Qed.

Lemma ok_map_app_l : forall E F (f : A -> A),
  ok (F ++ E) -> ok (map f F ++ E).
Proof with auto.
  intros. induction F as [|(y,a)]; simpl...
  inversion H...
Qed.

A binding in the middle of an environment has an atom fresh from all bindings before and after it.

Lemma fresh_mid_tail : forall E F x a,
  ok (F ++ [(x,a)] ++ E) -> ~ In x (dom E).
Proof with auto.
  induction F as [|(y,b)]; intros x c Ok; simpl_env in *.
    inversion Ok...
    inversion Ok; subst. simpl_env in *. apply (IHF _ _ H1).
Qed.

Lemma fresh_mid_head : forall E F x a,
  ok (F ++ [(x,a)] ++ E) -> ~ In x (dom F).
Proof with auto.
  induction F as [|(y,b)]; intros x c Ok; simpl_env in *.
    inversion Ok...
    inversion Ok; subst. simpl_env in *. pose proof (IHF _ _ H1)...
Qed.

End OkProperties.


Properties of binds


Section BindsProperties.
Variable A B : Type.
Implicit Types E F : list (atom * A).
Implicit Types a b : A.

Introduction forms for binds


The following properties allow one to view binds as an inductively defined predicate. This is the preferred way of working with the relation.

Lemma binds_singleton : forall x a,
  binds x a [(x,a)].
Proof.
  intros x a. unfold binds. simpl. destruct (eq_atom_dec x x); intuition.
Qed.

Lemma binds_tail : forall x a E F,
  binds x a E -> ~ In x (dom F) -> binds x a (F ++ E).
Proof with auto.
  unfold binds. induction F as [|(y,b)]; simpl...
  destruct (eq_atom_dec x y)... intros _ J. destruct J. fsetdec.
Qed.

Lemma binds_head : forall x a E F,
  binds x a F -> binds x a (F ++ E).
Proof.
  unfold binds. induction F as [|(y,b)]; simpl; intros H.
  discriminate.
  destruct (eq_atom_dec x y); intuition.
Qed.

Case analysis on binds


Lemma binds_concat_inv : forall x a E F,
  binds x a (F ++ E) -> (~ In x (dom F) /\ binds x a E) \/ (binds x a F).
Proof with auto.
  unfold binds. induction F as [|(y,b)]; simpl; intros H...
  destruct (eq_atom_dec x y).
    right...
    destruct (IHF H) as [[? ?] | ?]. left... right...
Qed.

Lemma binds_singleton_inv : forall x y a b,
  binds x a [(y,b)] -> x = y /\ a = b.
Proof.
  unfold binds. simpl. intros. destruct (eq_atom_dec x y).
    split; congruence.
    discriminate.
Qed.

Retrieving bindings from an environment


Lemma binds_mid : forall x a E F,
  ok (F ++ [(x,a)] ++ E) -> binds x a (F ++ [(x,a)] ++ E).
Proof with auto.
  unfold binds. induction F as [|(z,b)]; simpl; intros Ok.
  destruct (eq_atom_dec x x); intuition.
  inversion Ok; subst. destruct (eq_atom_dec x z)...
    destruct H3. simpl_env. fsetdec.
Qed.

Lemma binds_mid_eq : forall z a b E F,
  binds z a (F ++ [(z,b)] ++ E) -> ok (F ++ [(z,b)] ++ E) -> a = b.
Proof with auto.
  unfold binds. induction F as [|(x,c)]; simpl; intros H Ok.
  destruct (eq_atom_dec z z). congruence. intuition.
  inversion Ok; subst. destruct (eq_atom_dec z x)...
    destruct H4. simpl_env. fsetdec.
Qed.

Lemma binds_mid_eq_cons : forall x a b E F,
  binds x a (F ++ (x,b) :: E) ->
  ok (F ++ (x,b) :: E) ->
  a = b.
Proof.
  intros. simpl_env in *. eauto using binds_mid_eq.
Qed.

End BindsProperties.


Automation and tactics (II)


Hints


Hint Immediate ok_remove_mid ok_remove_mid_cons.

Hint Resolve
  ok_push ok_singleton ok_map ok_map_app_l
  binds_singleton binds_head binds_tail.

binds_get


The tactic (binds_get H) takes a hypothesis H of the form (binds x a (F ++ [(x,b)] ++ E)) and introduces the equality a=b into the context. Then, the tactic checks if the equality is discriminable and otherwise tries substituting b for a. The auto tactic is used to show that (ok (F ++ [(x,b)] ++ E)), which is needed to prove the equality a=b from H.

Ltac binds_get H :=
  match type of H with
    | binds ?z ?a (?F ++ [(?z,?b)] ++ ?E) =>
        let K := fresh in
          assert (K : ok (F ++ [(z,b)] ++ E));
          [ auto
          | let J := fresh in
              assert (J := @binds_mid_eq _ _ _ _ _ _ H K);
              clear K;
              try discriminate;
              try match type of J with
                    | ?a = ?b => subst a
                  end
          ]
  end.

binds_cases


The tactic (binds_case H) performs a case analysis on an hypothesis H of the form (binds x a E). There will be one subgoal for each component of E that x could be bound in, and each subgoal will have appropriate freshness conditions on x. Some attempts are made to automatically discharge contradictory cases.

Ltac binds_cases H :=
  let Fr := fresh "Fr" in
  let J1 := fresh in
  let J2 := fresh in
    match type of H with
      | binds _ _ nil =>
          inversion H
      | binds ?x ?a [(?y,?b)] =>
          destruct (@binds_singleton_inv _ _ _ _ _ H);
          clear H;
          try discriminate;
          try subst y;
          try match goal with
                | _ : ?z <> ?z |- _ => intuition
              end
      | binds ?x ?a (?F ++ ?E) =>
          destruct (@binds_concat_inv _ _ _ _ _ H) as [[Fr J1] | J2];
          clear H;
          [ binds_cases J1 | binds_cases J2 ]
      | _ => idtac
  end.


Additional properties of binds


The following lemmas are proven in manner that should be independent of the concrete definition of binds.

Section AdditionalBindsProperties.
Variable A B : Type.
Implicit Types E F : list (atom * A).
Implicit Types a b : A.

Lemmas about the relationship between binds and the domain of an environment.

Lemma binds_In : forall a x E,
  binds x a E -> In x (dom E).
Proof.
  induction E as [|(y,b)]; simpl_env; intros H.
  binds_cases H.
  binds_cases H; subst. auto using union_3. fsetdec.
Qed.

Lemma binds_fresh : forall x a E,
  ~ In x (dom E) -> ~ binds x a E.
Proof.
  induction E as [|(y,b)]; simpl_env; intros Fresh H.
  binds_cases H.
  binds_cases H. intuition. fsetdec.
Qed.

Additional lemmas for showing that a binding is in an environment.

Lemma binds_map : forall x a (f : A -> B) E,
  binds x a E -> binds x (f a) (map f E).
Proof.
  induction E as [|(y,b)]; simpl_env; intros H.
  binds_cases H.
  binds_cases H; auto. subst; auto.
Qed.

Lemma binds_concat_ok : forall x a E F,
  binds x a E -> ok (F ++ E) -> binds x a (F ++ E).
Proof.
  induction F as [|(y,b)]; simpl_env; intros H Ok.
  auto.
  inversion Ok; subst. destruct (eq_atom_dec x y); subst; auto.
    assert (In y (dom (F ++ E))) by eauto using binds_In.
    intuition.
Qed.

Lemma binds_weaken : forall x a E F G,
  binds x a (G ++ E) ->
  ok (G ++ F ++ E) ->
  binds x a (G ++ F ++ E).
Proof.
  induction G as [|(y,b)]; simpl_env; intros H Ok.
  auto using binds_concat_ok.
  inversion Ok; subst. binds_cases H; subst; auto.
Qed.

Lemma binds_weaken_at_head : forall x a F G,
  binds x a G ->
  ok (F ++ G) ->
  binds x a (F ++ G).
Proof.
  intros x a F G H J.
  rewrite_env (nil ++ F ++ G).
  apply binds_weaken; simpl_env; trivial.
Qed.

Lemma binds_remove_mid : forall x y a b F G,
  binds x a (F ++ [(y,b)] ++ G) ->
  x <> y ->
  binds x a (F ++ G).
Proof.
  intros x y a b F G H J.
  binds_cases H; auto.
Qed.

Lemma binds_remove_mid_cons : forall x y a b E G,
  binds x a (G ++ (y, b) :: E) ->
  x <> y ->
  binds x a (G ++ E).
Proof.
  intros. simpl_env in *. eauto using binds_remove_mid.
Qed.

End AdditionalBindsProperties.


Automation and tactics (III)


Hint Resolve binds_map binds_concat_ok binds_weaken binds_weaken_at_head.

Hint Immediate binds_remove_mid binds_remove_mid_cons.