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L
earning algorithms have become an integral compo-
nent to modern engineering solutions. Examples 
range from self-driving cars and recommender 
systems to finance and even critical infrastruc-
ture, many of which are typically under the pur-

view of control theory. While these algorithms have al-
ready shown tremendous promise in certain applications 
[1], there are considerable challenges, in particular, with 
respect to guaranteeing safety and gauging fundamen-

tal limits of operation. Thus, as we integrate tools from 
machine learning into our systems, we also require an 
integrated theoretical understanding of how they oper-
ate in the presence of dynamic and system-theoretic phe-
nomena. Over the past few years, intense efforts toward 
this goal—an integrated theoretical understanding of 
learning, dynamics, and control—have been made. While 
much work remains to be done, a relatively clear and com-
plete picture has begun to emerge for (fully observed) 
linear dynamical systems. These systems already allow 
for reasoning about concrete failure modes, thus help-
ing to indicate a path forward. Moreover, while simple at 
a glance, these systems can be challenging to analyze.  
Recently, a host of methods from learning theory and 
high-dimensional statistics, not typically in the control-
theoretic toolbox, have been introduced to our community. 
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This tutorial survey serves as an introduction to these re-
sults for learning in the context of unknown linear dy-
namical systems (see “Summary”). We review the current 
state of the art and emphasize which tools are needed to 
arrive at these results. Our focus is on characterizing the 
sample efficiency and fundamental limits of learning al-
gorithms. Along the way, we also delineate a number of 
open problems. More concretely, this article is structured 
as follows. We begin by revisiting recent advances in 
the finite-sample analysis of system identification. Next, 
we discuss how these finite-sample bounds can be used 
downstream to give guaranteed performance for learning-
based offline control. The final technical section discusses 
the more challenging online control setting. Finally, in 
light of the material discussed, we outline a number of  
future directions.

FINITE-SAMPLE ANALYSIS OF SYSTEM 
IDENTIFICATION
In linear system identification, the goal is to recover the 
model of an unknown system of the form

	
x A x B u w

y C x v
t t t t

t t t
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where x Rt
dx!  represents the state, y Rt

dy!  represents 
the observations, u Rt

du!  is the control signal, and 
,w Rt

dx!  v Rt
dy!  are the process and measurement 

noises, respectively. The question we answer in this sec-
tion is, How many samples are needed to guarantee that the 

system identification error is small? We make this question 
more formal by introducing the notion of sample com-
plexity. Prior to doing so, we establish the statistical 
learning framing of the problem. While many of the 
results presented in the following sections can be 
extended to more general noise models, we keep the 
exposition simple by focusing on Gaussian noise models. 
In particular, we assume that both the process noise wt 
and measurement noise vt are independent identically 
distributed (i.i.d.) zero-mean Gaussians with covariance 
matrices wR  and ,vR  respectively, and that these process 
are all mutually independent of one another. Similarly, 
we let the initial state x0 be a zero-mean Gaussian, with 
covariance ,0C  and independent of the process and mea-
surement noise. We denote the covariance of the state xt 
at time t by .x xEt t t_C <  Here and in the sequel, the state 
parameters ( , , )A B C R ( )d d d du yx x! #

* * *
+ +  are unknown. The 

goal of the system identification problem is to recover 
the a priori unknown model of system (1) from finite 
input–output samples {( , )} ,y ui i i

N
1

tot
=  where Ntot  is the total 

number of samples. Thus, this is an offline learning prob-
lem. The data can come from a single trajectory of length 
T (that is, )N Ttot =  or from Ntraj  multiple independent 
trajectories with horizon T; that is, .N TNtot traj=  While 
the learning task is to recover the state-space parameters 

( , , , , )A B C w v_i R R* * * *  of (1) using these data, the state-
space representation of system (1) is, in general, not 
unique. Hence, we instead seek to recover one such rep-
resentation or a function ( )f i*  of the underlying true 
parameters .i*  To streamline the exposition, we focus on 
the single-trajectory case .N Ttot =  A more refined analy-
sis can be used when samples are drawn from multiple 
trajectories to yield similar conclusions [2] but under 
weaker stability-type assumptions. Let the identification 
algorithm A  be a (measurable) function that takes as an 
input the horizon T and the data {( , ),y u0 0  ( , ), , ( , )}y u y uT T1 1 f  
and returns an estimate fT

t  of the desired system quan-
tity ( ).f i*  In some settings, the algorithm A  may also 
encompass an exploration policy, that is, the choice of 
control inputs ut used during the data collection phase. 
The goal of the exploration policy is to excite the system 
in a way that maximizes the “richness” of the data, that 
is, how much information the data carry about the under-
lying system. Formally, we define an exploration policy 
r  to be a sequence of (measurable) functions ,t t 0r r= 3

=" ,  
where every function tr  maps previous output–input 
values , , ,y yt0 f  , ,u ut0 1f -  and potentially an auxiliary 
randomization signal to the new input ut. This definition 
encompasses both closed- and open-loop policies—in 
the latter case, the exploration policy is a function only of 
the auxiliary randomness. We can now define the notion 
of sample complexity. Let P ,i r  denote the probability dis-
tribution of the input–output data for the system (1) 
defined by parameters i*  evolving under the exploration 
policy .r

Summary

This tutorial survey provides an overview of recent 

advances in statistical learning theory relevant to 

control and system identification featuring nonasymp-

totic methods. While there has been substantial prog-

ress across all areas of control, the theory is most well 

developed when it comes to linear system identification 

and learning for the linear quadratic regulator, which 

are the focus of this article. From a theoretical perspec-

tive, much of the work underlying these advances has 

been in adapting tools from modern high-dimensional 

statistics and learning theory. While highly relevant to 

control theorists interested in integrating tools from ma-

chine learning, the foundational material has not always 

been easily accessible. To remedy this, we provide a 

self-contained presentation of the relevant material, 

outlining all the key ideas and offering an overview 

of the technical machinery that underpins recent re-

sults. We also present a number of open problems and  

future directions.
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Sample Complexity
Fix a class C  of systems of the form (1) and a norm · . 
Let ( )f i*  be the system quantity to be identified. Fix an 
identification algorithm A  with an exploration policy 

.r  Pick an accuracy parameter f  and a failure probabil-
ity ( , ).0 1!d  Let fT

t  be the system identification output 
under the algorithm A. Then, the sample complexity Nc 
of learning f given the class C,  the algorithm A,  and the 
policy r  is the minimum A( , , , , )N N Cc c f d r=  such that
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We say that a class of systems C  is learnable if there 
exist an algorithm A  and a policy r  such that for any 

, ( , ),0 0 12 !f d  the sample complexity Nc is finite.

In the case of multiple trajectories, we can replace T with 
Ntot  in the preceding definition. We can also define algo-
rithm-independent and/or policy-independent sample com-
plexity by considering the minimum Nc over all possible 
algorithms/policies. By choosing C  to be a neighborhood 
around some system ,i*  we can also define local instance-
specific sample complexities; see, for example, [5]. Note that 
for the sample complexity to be nontrivial, the algorithm 
should perform well across all possible C,!i*  which is what 
the supremum over C  achieves in (2). Otherwise, we can 
construct trivial algorithms that overfit to a specific system 
and fail to identify any other system in the class. Note that 
one often encounters ranges of T and d  for which the sample 
complexity dependency on f  behaves poorly. Typically, this 
is due to transient phenomena. For instance, in a d-dimen-
sional linear regression problem, the design matrix can be 
nearly singular if we have too few measurements (for exam-
ple, if fewer than d independent measurements are available). 
Informally, for a fixed ,d  one typically refers to the smallest 
sample size T such that there exists a finite (or meaningful) 
sample complexity at accuracy f  as the burn-in time. The 
burn-in for linear system identification is given in (9).

From Asymptotics to Finite-Sample Guarantees
Before we proceed, let us take a step back and briefly dis-
cuss the historical development of system identification 
from a mathematical methods perspective. Clearly, the sta-
tistical analysis of system identification algorithms has a 
long history [6]. Until recently, this line of work has empha-
sized providing guarantees for system identification algo-
rithms in the asymptotic regime [7], [8], [9], [10], [11], in which 
the number of collected samples tends to infinity. The main 
focus of asymptotic analysis has been to establish consis-
tency, that is, the convergence of the estimated system 
parameters to the ground truth (as modeled). Typically, this 
is achieved if certain persistency of excitation (PE) conditions 
hold [12]. Asymptotic tools can also go beyond consistency 

and provide convergence rates. Standard tools for charac-
terizing such rates are the law of the iterated logarithm 
(LIL) and the central limit theorem (CLT); see [14] for a 
detailed exposition of both techniques. Nevertheless, even 
the more advanced techniques (that is, the LIL and the 
CLT) hold only as the number of samples tend to infinity.

Toward a Finite-Sample Analysis
Early work on the nonasymptotic analysis of system identi-
fication appeared in the 1990s [14], [15], [16], [17], [18] and 
2000s [19], [20]. The setting of [14] and [15] focuses on worst-
case noise, which is different from the statistical setting 
considered in this article. In [16], approximate expressions 
for the finite-time identification error variance are given. 
We cannot derive sample complexity guarantees directly 
from [16]; the expressions therein are not directly comput-
able in our setting (they require exact computation of 
expectations), and they do not characterize the finite-sam-
ple distribution of the identification error and how it 
depends on the number of samples. The statistical learning 
setting was first studied in [18], [19], and [20], where guar-
antees are typically given for the prediction error of the 
learned model. Moreover, the guarantees rely heavily on 
having a mixing, that is, a stable, process. As we soon see, 
in many settings, mixing is not required, and in fact, faster 
mixing systems can be harder to learn—at least when it 
comes to parameter recovery [4]. Following papers by 
Abbasi-Yadkori and Szepesvári [21] and Dean et al. [22], 
there has been a resurgence of interest in using finite-data 
tools for system identification and controls. This is partially 
motivated by recent advances in high-dimensional probabil-
ity [3] and statistics [23], which provide us with new power-
ful tools and allow us to bypass asymptotic reasoning.

Why Do We Need Finite-Sample Guarantees?
In principle, our view is that both asymptotic and nonas-
ymptotic methods are useful for both control and learning 
theorists to have in their toolbox. On the one hand, a careful 
asymptotic analysis can provide sharp bounds and give a 
clear picture of some key quantities involved in the problem 
at hand. However, in reality, all data are finite, and asymp-
totic bounds are heuristics, albeit often sharp if the sample 
size is large enough. On the other hand, nonasymptotic anal-
ysis is often more appropriate to carefully delineate notions, 
such as transient phenomena (for example, burn-in times) 
and failure probabilities; see “What Do Finite-Sample Meth-
ods Bring?” We gain a more detailed qualitative character-
ization of learning difficulty, often at the expense of 
sharpness in the asymptotic regime. For instance, the ques-
tion, How many samples do we need to stabilize an unknown 
linear system with a certainty-equivalent (CE) linear qua-
dratic regulator (LQR) controller? is necessarily answered 
using finite-sample methods. Being able to combine these 
sometimes distinct styles of analysis gives us a richer under-
standing of the dynamic phenomena under consideration. 
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Many datasets are high dimensional, with the number of 
explanatory variables not necessarily being small in pro-
portion to the number of samples collected; for example, 
the state dimension dx  might be of the same order as T. In 
this case, asymptotic bounds with fixed dimension dx  are 
not always meaningful, while finite-sample guarantees 
still hold. Examples from systems theory for when this may 
be relevant include large networked systems and autore-
gressions of unknown order. An insightful discussion of 
this matter from a statistics perspective is held by Wain-
wright [23, Ch. 1]. From the perspective of a control theorist, 
obtaining sample complexity bounds as a function of 

system-theoretic parameters, for example, the system dimen-
sion, controllability Gramian, and stability radius, could be 
very useful. Finite-sample bounds can be qualitatively infor-
mative about learning difficulty and what can go wrong 
with it. That is, they provide us with tools to answer ques-
tions like, Which systems are hard to learn? How does the 
controllability structure affect learnability? Which algo-
rithms are optimal? Naturally, some of these questions can 
also be answered using asymptotic tools. Nonetheless, we 
believe that a finite-sample approach offers a new perspec-
tive, enabling us to even pose new questions; see, for 
instance, the open problems in the following. Learning 

What Do Finite-Sample Methods Bring?

Consider an unknown scalar system

	 x a x wt t t1 = +*+ � (S1)

where ,a 11*  wt  is independent identically distributed and 

mean-zero Gaussian with variance one. Assume that our goal 

is to recover the unknown scalar a*  from single-trajectory data 

( , , ).x xT0 f  One of the simplest algorithms is to minimize the 

squared prediction errors

( ) .argmina x axT
a

t t
t

T

1
2

1

= - -

=

t /

Given the stochastic nature of the data, the least-squares 

estimate aTt  will fluctuate around the “true” value .a*  Both as-

ymptotic and nonasymptotic methods aim to characterize the 

statistical variability of the error .a aT - *t  One of the most pow-

erful asymptotic tools is establishing asymptotic normality, that 

is, a time series version of the central limit theorem (CLT). For 

this particular scalar system, Mann and Wald [S1] proved that 

as the number of samples approaches infinity ,T "3  the esti-

mation error is asymptotically normal:

( ) ( , )T a a a0 1NT
2&- - **t

where &  denotes convergence in the distribution and ( , )N 2n v  

denotes the normal distribution, with mean n  and variance .2v  

This result can give us the exact distribution of the estimation 

error in the asymptotic regime. However, being an asymptotic 

result, it holds only approximately under finite samples; the ap-

proximation error cannot be ignored. Hence, some questions 

remain unanswered: What is the distribution of the error under 

finite samples? What is the transient behavior? We can par-

tially answer these questions by applying the nonasymptotic 

tools reviewed in this survey. In particular, by following the ar-

guments in the “Sample Complexity Upper Bounds” section 

[see (9) and (17)], we can establish a finite-sample tail bound 

of the form

a aP T $ #f d- *t^ h

for a large enough sample size

,max logT T c a1 1
2

2

burn-in$
f d
- *' 1

where f  controls the accuracy of identification and d  controls 

the confidence. The constant c is a so-called universal con-

stant; that is, it takes just a numerical value and is independent 

of system parameters, confidence, and accuracy. The burn-in 

time Tburn-in  captures the complexity of transient phenomena, for 

example, the minimum time until we achieve persistency of exci-

tation (excitation of all modes of the system). It typically depends 

on the desired confidence and the size of the system, that is, its 

state dimension .dx  For the simple scalar system (S1), we can 

take ,/logT c 1burn-in d= l  where cl is another universal constant. 

For nonscalar systems, we can multiply the preceding burn-in 

time with the state dimension .dx  While we did not fully charac-

terize the finite-sample distribution of the estimation error, we 

managed to characterize the tail probabilities. For example, we 

have a /log1 d  term in the required number of samples, which is 

sharp. This was not possible before by applying only asymptotic 

tools. For example, CLT approximation results, such as the Berry– 

Esseen bound, provide a conservative characterization of tail 

probabilities; see [3, Ch 2.1] for a detailed explanation. We can 

generalize finite-sample bounds to the case a 1$*  (not pre-

sented in this sidebar) when the system does not converge to 

a steady-state distribution. We can also generalize the bounds 

to the case vector-valued systems of high dimensions ,d 1x2  

as presented later. In fact, we can even allow the state dimen-

sion dx  to increase with the number of samples T, which is not 

covered by the CLT. A downside of finite-sample bounds is that 

we lose sharpness in the asymptotic regime. In particular, the 

universal constants c, cl (see [4] for exact expressions) are typi-

cally large numerical values, much larger than the ones that we 

would obtain from a heuristic application of the CLT.

REFERENCE
[S1] H. B. Mann and A. Wald, “On the statistical treatment of linear 
stochastic difference equations,” Econometrica, J. Econometric Soc., 
vol. 11, no. 3/4, pp. 173–220, Jul./Oct. 1943, doi: 10.2307/1905674.
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control systems under finite samples is also interesting from 
the perspective of a machine learning theorist. While the 
setting of learning under finite, independent, or weakly 
dependent (mixing) data has been studied extensively, new 
challenges arise in control systems, where the data are not 
only dependent but also affected by control inputs. Some 
questions that are of interest are, When is learning under 
dependent data as easy as learning under independent data? 
Is mixing required? What is the tradeoff between exploration 
and exploitation? Finally, a goal of this survey is to establish a 
common language among control theorists, learning theo-
rists, and statisticians. Machine learning theory has, in prin-
ciple, been nonasymptotic from the outset, and modern 
statistics has very much moved in this direction. Meanwhile, 
the classical literature of system identification and adaptive 
control relies, more often than not, on asymptotic tools. A 
common language facilitates an exchange of ideas that is 
likely to benefit all three fields. Besides, machine learning, 
statistics, and control theory share common research agen-
das and often seek to tackle the same problems.

Asymptotic Notation
In this article, we sometimes use the asymptotic notation 

, ,O H X  to simplify the presentation. This does not imply 
that our statements are asymptotic. For example, the 
statement ( ) ( ( ))f T O g T=  [ ( ) ( ( ))]f T g TX=  can be replaced 
by statements of the form “there exists universal positive 
constant c 02  such that ( ) ( )f T cg T#  [ ( ) ( )],f T cg T$  for 

,T Tburn in-$ ” where a universal constant takes just a numer-
ical value and is independent of system and algorithmic 
parameters. Exact finite-time expressions for ( ), ,g T c Tburn in-  
are given either here, for example, see (18), or in the respec-
tive articles. The statement ( ) ( ( ))f T g TH=  is equivalent to 

( ) ( ( )), ( ) ( ( ))f T O g T f T g TX= =  holding simultaneously. 
Finally, the Ou  notation ignores polylogarithmic terms; for 
example, ( ) ( ( ))f T O g T= u  is equivalent to ( ) ( ( )f T O g T poly=  
(log )),T  where “poly” denotes some arbitrary polynomial 
function of fixed degree.

Fully Observed Systems
Let us now return to the technical task at hand: to provide a 
finite-sample analysis of system identification. Recall that 
we focus on the single-trajectory case .N Ttot =  We start by 
analyzing the simplest system identification problem, 
namely, the case of fully observed systems with C I=*  and 

,0vR =  yielding direct state measurements yt = xt, .t T#  We 
focus only on the identification of , ,A B**  but the same tech-
niques could be applied for the estimation of the covariance 

.wR  For this reason, abusing the notation introduced in the 
preceding, we denote ( , ), ( ) .A B fi i i= =* * *  Given the data 
{( , ), , ( , )},x u x uT T0 0 f  a natural way to obtain an estimate of 
the system matrices is to employ the least-squares algorithm

	 ( , ) .argminA B x Ax Bu,T T T A B t t t
t

T

1 2
2

0

1

_ !i - -+

=

-
t t t / � (4)

After some algebraic manipulations, we can verify that

	 w x u
x
u x uT t
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t t
t

tt
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t t
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i i- =*
< < < <

=

-

=

- -

t e eo o6 ; 6@ E @/ / � (5)

provided that the matrix inverse on the right-hand side of (5) 
exists. We characterize the sample complexity of the least-
squares estimator (5) by establishing bounds on the operator 
norm .opTi i- *

t  It is possible to provide similar guarantees 
for the Frobenius norm, but the dimensional factors differ 
slightly. The techniques presented in the following can be 
applied to open-loop nonexplosive systems when all the 
eigenvalues of matrix A*  are inside or on the unit circle; that 
is, ( ) ,A 1#t *  where ( )At *  denotes the spectral radius. We 
also assume that the open-loop inputs are i.i.d. zero-mean 
Gaussians with u u IE t t u

2v=<  for some .0u 2v  We discuss 
generalizations later on. To simplify the exposition, we also 
assume that the noise is full rank; that is, .0w (R  This implies 
that the noise directly excites all system states directly, making 
PE easier to establish. We can also obtain PE for indirectly 
excited systems as long as the controllability structure of the 
system is well-defined [24]. Finally, we assume that the system 
starts from the fixed initial condition ,x 00 =  and hence, the 
initial state covariance is .00C =  The following terms will be 
useful in the analysis of the least-squares algorithm:

	 , .S w x u V
x
u x uT t

t

T

t t T
t

tt

T

t t
0

1

0

1

_ _< < < <

=

-

=

-

6 ; 6@ E @/ / � (6)

Using the preceding notation, we can break the least-
squares error into two separate terms:

S V Vop opop
/ /

T T T T
1 2 1 2

Self normalized term PE term-

#i i- *
- -t

1 2 3444 444 1 2 344 44

where V /
T

1 2-  denotes a symmetric positive definite matrix 
such that .V V V/ /

T T T
1 2 1 2 1=- - -  To obtain sample complexity 

bounds for the least-squares algorithm, we need to analyze 
both terms. The self-normalized term captures the contri-
bution of the noise to the least-squares error. The PE term 
captures PE, that is, the richness of the data. The richer the 
data, the larger the magnitude of the eigenvalues of the 
Gram matrix VN, leading to a smaller identification error.

Persistency of Excitation (PE)
If the collected trajectory data are rich enough, that is, if all 
modes of the system are excited, then the Gram matrix VT 
defined in (6) is both invertible and well-conditioned. In 
particular, if ( )Vmin Tm  grows unbounded with T, we say 
that PE holds. Moreover, the smallest eigenvalue of VT cap-
tures the direction of the system that is the most difficult to 
excite. Recall that x xEt t tC = <  is the covariance of the state. 
Under i.i.d. white inputs, we can compute

	 ( ) ( ) , .A BB A 0t
k

k

t

u w
k

0

1
2

0vC R C= + =<<

=

-

/ � (7)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 12,2024 at 13:58:39 UTC from IEEE Xplore.  Restrictions apply. 



72  IEEE CONTROL SYSTEMS  »  DECEMBER 2023

Since the state is driven by both exogenous inputs and 
noise, both factors appear in the state covariance. By the 
definition of the Gram matrix VT,

	 .V
TI0

0
E T

t
t

T

u

0
2v

C
= => H/

Note that tC  is increasing in the positive semidefinite 
cone since .00C =  It is easy to show that the expected Gram 
matrix VE T  is invertible and well-conditioned; that is, its 
eigenvalues increase with time T. For example, we can 
choose a 02x  such that .0(Cx  Then, by monotonicity, 

( ) .Ttt

T

0 * xC C- x=
/  The main technical difficulty is to con-
trol the difference between the Gram matrix and its expecta-
tion .V VET T-  Such a task might be possible in the case of 
strictly stable systems ( ) 11t *A  by using concentration 
inequalities and mixing arguments. However, this approach 
gives sample complexity bounds that explode as ( )t *A  
approaches one: two-sided concentration necessitates stabil-
ity. Instead, we appeal to small-ball techniques [25]. Rather 

than bounding the difference between VT and its expectation, 
we seek only to obtain a one-sided lower bound. The name 
small-ball refers to the fact that the distribution of ( )/V Tmin Tm  
is not concentrated in a neighborhood of the origin—it exhib-
its anticoncentration. Define the extended covariance matrix

.
x
u x u I0

0
Et

t

t
t t

t

u
2_
v

C
C

=<<u ; 6 ;E @ E

Choose a time index .02x  Invoking the small-ball meth-
ods described in “Persistency of Excitation and Small-Ball 
Bounds,” it is possible to show that with a probability of 
at least ,1 d-

	 }V c T
/T 2* x

x
C xu8 6B @ � (8)

where c is a universal constant, provided that we have a 
large enough number of samples:

	 ( ) .log log
det
detT O d d d d

u
u

x
x

/

T

2
$ x

d C
C+ + +
x
u
ue o6 @ � (9)

Persistency of Excitation and Small-Ball Bounds

Let ,z Rt
dz!  t 0$  be a stochastic process adapted to a filtra-

tion .Ft t 0
3
=" ,  Let the Gram matrix be

.V z zT t
t

T

t
0

=
=

l/

The process zt  is persistently exciting with a probability of 

at least 1 d-  if there exist c, ( )T 00 2d  such that

P V cTI 1T * $ d-^ h

for all ( ) .T T0$ d  To prove persistency of excitation (PE), we 

need only to establish one-sided lower bounds of the form

( ) .P V cT 1min T $ $m d-^ h

In other words, we need to show that the least singular value 

of the Gram matrix does not concentrate in a small ball around the 

origin. We now discuss a sufficient condition first presented in [4], 

based on the small-ball method [25]. An alternative approach via 

exponential inequalities can be found in [S2].

BLOCK MARTINGALE SMALL-BALL CONDITION

Before establishing PE for the whole vector ,zt  we first study 

the projected processes ,ztp<  where Rdz!p  is a unit vector. 

The process zt  satisfies the block martingale small-ball con-

dition with parameters ( , , )k plbC  if for every unit Rdz!p  and 

every ,t 0$

	 Pk z p1 almost surely.Flbt i t
i

k
2

1

$ $p p pC<<
+

=

` j/ � (S2)

The preceding condition states that, conditioned on t, 

the block average probability of being away from the origin 

is nonzero. The average probability is taken over blocks of 

size k. The geometry of the lower bound is captured by the 

matrix .lbC  Let condition (S2) hold. Then, it follows that zt  is 

persistently exciting, with the lower bound depending on the 

parameter ,lbC

	 /P V
p

k T k16 1lbT

2

* $ dC -c m6 @ � (S3)

as long as we have a large enough number of samples

( )log log logdetT T p
k d p

10 1 2 10
ub lbz0

1$
d

C C= + + -c m

with ( ) ./ Emaxd z zub z t T t tdC = # l" ,  Informally, the term ubC  is 

an upper bound of ,/V TT  while the term lbC  is a lower bound 

of ./V TT  Hence the burn-in time N0  depends logarithmically 

on the condition number of .VT  The proof of the result can be 

found in [4] and [26].

LINEAR SYSTEMS

In the case of fully observed linear systems, we can select 

z x ut t t= < <<6 @  to be the vector of the stacked state and input. 

Under white noise inputs, it can be shown [4] that the process 

zt  satisfies the , , /k 3 20/k 2Cu^ h6 @  block martingale small-ball con-

dition, where

.
I0

0
t

t

u
2_
v

C
Cu = G
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The right-hand side of the preceding equation increases 
with T; fortunately, under the assumption that the system is 
nonexplosive ( ) ,A 1#t  it increases at most logarithmically 
with T. Hence, condition (9) will be satisfied for nonexplo-
sive systems for a large enough T. The minimum time such 
that condition (9) is satisfied is also known as the burn-in 
time. The time index x  gives us some control of the size of 
the lower bound ./2C xu 6 @  Recall that the sequence tC  is 
increasing in the positive semidefinite cone. Hence, choos-
ing a larger time index x  allows us to guarantee a stronger 
lower bound ./2C xu 6 @  On the other hand, the required burn-
in time increases linearly with .x

Self-Normalized Term
We begin with two observations about the self-normalized 
term

	 .S V w
x
u

x
u

x
u

/
/

T T t
t

T t

t

T t

tt

T t

t

T
1 2

0

1

0

1 1 2

=-

=

-

=

- -

e eo o; ; ;E E E/ /

First, note that the process noise wt is independent of 
,x ut t  for all ;t T#  that is, the sum ST has a martingale struc-

ture. Second, as its name suggests, the term is self-normalized: 
if the covariates ,x ut t  are large for some t, then any increase 
in ST will be compensated by an increase in .V /

T
1 2-  For this 

reason, S V /
T T

1 2-  is called a self-normalized martingale. Such 
terms have been studied previously in statistics in the 
asymptotic regime [7]. Here, we are interested in establish-
ing finite-sample bounds. We invoke the results of Abbasi-
Yadkori et al. [27]; see “Self-Normalized Martingales” for 
more details. Let V be a symmetric positive definite matrix 
(to be decided later), and set .V V Vt t= +r  The extra term V 
guarantees the positive definiteness of matrix .Vtr  Then,

	
( )
( )

.log
det
det

S V
V
V

8 5
op op

/
/

/

T T w
T d

1 2 2
1 2

1 2 x

#
d

R-r
re o � (12)

Crucially, self-normalization implies that the preceding 
term increases slowly (at most, logarithmically) with the 

Self-Normalized Martingales

A n object that arises often in standard least-squares analy-

ses is the so-called self-normalized martingale. Let Ft t 0
3
=" ,  

be a filtration, and let ,z Rt
dz!  for some ,d 0z2  be a stochastic 

process such that zt  is Ft 1-  measurable. Let ,Rt
d!h h  d 02h  

be a martingale difference sequence with respect to ,Ft  that is, 

th  is integrable, and Ft  measurable, with ( ) .E 0Ft t 1h =-  Then, 

a self-normalized martingale M Rk
d dz! #h  is defined as

M z V z z
/

k t
t

k

t t
t

k

t
0 0

1 2

h= + <<

= =

-

e eo o/ /

where V is an arbitrary symmetric positive definite matrix of 

appropriate dimensions.

BOUNDS FOR SCALAR PROCESSES

Assume that Rt !h  is a scalar process. Under some regular-

ity conditions on the tail of ,th  we can establish finite-sample 

bounds on the magnitude of .Mk  Let the process th  be condi-

tionally K sub-Gaussian for some :K 02

( ) , .E e e for all RFt
K

1 2t
2 2

# !mmh m

-

The preceding condition requires that the tails of th  decay 

at least as quickly as a Gaussian distribution. Now, we can 

invoke [27, Th. 1]. Letting

V V z zk t
t

k

t
0

= + <

=

r e o/

we then have the following finite-sample bound. Pick a failure 

probability ( , ) .0 1!d  Then, with a probability of at least ,1 d-
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EXTENSION TO VECTOR PROCESSES

Assume now that the process th  is vectored valued, with ,d 12h  

and conditionally K sub-Gaussian (that is, for any unit vector 

,v Rd! h  ,v 12 =  the projected process v th
<  is conditionally  

K sub-Gaussian). The bound (S4) does not apply directly since 

it relies on the process th  being scalar. Nevertheless, by ap-

pealing to covering techniques [3], it is straightforward to gen-

eralize this argument to vector processes. The idea is to apply 

(S4) to projections v th
<  of th  onto several directions v of the 

unit sphere. In particular, we discretize the unit sphere by con-

sidering points ,vi  , ,i N1 f= f  such that the points are an f  

net; that is, they cover the whole sphere with f  balls around 

them. Then, by taking a union bound over all points ,v j  we ob-

tain with a probability of at least ,1 d-

	 ( )
( )
( )

log
det
det

M K
V
V N2 1 /
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k
k2 2 2
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1 2

op # f
d

- f-
re o� (S5)

where the number of points is at most

.N 1 2 d
#

f
+f

h` j

The term ( )1 2f- -  comes from the discretization error and 

decreases as the discretization becomes finer. However, as 

the discretization becomes finer, the number of points Nf  

increases. A typical choice is ./1 2f =  The preceding guar-

antees are with respect to the operator norm. We could also 

obtain guarantees for the Frobenius norm by applying (S4) to 

,e vi t
<  where ,ei  , ,i d1 f= h  are the canonical vectors of .Rdh  In 

this case, with a probability of at least ,1 d-

	
( )
( )

.log
det
det

M d K
V
V d

2
/

/

k F
k2 2

1 2

1 2

#
dh
h

re o � (S6)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 12,2024 at 13:58:39 UTC from IEEE Xplore.  Restrictions apply. 



74  IEEE CONTROL SYSTEMS  »  DECEMBER 2023

norm of .VTr  If the data are generated by a stable system, 
this dependency can be further reduced [at the cost of 
inflating lower-order complexity terms by the inverse of 
the stability margin ( )];1 t- *A  see [28, Sec. 5.2]. To apply 
(12), we need to carefully select V. Moreover, to obtain data-
independent sample complexity guarantees, we require a 
data-independent upper bound of .VTr  For the former, we 
choose ./V c T /2x x C= x

u6 6@ @  When lower bound (8) on VT 
holds, then

	 .S V S V2op op
/ /

T T T T
1 2 2 1 2 2

#- -r

For the latter, we may appeal to the matrix version of  
Markov’s inequality (due to Ahlswede and Winter [29, Th. 12]):

	 V d d TP ux
T T7 #

d
dC+ uc m

where (( )/ )V d d TuxT T7 d C+ u" ,  is the complement of 
(( )/ ) .V d d TuT x Td C+ u" ,  We could improve the preceding 

upper bound by applying the Hanson–Wright inequality 
instead of Markov’s inequality. In this case, we would 
get logarithmic dependence on the confidence /log 1 d  
instead of linear / .1 d  The improvement would be minor 
since VTr  (and a factor / )1 d  already appears inside a loga-
rithm in (12).

Sample Complexity Upper Bounds
Combining the previous bounds, we finally obtain 
instance-specific sample complexity upper bounds. For the 
least-squares estimator (5),

	 P $ #i i f d-* op
t` j � (16)

if the burn-in time condition (9) is satisfied along with

	 ( )
( ) log

log
det
det

T c d d d d
x u

x uop

/

/

min

w

T

2
2

2

$
f m dC

R

C
C

+ +

+

x

x

l

u
u

c

o
6

6

@

@
�

(17)

where cl is a universal constant. Once again, the right-hand 
side of inequality (17) increases at most logarithmically 
with the estimation horizon T for nonexplosive systems 
( ( ) ),A 1#t  and hence will be satisfied for a large enough T. 
In fact, the rate defined in (17) is nearly optimal in the sense 
that it nearly matches the linear regression rate achieved 
when all the samples are drawn independently. See Figure 1 for 
an illustration.

To simplify the presentation, assume for now that we 
have strict stability ( ) .A 11t  In this case, the burn-in con-
dition (9) and sample complexity bound (17) can be com-
bined and rewritten as

, ( )max logT c d d d d1
SNR u

x u
x2$ x

f d
+ +

x

m ' 1

where cm  is another universal constant, and

	
( )

SNR
op

/min

w

2m

R

C
=x

x
u 6 @

captures the signal-to-noise ratio (SNR) of the system. The 
larger the SNR, the larger the excitation of the state com-
pared to the magnitude of the noise. If the system has 
eigenvalues on the unit circle [ ( ) ],A 1t =  then the expres-
sion looks similar but with some additional logarithmic 
terms; for simplicity, we omit this discussion here.

FIGURE 1 The essence of the learning-without-mixing phenomenon [5]: dependence does not necessarily impede the rate of conver-
gence. (a) We plot the operator norm error of least-squares identification for ( ) . , , , . ,A 0 3 0 9 0 99!t * " ,  ( ) ,A 0min .m *  and .d 25x =  Lines 
marked “Trajectory” are sampled from a linear dynamical system ,x A x wt t t1 = +*+  whereas lines marked “i.i.d.” are drawn from an inde-
pendent baseline motivated by [2]. These i.i.d. lines correspond to a linear regression model y A x wt t t= +*  in which the xt  are drawn 
i.i.d. from ( , ( , )).A I0 dlyapN dx*  (b) Even as the correlation length ( ( ))/ A1 1 t- *  increases, the relative performance of the dynamic model 
to the independent baseline oscillates around one.
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Ignoring logarithmic terms, the sample complexity 
grows as fast as / ,1 2f  as we require more accuracy. Alter-
natively, the identification error decays as fast as ( / )O T1u  
with the number of samples T. It also increases linearly 
with the dimension of the unknowns .d dux+  Intuitively, 
matrices ,A B**  have d d dx ux

2+  unknown entries. Every 
state measurement has dx  entries. Hence, we need at least 
d dux+  state samples to match the number of unknowns 
in , .A B**  The sample complexity is also inversely propor-
tional to the SNR. Finally, it depends logarithmically on ,d  
as (heuristically) predicted by the CLT. It is worth men-
tioning that the SNR depends heavily on the controllabil-
ity structure of the system. In particular, under white 
noise inputs, the state covariance matrix kC  is actually the 
controllability Gramian of the pair ( , ) .A B /

u w
2 1 2v R6 @  In this 

setting, controllability is equivalent to the excitability of 
the system. When the noise is isotropic (or nonsingular), 
the noise covariance wR  has full rank. Then, we can con-
firm that ,0w1 * (C R  which implies that the state is 
directly excited. It is, thus, sufficient to select 2x =  in the 
burn-in time condition (9) and sample complexity bound 
(17). When the noise is rank deficient, the state can be only 
indirectly excited; we can still achieve PE if there exists a 

02x  such that /2C xu 6 @  is nonzero. In particular, we can 
select /2x6 @ to be equal to the controllability index of the 
system [24], that is, the smallest possible 02l  such that 

.0(Cl  The preceding sample complexity upper bound is 
instance specific; that is, it holds for a specific system 
( , , ) .A B wR**  To obtain class-specific sample complexity 
upper bounds for some class C,  we need to impose 
global bounds on the norms of all C( , , )A B w !R**  as well 
as a global bound on ( ),max

1m Cx-  for some ;02x  see, for 
example, [24].

Confidence Ellipsoids
Sample complexity guarantees are qualitative and data 
independent. That is, they provide intuition about how the 
number of required samples depends on various control-
theoretic parameters, such as the dimension of the system 
and SNR. These guarantees depend directly on the quanti-
ties of the unknown system being estimated—see (9) and 
(17)—limiting their practical applicability. Another limita-
tion is that the operator norm opi i-* t  picks up the direc-
tion of the largest error. As a result, a guarantee, as in (16) 
and (17), provides confidence balls, which can be conserva-
tive in certain directions of the state space. In practice, it 
might be more useful to provide data-dependent confi-
dence ellipsoids. Toward this end, we can still apply the 
tools for self-normalized martingales presented in “Self-
Normalized Martingales.” Let V be symmetric positive 
definite, and define .V V Vt t= +r  Using the properties of the 
least-squares estimator,

	 ( ) .V S V V Vop op op
/ / / /
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Invoking (12), we obtain

	 ( ) ( ) .V r 1P op
/

T
1 2 2

# $i i d d- -*
t r` j � (18)

Interestingly, the ellipsoid adapts to the informativity 
of the data, as captured by .VTr  If some mode of the system 
is well excited in VT, the respective parameter error will 
be small. With the exception of ,opwR  all other quanti-
ties can be computed directly from data. In practice, one 
could replace opwR  by an upper bound or compute an 
empirical covariance from data. Although this quantity 
provides sharper confidence ellipsoids, it does not reveal 
directly how the identification error depends on the 
number of samples; that is, it does not reveal the statisti-
cal rate of estimating .i*  Other data-dependent methods 
for establishing confidence ellipsoids can be found in 
[22], [26], and [30].

Sample Complexity Lower Bounds
The upper bounds on the sample complexity of the system 
identification of the previous section are valid only for 
the least-squares estimator (5). One may naturally ask 
whether we can do better with a different algorithm; 
that is, are the sample requirements of the least-squares 
algorithm a fundamental limitation, or are they sub-
optimal? One way to answer these questions is by estab-
lishing minimax lower bounds. The main technical 
workhorse underpinning such lower bounds is infor-
mation-theoretic inequalities. As we show next, the least-
squares identification algorithm analyzed in the preceding 
is nearly optimal in the case of fully observed systems. To 
prove this, it is sufficient to construct system instances 
that are difficult to identify for all possible identification 
algorithms. By invoking information-theoretic inequali-
ties, we can show that any algorithm requires at least as 
many samples as the least-squares algorithm. We estab-
lish lower bounds for systems without exogenous inputs, 
but the same results also apply to systems with white 
noise exogenous inputs. For simplicity, we focus on the 
former case. Since there is no control input to implement 
an exploration policy, we denote this setting by .Qr =  
Note that the case of more general exploration policies is 
an active front of research and is also discussed later on. 
Fix a spectral radius ,t  and define the class of scaled 
orthogonal systems

: , .A A O O O IRO d dx x! t= = =*
#

*
<

t " ,

Let A( , , , , )N N Oc c Qf d= t  denote the best possible 
sample complexity for learning over the class of scaled 
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orthogonal systems. In [4], it is shown that for any identifi-
cation algorithm A,

/
.

log
N

d 1
SNR

x
c

N
2

cf

d
X=

+c m

The result follows from a standard application of infor-
mation-theoretic lower bounds; see “Birgé’s Inequality” for 
more details. This shows that the rate / ,1 2f  the dimension 
factor ,dx  and the confidence /log 1 d  are fundamental, 
implying that the least-squares algorithm is nearly optimal. 
The preceding result holds for the specific subclass Ot  of 
autonomous scaled orthogonal systems. It is also possible 
to obtain stronger instance-specific lower bounds, namely, 
lower bounds that hold locally around any fixed system. In 
particular, let i*  be an unknown system, and consider a 
ball ( , )3B i f*  of radius 3f  around .i*  Let ( , ,N N ( ,Bc c f d i= *  
3 ),A, )Qf  denote the minimum number of samples for iden-
tifying the local class ( , ) .3B i f*  In [31], it is shown that for 
any identification algorithm A,  failure probability ( , ),0 1!d  
and accuracy ( , ),0 3!f  it holds true that

/
.

log
N

d 1
SNR

x
c

N
2

cf

d
X=

+c m

The proof is also based on Birgé’s inequality. Terms 
capturing the SNR appear in both the upper and lower 
bounds. However, there is a gap between the upper and 
lower bounds. The former depend on ( )min

1m Cx-  for some 
small enough ,x  while the latter depend on ( ),min T

1m C-  
where T is the number of samples collected. Note that we 
cannot increase x  too much since it affects the burn-in 
time condition (9). In the case of stable systems ( ) ,A 11t *  
this gap can be closed at the expense of a burn-in time 
that depends on the mixing time /( ( ))A1 1 t- *  of the 
system [28]. The gap can also be made small, that is, 

( ),Tx H=  in the case of diagonalizable marginally stable 
systems with ( )A 1t =*  [2]. In the case of systems with 
white noise control inputs, the same analysis can be 
applied. In the case of general exploration policies, the 
landscape is more complex since both the policy r  and 
the identification algorithm A  affect the sample com-
plexity. Let A( , , ( , ), , )N N 3Bc c f d i f r= *  be the local sample 
complexity defined as before, where now the policy r  
can also be varied. Following the result of [5], we obtain 
the lower bound condition

/log
N

1
SNRc

N
2

cf

d
X= *c m

Birgé’s Inequality

B irgé’s inequality is a sharper version of Fano’s inequality, a 

classical tool from information theory [S3]. It can be used 

to establish lower bounds in multiple testing problems. Before 

we state the inequality, recall the definition of Kullback–Leibler 

(KL) divergence between two probability distributions ( , ),P Q

( )Q P E P
Q

logD d
d

Q_ c m

where we assume that Q  is absolutely continuous with respect 

to P  and /Q Pd d  denotes the density of Q  with respect to P. 

Now, let , ,P Pn0 f  be probability distributions over some mea-

surable space ( , )FX  such that ,Pi  , ,i n1 f=  are absolutely 

continuous with respect to .P0  These probability distributions 

represent, for instance, different hypotheses in a multiple-

hypothesis testing scenario. Let , ,E E Fn0 f !  be disjoint 

events. For instance, ( )P Ei i  might represent the probability of 

making a correct guess. Birgé’s inequality states that a neces-

sary condition for the minimum success probability to be lower 

bounded as

	 ( )Pmin E n1 1
1

, ,i n
i i

0
_ $d-

+f=
� (S7)

is that the average pairwise KL divergence between Pi  and P0  

satisfies the lower bound

	 ( ) ( , )/P Pn D h n1 1
i

n

i
1

0 $ d d-
=

/ � (S8)

where ( , ) ( ) ( ) ( ) ./ /log logh p q p p q p p q1 1 1= + - - -  The pre-

ceding condition states that making a correct guess with high 

probability is possible only if the distributions ,P Pn1 f  are suf-

ficiently distinguishable from .P0  Note that condition (S7) is 

permutation invariant; that is, it is independent of the order-

ing of the probability distributions. Hence, Birgé’s inequality 

(S8) should also hold if we swap P0  with any ,Pj  .j n#  Hence, 

, ,P Pn0 f  should be mutually distinguishable.

SYSTEM IDENTIFICATION

Let , ,C n0 fi i= " , be a class of systems that are 2f  separat-

ed; that is, .2i j 2i i f-  Let Pi  be the probability distribution 

of the data ( , ), , ( , )y u y uT T0 0 f" , when the underlying system is 

.ii  Let it  be the output of any identification algorithm. Since the 

systems are separated, the events Ei i_ #i i f- t" , will be 

disjoint. If some algorithm performs well with high probability 

across all systems, then (S7) holds, which (in turn) implies that 

(S8) holds. To obtain the tightest lower bounds possible, we 

aim to construct sets of 2 separated-f  systems that nonethe-

less lead to data distributions with a small KL divergence. In 

other words, the separation should not be too large so that the 

distributions are as indistinguishable as possible.

REFERENCE
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where the exploration policy r  is chosen to optimize the 
SNR term:

	 .max N
x
u x u1SNR EN

c t

N
t

t
t t

1
c

c

=* < <

r
=

; 6E @/

To avoid arbitrarily large exploration inputs, we limit 
the control input energy

	 uE 2
2 2

t u# v

for some .0u 2v  Otherwise, we trivially obtain .SNR 3=*  
Finding the optimal exploration policy is not a simple prob-
lem and requires knowledge of the system dynamics. In 
[32], it is shown that the preceding lower bound can be 
achieved asymptotically (as )0"d  by following an active 
exploration policy based on sinusoidal signals.

Summary and Generalizations
In Table 1, we summarize some of the main results for the 
sample complexity of identifying fully observed systems. 
For compactness, we denote .d d dux= +  Only results for 
open-loop nonexplosive systems [ ( ) ]A 1#t *  are shown. If a 
stabilizing feedback gain K0 is somehow known before-
hand, the results can immediately be extended to the case 
of closed-loop stable systems [ ( ) ]A B K 10 1t - **  under the 
stabilizing feedback law .u K xt t t0 h= +  The case of open-
loop unstable systems with ( )A 12t *  is analyzed in [33] 
and [35], where it is shown that under a regularity condition 
on the eigenvalues of ,A*  the error of learning explosive 

systems decays exponentially quickly with the number of 
samples. In [33], it is further shown that the error of learning 
systems with all eigenvalues on the unit circle decays at least 
as fast as ( / ),O T1u  as opposed to the ( / )O T1u  error we get 
for strictly stable systems. The preceding rates agree with 
previous asymptotic results [7]. As discussed in the presenta-
tion of the lower bounds, the least-squares algorithm is nearly 
optimal in the case of white noise excitation. In the case of 
nonexplosive systems ( ) ,A 1t =*  there is a gap between the 
upper and lower bounds. The gap can be closed in the case 
of stable systems ( )A 11t *  [28]. This can be achieved by 
exploiting the Hanson–Wright inequality (see “The Hanson–
Wright Inequality” for more details) instead of small-ball tech-
niques. However, the downside of using Hanson–Wright is 
that the burn-in time depends on the mixing time of the 
system /( ( )) .A1 1 t- *  As the system approaches instability 

( ) ,A 1"t *  the finite-sample guarantees degrade rapidly due 
to the burn-in time going to infinity. A benefit of small-ball 
techniques is that they hold even in the regime ( ) .A 1t =*

The Excitation Policy
In the presentation of sample complexity upper bounds, we 
considered only white noise input signals. Although white 
noise input signals can guarantee PE and lead to parameter 
recovery, they constitute a suboptimal exploration policy. It 
is a passive form of exploration that does not adapt online 
to the gathered information. Instead, in [32], an active 
exploration policy is employed based on sinusoidal inputs, 
leading to sharper sample complexity guarantees. In fact, 
in the regime where the failure probability goes to zero, 

Paper Trajectory Stability Actuation Upper Bound Burn-In Time Lower Bound

[23] Multiple Any White noise
/log

O T
d 1

snrT
2f

du c m ( / )logTO d 1 d+u —

[5] Single ( )A 1#t * White noise
/log

O
d d

snr2f

d

x

u c m ( / )logO d dx du /logd 1
snrT

2f

d
X

+c m

[36] Single Any White noise
/log

O
d d

snr2
1f

du c m ( / )logO d d du —

[6] Single Any Active — —
/log1

snrT
2f

d
X *c m

[30] Single ( )A 11t * White noise
/log

O
d d1

snrT
2f

+u c m
( ( ))

/log
O

A
d d
1

1
2t-

+

*

u e o —

[34] Single ( )A 11t * Active
/log

O
d 1

snr2f

d+
*
x

u c m
( ) ( / )logA O d1

1 1poly
t

d
-

+
*

uc m /log1
snr2f

d
X *

3
c m

[37] Single ( )A 11t * White noise
( ( ))

/log
O

A
d d

1snr
s

2f t

d

- *3

u e o
( ( ))

/log
O

A
d d
1

s
4

2

t

d

- *

u e o —

[25] Single ( )A 1#t * Any ( )
/

exp
log

O d
1
2f

du c m ( / )logO d d du ( )
/

exp
log

d
1
2f

d
Xc m

TABLE 1  Sample complexities of fully observed system identification. Define .d d dux= +  The total number of nonzero elements 
is denoted by .ds  By snr ,*  we denote the SNR under the best possible active exploration policy. For [36], we show only the 
result for ( ) 1.A #t *  The sample complexities are given in terms of ,N N Ttot traj=  that is, the total number of samples, where T 
is the horizon and Ntraj  is the number of trajectories. For single-trajectory data, .N Ttot =  All bounds are nonasymptotic, and we 
use only the big-O notation to simplify the presentation of the bounds.
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,0"d  the proposed active exploration policy together with 
the least-squares identification algorithm are nearly opti-
mal and achieve the minimax lower bound.

Systems With Sparse Structure
Another interesting problem is sparse system identification, 
where there might be an underlying sparse structure in 
the matrices ( , ) .A B**  In [34], it is shown that under an 

-1, regularization penalty and certain mutual incoherence 
conditions, the sample complexity of correctly identifying 
the nonzero elements of ( , )A B**  scales with ,ds

2  that is, the 
number of nonzero elements squared, instead of the prob-
lem’s dimensions .d dux+  Hence, if the nonzero elements are 
fewer than the dimension of the problem, we suffer from a 
smaller sample complexity. It is an open problem whether 
the square exponent of term ds

2  can be improved. Moreover, 
it is an open question whether the results of [34] can be 
extended to open-loop nonexplosive systems ( ) .A 1t =*

Data From Multiple Trajectories
So far, we have focused on single-trajectory data. In prac-
tice, we might have access to data generated by several tra-
jectories. In [2] and [22], learning from multiple independent 
trajectories is studied, where N N Ttot traj=  is the total number 
of samples, T is the trajectory length, and Ntraj  is the number 
of trajectories. In [22], many samples are discarded (all but 
the last two) to turn system identification into an i.i.d. 
regression problem. As a result, there is an O(T) extra 
sample overhead. These limitations are addressed by [2], 
where single-trajectory and multiple-trajectory learning 
are treated in a unified way; the parameter recovery guar-
antees are different and given in expectation, and hence, 
we did not include them in Table 1. An interesting conclu-
sion in [2] is that in the “many” trajectories regime [for 
example, ( )],N dtraj X=  learning is more efficient than in the 
“few” trajectories regime [for example, ( )] .N o dtraj =  Hence, 
it might be more beneficial to increase the number of trajec-
tories Ntraj  rather than the horizon T while keeping the 
total number of samples constant.

Systems That Are Hard to Learn
All previous results rely on the process noise being full rank 
with positive definite covariance .0w (R  In this case, all 
modes of the system are directly excited by the process noise, 
making learning easier, as the system SNR is always lower 
bounded by the condition number of the noise; that is, 

( ) ./SNR op mint w w$ mR R` ^j h  As a result, in this case, system 
identification exhibits sample complexity, which scales poly-
nomially with the system dimension d. If we take away this 
structural assumption and allow degenerate noise, the 
sample complexity can increase dramatically. In [24], it is 
shown that there exist nontrivial classes of systems for which 
the sample complexity scales exponentially with the dimen-
sion d. Such classes include underactuated systems, for exam-
ple, systems with an integrator/network structure. Such 
systems are structurally hard to control/excite and, thus, dif-
ficult to identify. Under an additional robust controllability 
requirement, it is shown in [24] that the sample complexity of 
identifying underactuated systems cannot be worse than 
exponential with the dimension d. In fact, it cannot be worse 
than exponential in the so-called controllability index, which 
quantifies the degree of the underactuation of a system.

The Noise Model
We can obtain finite-sample guarantees if the process noise 
sequence is a martingale difference sequence [36], thus 
relaxing the i.i.d. requirement. Still, the methods presented 
here are quite fragile to the martingale difference noise 
assumption, which essentially amounts to a strong realiz-
ability assumption, implying, in some sense, that the model 
class contains the true model. In certain situations with col-
ored noise, it is still possible to reduce the problem to a 
white noise problem, allowing us to invoke the self-nor-
malized martingale inequality, for instance, by fitting a 
filter of sufficient length [37]. However, in full generality, 
sharply dealing with colored noise in the nonasymptotic 
regime is very challenging. If one seeks to go beyond sub-
Gaussian tails, the situation becomes even more subtle. In a 
heavy-tailed noise model (with, for instance, ,wE 4

t 31  

The Hanson–Wright Inequality

In many situations of interest (for example, when analyzing 

Gram matrices), we need to work with quadratic functions 

of random variables. The Hanson–Wright inequality [3] is a 

standard tool for analyzing the concentration of such quadratic 

forms when the underlying random variables are sub-Gaussian.  

Let ( , , )X X X Rn
n

1 f !=  be a random vector with independent 

mean-zero K-sub-Gaussian coordinates satisfying

, , , .Ee e i n1tX K t
2i
2 2

f# =

Let M Rn n! #  be a matrix. Then, there exists a universal 

constant c such that for every ,s 0$

.P EX MX X MX K s e2 ,minc2
M

s

M

s

F
2

2 2

op$ #- << -^ h ' 1

Hanson–Wright has been used as an alternative method 

for establishing persistency of excitation in the case of the 

identification of fully observed stable systems [28]. Contrary 

to small-ball methods, the Hanson–Wright inequality is a two-

sided result, which is a stronger requirement. Hence, it can be 

conservative in the case of unstable or marginally stable sys-

tems. The Hanson–Wright inequality has also been utilized for 

proving isometry for Hankel matrices when the elements of the 

Hankel matrix are independent identically distributed.
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but wE p
t 3=  for some finite p > 4), the least-squares esti-

mator is still optimal in expectation for most problems (at 
least for i.i.d. data [38]). However, it is no longer optimal in 
deviation—not even for i.i.d. data—meaning that it does not 
uniformly in d  attain the optimal ( / )log 1 d  failure probabil-
ity [39]. Still, for i.i.d. data, this optimal dependency can be 
obtained by an alternative estimator (obtained by minimiz-
ing the so-called Huber loss; see [40, Sec. 6.4]). We do not 
know of any results that sharply characterize the failure 
probability in heavy-tailed linear system identification.

Partially Observed Systems
We now consider the more general case of partially 
observed systems with C I!*  and .0v !R  Partial observ-
ability makes system identification harder, as we do not 
have direct access to state measurements. In the case where 
we do not know anything about the system, identifying the 
“true” state-space parameters is impossible, as the state-
space representation is no longer unique, as the input–
output map from inputs u to measured outputs y remains 
the same under similarity transformations. That is, for any 
invertible matrix ,N  the systems

	
( , , , , )
( , , , , )
A B C

A B C
w v

w v
1 1 1

i

i

R R

N N N N N R N R

=

=

* * *

* * * *

*

<- - - -l

are equivalent from an input–output point of view. Another 
source of ambiguity is that the noise model is also nonu-
nique [41]. Consider the system

	
x A x B u L e

y C x e
k k k k

k k k

1 = + +

= +
* * *

*

+t t

t � (21)

where L*  is the steady-state Kalman filter gain

	
( )

( ) .
L A S C C S C

S A S A A S C C S C C S A*

v

w v

1

1

R

R R

= +

= + - +

* * * * * * *

* * * * * * * * * * * * *

< <

< < <

-

-

The innovation error is defined as

	 .e y C xk k k_ - * t

The innovation process is i.i.d. zero-mean Gaussian with 
covariance C S Ce v_R R+* * *

<  [42]. System (21) is called the 
(steady-state) Kalman filter form or innovations form of 
system (1). Under the assumption that the system is initial-
ized under its stationary distribution (that is, ),S0C = *  
system (1) and its innovation form (21) are statistically equiv-
alent from an input–output perspective in that they generate 
outputs with identical statistics. It has been common practice 
in the system identification literature [43] to work with the 
representation (21) instead of the original system (1). One 
reason is that the innovation noise is always output measur-
able, as opposed to the process/measurement noise. Another 
reason is that under certain observability conditions, the 
closed-loop map A L C-* * *  is stable; that is, ( ) .A L C 11t -* * *  
We present techniques that can be applied to open-loop non-
explosive systems that satisfy ( ) .A 1#t *  Again, assume that 
the open-loop inputs are white noise zero-mean Gaussian 

i.i.d., with u u IE t t u
2v=<  for some .0u 2v  Also, assume that 

( , )A C* *  is detectable, ( , )A /
w
1 2R*  is stabilizable, and vR  is 

invertible so that the innovation form (21) is well-defined 
and ( ) .A L C 11t - * **  To simplify the analysis, assume that 
the Kalman filter starts from its steady state , .S x 0E0 0C = =*  
The latter is a weak assumption; due to the stability of the 
Kalman filter, we converge to the steady state exponentially 
fast. Most identification methods follow the prediction error 
approach [6] or the subspace method [41]. The prediction 
error approach is typically nonconvex and directly searches 
over the system parameters i*  by minimizing a prediction 
error cost. In the subspace approach, Hankel matrices of the 
system are estimated first, based on a convex regression 
problem. Then, realization is performed, typically based on 
singular value decomposition (SVD). Here, we focus on the 
subspace/realization approach. Recent work on the analysis 
of the prediction error method can be found in [44].

Regression Step
The first step is to establish a regression between future out-
puts and past inputs and outputs. Let p > 0 be a past horizon. 
By unrolling the innovation form (21), at any time step k > 0, 
we can express yk as a function of p past outputs and inputs,

	 ( )y C Z C A L C x eKk p

G

k
p

k p k

biasp

= + - +* * * * * -t1 2 344444 44444< � (22)

where Zk is the vector of all the regressors stacked,

	 Z y u y uk k k k p k p1 1 g= < < < < <
- - - -6 @

and Kp  is an extended controllability matrix,

	 ( ) .B L A L C B LKp
p 1g_ -* * * * * * *
-66 6@ @@

Equation (22) shows that there is a linear relation 
between future outputs and past inputs/outputs, which is 
determined by matrix .G C Kp p= *  We have a linear regres-
sion problem that is similar to the one encountered in the 
fully observed case since the innovation process et is i.i.d. 
and the regressors Zk are independent of ek at time k. The 
main differences are that 1) there exists a bias error term 
and 2) the unknown matrix Gp has a special structure. We 
can deal with the bias by increasing the past horizon p; the 
bias term goes to zero exponentially fast due to the stability 
of the Kalman filter. Note that (22) is also utilized by pre-
diction error methods. In the prediction error approach, we 
optimize over the original state-space parameters (for 
example, A, B, and C), hence preserving the special struc-
ture of Gp. Here, following the subspace approach, we do 
not optimize over the original system parameters. Instead, 
we optimize directly over the higher-dimensional repre-
sentation Gp by treating it as an unknown without struc-
ture. This leads to a convex least-squares problem:

	 .argminG y GZ,p T G t t
t p

T

2
2

! -
=

t / � (23)
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In machine learning, this lifting to higher dimensions is 
referred to as improper learning [45]. After some algebraic 
manipulations, we can verify that

	 G G e Z Z Z bias,p T p t
t p

T

t t
t p

T

t

1

- = +<<

= =

-

t e eo o/ /

where the bias term includes factors ( )A L C p-* * *  that decay 
exponentially with the past horizon p. The analysis now 
proceeds in a similar way as in the case of fully observed 
systems. We break the least-squares error into two terms, a 
self-normalized term and a term capturing PE:

	 G G S V Vop op op, , ,
/

,
/

p T p p T p T p T
1 2 1 2#- - -t

where ST and VT are analogously defined as

	 , .S e Z V Z Z, ,p T t
t p

T

t p T t
t p

T

t= = <<

= =

/ /

For the self-normalized term, we exploit the tech-
niques for self-normalized martingales. For the second 
term, we need to show PE. One way is to use again the 
small-ball techniques discussed in the fully observed case. 
An alternative way is establishing isometry for Hankel 
matrices (see “Isometry for Hankel Matrices”). Using the 
tools listed in the preceding, we can obtain sample com-
plexity upper bounds for recovering the matrix Gp. Let 

Z ZE,Z k k kC = <  be the covariance of the regressors. For 
example, in the case of no inputs ,B 0=*  Tsiamis and 
Pappas [37] show that under the least-squares algorithm 
defined in the preceding,

	 G GP op,p p T $ #f d- t` j

if we select ( )logp TX=  and

	 ( )logT c
p

d
pd

SNR
op

y
y

,

,

minp Z p

Z T

2$
f d m C

Ce o

where c is a universal constant and the SNR is defined as

	 ( ) .SNR op

,min
k

Z p

e

m C

R
=

When we have inputs ,B 0!*  we can obtain a similar 
result by repeating the same arguments as in [37] and replac-
ing dy  with .d duy+  Once again, we recover a rate of ( / ) .O 1 2fu  
Equivalently, the error scales as ( / ) .O T1u  The main caveat 
is that we need to select p to increase logarithmically with 
the horizon T to mitigate the bias term. Ignoring ,f  the SNR, 
and other system-theoretic parameters, the sample complex-
ity upper bound scales with ( );p d duy +  that is, it depends 
linearly on the size of the past horizon p. This upper bound 
suggests that there is a tradeoff between reducing the bias 
term (a large p) and reducing the sample complexity (a small 
p), as also discussed in prior work [10]. This dependence on 
the past horizon p arises because we ignore the structure of 
Gp and treat it as an unknown matrix. In this case, Gp has 

( )p d d du yy+  unknown entries. Since every measurement yk 
contributes with dy  components, a sample complexity of 

( ( ))O p d duy +  suffices. However, it might be the case that this 
sample complexity is suboptimal since the true number of 
unknowns in i*  is of the order of ( ) .d d d dx y ux

2+ +  It seems 
that by lifting the problem to higher dimensions in (23), we 
suffer from larger sample complexity.

Realization
Let us introduce the notations A A L C,cl _ -* * * *  and 

.B B L_ * **
u 6 @  For this section, assume for simplicity that 
system ( , , )C A B,cl* * *

u  is minimal; that is, ( , )C A ,cl* *  is observable, 

Isometry for Hankel Matrices

Let , , N0 1fh h -  be a sequence of independent identically 

distributed zero-mean isotropic Gaussian variables in 

Rdh  [that is, ( , )],I0Nt d+h h  and consider the following Han-

kel matrix:

.H ,L N

L L

N L

N

0 1

1

1

1

h

g

g

_

h

h

h

h

h

h+

- -

-

> H

Such matrices arise in the analysis of system identification 

algorithms that use information of the past L steps for predic-

tion. For example, th  could be the input process ut  and/or the 

(normalized) innovations .et  A crucial problem is determin-

ing whether the matrices H ,L N  are persistently exciting. One 

solution is to exploit the small-ball approach, as reviewed 

in “Persistency of Excitation and Small-Ball Bounds.” Here, 

we review an alternative way to answer this question, which 

leads to a stronger two-sided result [S4], [46]. Fix a failure 

probability ./1 2#d  Then, there exists a universal constant 

c such that if

logN cLd
Ld

$
dh
h

then with a probability of at least ,1 d-

.N I H H N I2 2
3

, ,Ld L N L N Ld) )<
h h

The result is adapted from [46, Th. A.2]. The proof is based 

on the Hanson–Wright inequality along with Fourier domain 

techniques. Similar results appear in [47] and [48] but require a 

slightly larger burn-in time.
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and ( , )A B,cl * *
u  is controllable. Under this notation, matrix Gp 

contains the Markov parameters ,C A B k,
k
cl* * *
u  p 1# -  of 

system ( , , ),C A B,cl* * *
u  allowing for the use of standard real-

ization techniques to extract ( , , )C A B,cl * **
u  from the Markov 

parameters. A standard such approach is the Ho–Kalman 
realization technique. If we assume that we know the true 
Markov parameters Gp, then we can construct the follow-
ing Hankel matrix:

	 .

C B
C A B

C A B

C A B
C A B

C A B

C A B
C A B

C A B
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,
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p
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cl
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* * *
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+
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u
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u

u

u
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S
S
S
SS
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W
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The Hankel matrix has rank dx  since it can be written as 
the outer product of a controllability matrix and an observ-
ability matrix:

	 .

C
C A

C A

B A B A BH ,
,

,

, ,k p

k

p k1cl

cl

cl cl

O

C

k

p k

1

1

1

1

1

1

h
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*

* *

* *

* * * * *
- -

- -

u u u

R

T

S
S
S
S
S

8

V

X
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W
W
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>

To make sure that the Hankel matrix is of rank ,dx  it is 
sufficient to select , .k p k d1 x1 1 $- -  In the setting where 
we know the true Markov parameters, a simple SVD suf-
fices to recover the observability and controllability matri-
ces up to a similarity transformation. In particular, letting 
the singular decomposition be written as

U U
V
V0

0
0H ,k p 1 2

1 1

2
1

R
=

<

<6 ; =@ E G

we can select a balanced realization U ,COk 1 1
1/2

p 1 k1 1R= - -  
V .1

1/2
1R= <  Then, from the observability/controllability matri-

ces, it is easy to recover ( , , )C A B,cl * **
u  up to a similarity 

transformation; see, for example, [48]. However, in practice, 
we have access only to noisy Markov parameter estimates 

,G ,p N
t  obtained, for example, via the least-squares identifica-

tion step described previously. In this case, the correspond-
ing Hankel matrix H ,k p1

t  will also be noisy and no longer 
have rank ;dx  instead, it will, in general, have a higher rank. 
In this case, a low-rank approximation step is crucial for 
recovering the correct observability and controllability 
matrices. Assume that we know the true order dx  of the 
system. Then, we can perform SVD truncation, that is, 
choose the singular vectors corresponding to the dx  largest 
singular values. If the SVD of the noisy Hankel matrix is

U U
V
V0

0
H ,k p 1 2

1

2

1

2
1

R
R

=
<

<
t t t

t

t

t

t6 = =@ G G

then one solution is to keep the dx  largest singular values, 
that is, select , .U VO C,

/
,

/
k T p k T1 1

1 2
1 1

1 2
11 1R R= = <

- -
t t t t t t  To capture 

the error between the true and estimated observability/

controllability matrices, we appeal to SVD perturbation 
results; more details can be found in [49] and [50, Th. 5.14]. 
Essentially, these results state that, for some similarity 
transformation T, the error O O op,k k T1 1- t  (similarly for the 
controllability matrix) scales with the Markov parameter 
error G G op,p p T- t  as long as a robustness condition is sat-
isfied. Ignoring dependencies on k1, p, the robustness con-
dition is typically of the form

	 ( ( )).G G O Hop, ,p p T d k px 1# v- t � (24)

That is, the Markov parameter estimation error should be 
smaller than the smallest singular value of the true 
Hankel matrix .H ,k p1  Such a condition is a fundamental 
limitation of the SVD procedure; it guarantees that the dx  
singular vectors of the Hankel matrix H ,k p1  are approxi-
mated continuously, while the extra singular vectors in 

,H ,k p1
t  which come from the noise and contribute to full 

rank, are rejected. While in the asymptotic regime such a 
condition is satisfied asymptotically, in the finite-sample 
regime, it imposes a high sample complexity, as the 
smallest singular value of the Hankel matrix can be very 
small in practice. It is an interesting open problem to 
look at different realization approaches or model reduc-
tion techniques so that we avoid this restrictive robust-
ness condition.

Open Problem 1: Comparison of  
Subspace Algorithms
Most results in the finite-sample regime analyze the 
performance of the Ho–Kalman method (or similar 
variants) [37], [47], [48], [51]. However, in the subspace 
identification literature, this realization approach is 
rarely used. Popular subspace identification algorithms 
(for example, Multivariable Output Error State Space 
[52] and Numerical Algorithms for Subspace State Space 
System Identification [41]) premultiply and/or postmul-
tiply the Hankel matrix, with appropriate weighting 
matrices, before performing the SVD step; see, for 
example, [43, Sec. 3]. Several asymptotic properties of 
such algorithmic variations have been studied before 
[53]. However, it is an open problem to compare such 
algorithms using finite-sample methods. In particular, 
under finite samples, a robustness condition like (24) 
should be satisfied for the SVD step to be well-behaved. 
Different methods lead to different robustness condi-
tions, affecting finite-sample performance. Such robust-
ness conditions did not appear before in asymptotic 
analyses, for example, [54], since as the number of sam-
ples goes to infinity, the SVD error decays continuously.

Overview and Limitations
An overview of prior work can be found in Table 2. Up to 
now, we have studied the identification of Markov 
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parameters of both the deterministic part, that is, 
( , , ),C A B,cl * **

u  and the stochastic part of the system, that is, 
( , , ).C A L* * *  Prior work has also studied the identification 
of exclusively the deterministic part [46], [47], [48], [55], 
[56], [57], that is, the Markov parameters of ( , , ),C A B* * *  
where only past inputs are used as regressors. By using 
only inputs, these results hold only for stable systems 

( )A 11t *  unless we use multiple trajectories [58]. In [59], it 
is shown that the identification of nonexplosive systems 

( )A 1t =*  is possible if we also use past outputs as regres-
sors and include a prefiltering step in the system identifi-
cation algorithm, that is, learn an autoregressive filter first 
before estimating the Markov parameters. The identifica-
tion of the stochastic part [that is, the Markov parameters 
of ( , , )]C A L* * *  is investigated in [37]. A nonparametric 
approach is considered in [17].

The Excitation Policy
Most of the aforementioned works rely on white noise 
open-loop excitation to achieve parameter recovery. Closed-
loop identification under finite samples has been analyzed 
in [51] and [60], where the closed-loop controller is a linear 
dynamic feedback law, potentially driven by white noise 
[51]. The problem of experiment design (that is, finding 
good excitation policies in the finite-sample regime) 
remains quite open. Still, it was studied in the classical 
system identification literature using asymptotic tools [6].

The Noise Model
In the case of non-Gaussian noise, the system (1) and its 
Kalman form (21) have similar second moments. How-
ever, they are no longer statistically equivalent, and the 
innovation process is no longer i.i.d. Gaussian. For this 
reason, some of the techniques presented in the preced-
ing might not be applicable. We also point out that in the 
case of i.i.d. sub-Gaussian noise, the results of [47], [55], 
and [59] still hold but recover only the deterministic part 
of the system.

System Order
The realization procedure that we presented previously 
requires the order of the system dx  to be known. The iden-
tification of systems under an unknown model order is 
studied in [47], [56], and [57]. In [47], an approximate order, 
which does not necessarily converge to the true one, is 
obtained by truncating the estimated Hankel matrices at a 
desired level of accuracy. In [56] and [57], the problem of 
learning low-rank Hankel matrices via nuclear norm regu-
larization is studied.

Lower Bounds
Lower bounds have been studied before in the classical lit-
erature [6, Ch. 7]. In the case of a known system order, we 
can characterize the best possible parameter estimation 
variance among all estimators by invoking the Cramér–
Rao inequality [61], a variant of Van Trees’ inequality that is 
studied in the following. One difference from Birgé’s 
inequality is that the Cramér–Rao inequality characterizes 
the expected error (variance), while Birgé’s inequality char-
acterizes tail probabilities providing information about 
the confidence level .d  Unlike fully observed systems, 
existing lower bounds for partially observed systems do 
not have transparent expressions in terms of system-theo-
retic properties, such as the system dimension and con-
trollability Gramians; see, for example, the derivation of 
Cramér–Rao bounds in [62]. This is mainly due to the non-
linearity of the input-to-output map with respect to the 
state-space parameters. Another issue is the nonunique-
ness of state-space representations.

Open Problems in the Partially Observed Setting
Under the assumption that the model order is known and 
under certain conditions on the inputs, the asymptotic 
optimality of several algorithms has been established. In 
particular, it has been shown that the prediction error 
method is equivalent to the maximum-likelihood method 
[6, Ch. 9], while some subspace identification algorithms 

Paper Trajectory Stability System Part Order dx Actuation Noise

[49], [52] Single ( )A 11t * Deterministic Known Open loop Gaussian

[63] Single ( )A 1#t * Deterministic Known Open loop Sub-Gaussian

[40] Single ( )A 1#t * Stochastic Known — Gaussian

[51] Single ( )A 11t * Deterministic Unknown Open loop Sub-Gaussian

[61] Single ( )A 11t * Deterministic Unknown Open loop Gaussian

[59] Single ( )A 11t * Deterministic Known Open loop Sub-Gaussian

[55], [64] Single Closed loop Both Known Closed loop Gaussian

[62] Multiple Any Deterministic Known Open loop Gaussian

[60] Multiple Any Deterministic Unknown Open loop Gaussian

TABLE 2  The system identification of partially observed systems.
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asymptotically match the maximum-likelihood method 
under white noise excitation [53], [63]. Obtaining a finite-
sample analog is an open problem.

Open Problem 2: Optimal Sample Complexity
What is the optimal sample complexity in the case of 
partial observability? In the case of a known system 
order, can we match the asymptotic performance of 
maximum likelihood by a nonasymptotic analysis? 
What if the order is unknown? How do system-theoretic 
parameters affect complexity?

An open question is whether the optimal sample com-
plexity should depend on the past horizon p. As dis-
cussed in the “Regression Step” section, this might not 
be the case since the number of unknowns in i*  is inde-
pendent of the horizon p. Some progress in this regard 
has already been made: in [46], it is shown that in the 
absence of process noise, the sample complexity depends 
only logarithmically on the past horizon p while retain-
ing the /1 2f  complexity rate. This is achieved by exploit-
ing repeated entries in Hankel matrices, which are 
computed at different scales, that is, for different hori-
zons p. In the case of process noise, the complexity bound 
in [46] still scales linearly with p. In [55], the sample com-
plexity is shown to be logarithmic with p at the expense 
of a worse /1 4f  complexity rate. This is achieved by 
adding an regularization-1,  penalty on Gp in the regres-
sion step. To conclude, another open problem is the iden-
tification of open-loop (explosively) unstable systems, 
( ( ) ),A 12t *  in the case of single-trajectory data. While 
this problem is resolved in the case of fully observed sys-
tems, (under certain regularity conditions) it is still open 
in the case of partial observability.

Open Problem 3
Existing results for partially observable systems rely on 
stability ( ) .A 1#t *  What, if any, are the necessary con-
ditions for conducting open-loop unstable identification 
based on a single trajectory of data?

One of the main technical difficulties in the case of 
unstable systems is dealing with the bias term in (22). If the 
state is increasing exponentially fast with time k, the bias 
term might not decay fast enough with p. In the case of non-
explosive systems, two-step procedures (for example, per-
forming a prefiltering step [59] or estimating components 
of the marginally stable subspace first [64]) guarantee 
learnability. It is an open question whether a two-step pro-
cedure would work for (explosively) unstable systems.

OFFLINE CONTROL
In the previous section, we studied the system identifica-
tion of unknown systems under a finite number of sam-
ples. Although system identification is a problem of 

independent interest, our ultimate goal is to control the 
underlying unknown system. In this section, we connect 
the previous results with controlling unknown systems 
in a model-based framework. We also review some 
model-free methods. We focus on offline learning archi-
tectures, where we design the controller once after col-
lecting the data. This setup is very similar to the setting 
of episodic reinforcement learning (RL), which has 
received renewed interest recently due to its success in 
settings such as games [1], [65]. However, most existing 
analyses focus on finite state and input (action) spaces. 
Since learning methods are becoming increasingly ubiq-
uitous even for complex continuous control tasks [66], 
the gap between theory and practice has become consid-
erable. The LQR and the linear quadratic Gaussian (LQG) 
problems offer a theoretically tractable path forward to 
reason about RL for continuous control tasks. By leverag-
ing the theoretically tractable natures of the LQR and 
LQG, we obtain baselines and are able to quantify the 
performance of learning algorithms in terms of natural 
control-theoretic parameters. Perhaps most importantly, 
given the safety-critical nature of many applications [67], 
we are able to quantify what makes learning hard and 
when it necessarily fails. To make this concrete, suppose 
a learner (control engineer) knows that the system has 
dynamics of the form

	 x A x B u wt t t t1 = + +**+ � (25)

where, as in the previous section, x wand Rt t
dx!  are the 

state and process noise, respectively, and u Rt
du!  is the 

control input. The dynamics matrices are A Rd dxx! #
*  and 

.B Rd dux! #
*  In the learning task, the parameters ( , )A B**  are 

unknown to the learner. All that is known is that 
( , ) ,A B ! H* *  where H  is some subset of parameters, typi-
cally those corresponding to stabilizable systems. In the 
offline setting, the learner is given access to Ntraj  sampled 
trajectories of length T (a total of N N Ttot traj=  samples) 
from the system (25) and is tasked to output a policy r  that 
renders the following cost as small as possible:

	 ( ; ) limsupV K T x Qx u Ru1E
T

K
t t t t

t

T

0

1

_i +
"3

<<
i

=

-
r ^ h= G/ � (26)

where expectation EK
i  is taken with respect to dynamics 

( , )A Bi =  under the feedback law ut = Kxt. In this case, it is 
of course known that the optimal controller is a constant 
state feedback law of the form ( , ) ,u K A B x K xt t t= =* **  
where the controller gain K(A, B) is specified in terms of 
the solution ( , )P P A B=  to a discrete-time algebraic  
Riccati equation:

	 ( )P Q A PA A PB B PB R B PA1= + - +< < < <- � (27)

	 ( ) .K B PB R B PA1=- +< <- � (28)
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Model-Based Methods
A classical approach to designing the optimal LQR control-
ler for an unknown system (25), which we revisit from a 
finite-data perspective, is to perform system identification 
followed by a control design step. In RL terminology, this 
approach is referred to as a model-based approach because 
we explicitly parameterize and learn the transition dynam-
ics, which are then used to compute a policy. In particular, 
suppose that we have obtained estimates ( , )A Bt t  of 

( , ),A Bi = * **  and these estimates are guaranteed to be f  
accurate; that is, , .max A A B B opop # f- -**

t t$ .  Such esti-
mates can be acquired and guaranteed to satisfy the desired 
accuracy level (with high probability) by leveraging the 
results of the discussion in the “Sample Complexity Upper 
Bounds” section. Based on the system estimates, we can 
either apply CE control or design a robust controller using 
the error information .f

Certainty Equivalence
The CE approach is to simply use the estimates ( , )A Bt t  as if 
they were the ground truth and play the controller 

( , ).K K A B=t t t  This setting is analyzed in Mania et al. [68, 
Th. 2]. They demonstrate that the controller ( , )K K A B=t t t  
enjoys the suboptimality guarantee

	 poly( ; ) ( ; )V K V K 2#i i f- * ** i*
r t r � (29)

where polyi*  denotes a quantity polynomial in system quan-
tities, such as ,P op*  and the spectral radius of the optimal 
closed-loop dynamics A B K one—+ * **  can view the term 
polyi*  as capturing the fact that systems with well-conditioned 
closed-loop behavior [a small , (P Aop t +**  )]B K+ * *  are 
easier to learn to control. Similar guarantees can also be pro-
vided for the partially observed LQG setting, in which the 
entire linear dynamic controller is estimated from data  

[68, Th. 3]. It is important to recognize, however, that guar-
antee (29) comes with the caveat that the accuracy f  needs to 
be small enough so that the controller Kt  can be shown to be 
stabilizing for the instance ( , ).A Bi =* * *  Mania et al. [68] 
provide sufficient conditions on the accuracy f  in terms of 
system parameters by leveraging Riccati equation perturba-
tion theory (see “Riccati Equation Perturbation Theory”). 
The dependence on f  in inequality (29) is optimal, and it can 
be shown that for almost every experiment consisting of input 
state data {( , ), , ( , )},x u u xN N0 0 1tot totf -  the least-squares esti-
mator described previously (in combination with CE con-
trol) is optimal [69, Th. 2.1] in that up to universal constants, 
there exists no better strategy. In fact, it is later shown that 
the CE approach is also the best-known strategy in the more 
challenging online control setting. Combining guarantee 
(29) with the sample complexity upper bounds of the previ-
ous section, we can obtain end-to-end guarantees for the 
offline learning of the optimal LQR controller. In particular, 
we obtain that the suboptimality gap decreases at least as 
fast as ( / ).O N1 totu  However, as stated earlier, this result 
assumes that the number of samples is large enough that the 
CE controller Kt  is stabilizing for the original system, which 
may require a large burn-in time.

Robust Control Methods
While the CE controller is optimal when the model error f  
is very small, there are nevertheless many cases of interest 
where only a coarse model is available and where the 
model error is too large to guarantee that the CE controller 
is stabilizing [22]. In such settings, an alternative is to 
design a robust controller that stabilizes all possible sys-
tems consistent with the model estimates and error bounds. 
In [70], the problem of robust control from coarse system 
identification was studied in the nonasymptotic regime. In 
[22], a robust control scheme based on system-level synthe-
sis (SLS) [71] is introduced that uses finite-sample model 
error information. The aforementioned robust control 
designs are safer than the CE controller in general. How-
ever, the cost of this robustness is that the resulting control-
ler suboptimality guarantees are worse. Contrary to (29), 
the suboptimality guarantees are of the order of

	 poly( ; ) ( ; )V K V K #i i f-* * * i*
r t r � (30)

where Kt  is the robust controller. It is unknown whether 
this suboptimality is inherent or an artifact of the analysis. 
SLS controllers can also be deployed in the case of state/
input constraints [72] as well as partially observed systems 
[73]. An alternative input–output parameterization frame-
work was adapted in [74] to deal with uncertain partially 
observed systems.

Model-Free Methods
Model-free methods, in which (essentially) no structural infor-
mation about the problem is used to derive a learning-based 

Riccati Equation Perturbation Theory

To provide a guarantee of the form (29) for the certainty-

equivalent approach, we need to guarantee that small 

errors in the estimates ,max A A B B opop # f- -**
t t$ .  

translate to small errors in Riccati equation quantities 

(27)–(28). Key to achieving such guarantees is an operator-

theoretic proof strategy, due to [S5]. Roughly, the idea is to 

construct a map ,U  of which the error P P-* t  is the unique 

fixed point over a set of elements with a small norm. A more 

detailed account can be found in [68, Sec. 4.1]. Also note 

that [36, Sec. 3] has recently developed an alternative or-

dinary differential equation approach, which gives tighter 

bounds in terms of system-theoretic parameters.

REFERENCE
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policy, are very popular in the RL literature. The most basic 
class of such methods are policy gradient methods, which 
we discuss next in the context of the LQR problem.

Policy Gradient Methods
Policy gradient methods work exactly as their name adver-
tises: they run (stochastic) gradient descent on a controller 
parameterization with respect to the cost (26). To make this 
concrete, let us (for simplicity) first discuss the state feed-
back setting in which C Idx=*  and .v 0t =  In light of the 
form (27)–(28) of the optimal policy, it appears reasonable to 
parameterize the cost (26) by linear controllers of the form 
u Kxt t=  and run our descent steps on matrices .K Rd dxu! #

Do Exact Gradients Converge?
Assume for the moment that we have oracle access to exact 
gradients, and we are able to run (nonstochastic) gradient 
descent on the cost function (26):

( ; ) .K K V Kj j K T K K1 j
d i= -+ =

It is not obvious that such an algorithm will work, as 
even in this simplified setting, there are two potential 
obstacles to convergence: 1) the cost function (26) is non-
convex in K, and 2) the cost function (26) is not globally 
smooth—in fact, it is not even finite for those K that do not 
stabilize the system (25). Thankfully, the LQR objective 
(26) satisfies “weaker versions” of convexity and smooth-
ness, which are entirely sufficient (see “Linear Quadratic 
Regulator, Polyak–Łojasiewicz, and Approximate Smooth-
ness”). These weaker conditions were first established by 
Fazel et al. [75], who showed that if initialized with a sta-
bilizing controller K0, after only ( / )logO 1 f  iterations, 

(nonstochastic) gradient descent outputs a controller  
Ku  satisfying

	 ( , ) ( , ) .minV K V K
K

#i i f-r u r � (31)

It should be noted that the authors of [75] consider a slightly 
different cost function than the cost considered here. Namely, 
they consider the infinite-horizon case with ,w 0t =  and only 
the initial condition x0 is allowed to be random. However, the 
infinite-horizon and ergodic average cost functions are almost 
identical (as functions of K), and it is straightforward to verify 
that the convergence guarantee mentioned in the preceding 
remains true with only minor modifications to problem-spe-
cific constants when applied to the ergodic average cost (26). 
Having established that the exact gradient method converges, 
Fazel et al. [75] also showed that a method based on zero-order 
gradient estimates also converges. However, their results apply 
only to the noiseless setting with a random initial condition. 
By contrast, [76] analyzes a noisy finite-horizon setting and 
shows that such methods still provably converge. Note that the 
assumption of an initial stabilizing controller mentioned in the 
preceding can be removed with a more sophisticated gradient 
strategy [77]. We refer the reader to the recent survey [78] for a 
more comprehensive overview of policy gradient methods.

Fundamental Limits and Model Based Versus Model Free
Given the optimality of the CE controller in the offline LQR 
setting, it is natural to wonder whether similar guarantees are 
achievable by model-free methods based on policy gradients. 
To this end, Tu and Recht [79] study a simplified version of 
LQR (26) in which R 0=  and the optimal solution is of the 
form .K B A=- ** *

@  In this simplified scenario, they compute 
asymptotically exact expressions for the risk of CE and a sto-
chastic policy gradient method (REINFORCE) and show that 

Linear Quadratic Regulator, Polyak–Łojasiewicz, and Approximate Smoothness

While the linear quadratic regulator (LQR) objective is not 

convex, the objective (26) satisfies the so-called Polyak–

Łojasiewicz (PL) condition. Namely, Fazel et al. [75, Lemma 3] 

show that as long as the tuple ( , )A WR  is controllable, the 

following PL condition holds:

	 ( , ) ( , ) ( , )minV K V K V K
K

K F
2

d#i i m i-r r r � (S9)

for some problem-specific constant .02m  PL conditions, such 

as inequality (S9), are known to be sufficient alternatives to 

(strong) convexity in the optimization literature [S6], [S7]. In 

particular, condition (S9) enforces that any stationary point is 

a global minimizer, as is the case for convex functions. An 

alternative perspective on the condition (S9) is offered in [S8], 

in which it is shown to be a consequence of the existence of 

a convex reparameterization for the LQR objective. Similarly, 

even though the objective (26) is not globally smooth, it is suf-

ficiently regular in that

( , ) ( , ) ( , ),V K V K V K K K O K KK F F
2

di i i- = - + -* **
r r r ^ h

in a neighborhood of the optimal policy .K*  In combination, 

these properties can be used to verify that if gradient descent 

is initialized with a stabilizing controller, its updates remain sta-

ble and converge to the global optimum at the rate (31).
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condition,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery 
Databases, Cham, Switzerland: Springer-Verlag, 2016, pp. 795–811. 
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that there is a polynomial gap in the problem dimension in 
their respective sample complexities (with CE outperforming 
REINFORCE). The fundamental limits of policy gradient 
methods are further investigated and related to various sys-
tem-theoretic quantities in [80]. It is still an open problem to 
explore whether the result of Tu and Recht [79] can be extended 
to more general systems/gradient-based methods.

ONLINE CONTROL
Having discussed episodic RL tasks through the lens of control, 
we now turn our attention to the more technically challenging 
setting of online adaptive control. We rely on the notion of regret 
to quantify the performance of an online algorithm. Just as in 
offline control, suppose the system has dynamics are of the form

	
x A x B u w

y C x v
t t t t

t t t

1 = + +

= +
*

*

*+
� (33)

where , , , , ,x w u y vR R Rt t
d

t
d

t t
du yx! ! !  and ,A BRd dxx! !#

**  
,Rd dx u#  and .C Rd dxy! #

*  However, in contrast to the offline 
control setting, the learner now interacts iteratively with only 
a single trajectory ( , )N T N1traj tot= =  from the system (33). 
The parameters of ( , , )A B C* **  are, as before, unknown to the 
learner. For simplicity, assume that { }wt  and { }vt  are mutually 
independent i.i.d. sequences of mean-zero sub-Gaussian 
random variables, with covariance matrices wR  and ,vR  
respectively. Most of the current literature focuses on the 
LQR setting, where C Idx=  and .v 0t =  Relatively less is 
known about regret minimization for the partially observed 
setting (in which case, the noise sequences are Gaussian). In 
either setting, the goal in the adaptive LQR and LQG prob-
lems is to regulate the system (33) by using a policy r  so as to 
render the following cost functional as small as possible:

	 ( )V x Q x x Qx u RuET T T T t
t

T

t t t
0

1

_i + +< <<r
i
r

=

-

= G/ � (34)

where Eir  stands for expectation with respect to dynamics 
( , , )A B Ci =  under policy r  and ( , , )Q Q RT  are positive 

definite weighting matrices. The difficulty of the task arises 
from the fact that the parameter i  is assumed to be a priori 
unknown, and hence, the optimal cost ( ) ( )infV VT T_i i*

*
!r

r  
cannot be realized. Instead, one seeks to design a policy 
(algorithm) r  with small regret.

Note that the regret is a random quantity, whereas the 
expected regret is not; however, in either case, the interpre-
tation is that one seeks to design a policy that has small 
cumulative suboptimality as compared to the optimal 
policy ( ) ,x K xr = **  which can be computed via Riccati 
equations (38)–(39). Abstracting slightly, the regret of an 
algorithm can be thought of as the rate of convergence of an 
adaptive algorithm [see (40)]. Moreover, it quantifies the 
dual nature of control [81], [82] (in RL terminology, the 
exploration–exploitation tradeoff). We see in the sequel 
that for an algorithm to have low regret, it necessarily must 
generate sufficiently rich data. At a high level, by relating 
(35) [or (36)] to quantities of interest (such as the time hori-
zon T, dimensional factors, and system-theoretic quantities), 
we gain an understanding of the statistical properties of 
adaptation and under which circumstances adaptation—if 
only in an idealized environment—is easy or hard. Also 
note that in the formulation (35)–(36), we compete with a 
policy that has good average case performance (LQR) but 
does not necessarily take into account robust or stability 
margins. While certainly important, in this survey, we do 
not cover robustness aspects of adaptive methods but, 
rather, emphasize their statistical analysis.

State Feedback Systems
For state feedback systems ( , ),C I v 0d tx= =*  it has been 
shown by Simchowitz and Foster [36] that certainty equiva-
lence with naive exploration (additive Gaussian noise injected 
into the control input) attains, with probability ,1 d-

( ) ( / )logR c d d T 1x usysT
2#i d*

r

for a system-dependent constant c 0sys 2  and provided that 
T is sufficiently large (polynomial in dimension and sys-
tem-dependent quantities). Their result refined an earlier 
result of [68] and essentially settled the question of what 
the optimal dependence on system dimensions and the 
time horizon is. A recent result due to Jedra and Proutiere 
[83] also shows that, up to logarithmic factors, the same rate 
can be attained in expectation ( ) .R O d d TE uxT

2i =*
r u ^ h  Sim-

chowitz and Foster [36] also provide a matching lower 
bound with ( ) .sup R d d TE ux( , )B T

2i X=!i i f
r

* ^ h  However, char-
acterizing the optimal dependence on the system parame-
ters ( , )A B**  is still open. For instance, there is a polynomial 
gap between the best-known upper bounds [36] and the 
best-known lower bounds [84] in regard to the dependence 
on ( , )P P A B= * **  [recall (27)]. A summary of the state of the 
art for both state feedback and partially observed systems 
is given in Table 3.

Certainty Equivalence
The key algorithmic idea to solve the regret minimization 
problem for the LQR is again CE. The idea dates back to the 
late 1950s [81], [82], [91] and was first analyzed in the con-
text of adaptive control of linear models by Åström and 

Regret
The regret of an algorithm measures the cumulative 
suboptimality accrued over the entire time horizon as 
compared to the optimal policy:

	 ( ) ( )x Q x x Qx u Ru VRT T T T t
t

T

t t t T
0

1

_i i+ + - *< < <r

=

-

/ � (35)

where the law of { , }x ut t t
T

0=  is specified by ( , ).i r  Alter-
natively, one may be interested in the expected regret:

	 ( ) ( ) ( ).V VERT T Ti i i= - *r r (36)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 12,2024 at 13:58:39 UTC from IEEE Xplore.  Restrictions apply. 



DECEMBER 2023  «  IEEE CONTROL SYSTEMS  87

Wittenmark [92], in 1973. Initially, the emphasis was solely 
on asymptotic average cost optimality, corresponding to 
sublinear regret, ( ),o TRT =

r  in our formulation. Regret min-
imization was introduced to the adaptive control literature 
roughly a decade later by Lai [93]. Online CE LQR control 
takes continuously updated parameter estimates ( , , )A B Ct t t  of 
( , , )A B C* **  as inputs and then solves the dynamic program-
ming problem for these estimates as if they were the ground 
truth. For the LQR, the dynamic programming solution has 
a closed-form solution in terms of the (discrete algebraic) 
Riccati recursion (38)–(39), which can be solved efficiently by 
numerical schemes. The resulting controller is then used to 
regulate the system. To see why the CE strategy is successful 
in the LQR, we note the following elementary relation 
between the expected regret and the Riccati recursion [84]:

	 ( ) ( ) ( ) ( )R u K x B P B R u K xE ET
t

T

t t t t t t t
0

1

1i = - + -<<r
i
r

=

-

+6 @/ � (37)

where ( , ), ( )A B P Pt ti i= =  and ( )K Kt t i=  are given by

	 ( )P Q A P A A P B B P B R B P At t t t t1
1= + - +< < < <

-
- � (38)

	 ( )K B P B R B P At t t
1=- +< <- � (39)

and where the terminal condition is PT = QT. We further 
denote the steady-state versions of the recursion (38)–(39) 
by P(A, B) and K(A, B). It will be convenient to denote 

( , )P P A B_ * **  and ( , ).K K A B_ * **  Equation (37) follows 
from the “completing-the-square” proof of LQR optimality; 
see [94, Th. 11.2]. Crucially, for naive exploration policies of 
the form : u K xt t t tr h= +t  (with { }th  a mean-zero sequence 
of exploratory noise, independent of all other randomness), 
equation (37) becomes
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( ) ( )( ) .
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E E
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(40)

Equation (40) shows that the expected regret of a CE 
policy is a quadratic form in the estimation error .K Kt t-t  
Moreover, by a stability argument, it suffices to use the 
steady-state versions of the Riccati recursion (38)–(39). This 
suggests that the CE strategy with ( , )K K A Bt =t t t  can be 
shown to be successful, provided that one shows that the

1)	 estimates ( , )A Bt t  are consistent estimators of the true 
dynamics

2)	 map ( , ) ( , )A B K A Bt7  is sufficiently smooth in the 
parameters (A, B)

3)	 policy r  is stabilizing in that the state process xt does 
not become too large.

Analogous reasoning is applicable in the high-probabil-
ity regret setting, but it becomes a little more involved (see 
[36, Lemma 5.2]). Before we proceed, one remark is in order: 
(40) suggests that ( ) ( )logO TERT i =

r  should be possible. 

Namely, we noted in the finite-sample analysis of system 
identification that identification errors generally decline as 

( / ),O t1  where t is the number of samples collected so far. 
Since the suboptimality bound (29) is quadratic in the iden-
tification error, the square errors decline as ( / ),O t1  and the 
regret induced will scale as the sum of / , , , ,t t T1 0 1f= -  
which is of order .log T  We soon ask, Why do we need 
exploration? and see that logarithmic regret is not possible 
in general, for reasons of closed-loop identifiability.

Why Do We Need Exploration?
In the sketch of the CE approach presented in the preced-
ing, we mentioned that one typically requires a perturba-
tion th  of the input .ut  The most common exploration 
strategy, known as greedy-f  exploration, uses simple addi-
tive perturbations to the control policy, yielding inputs of 
the form ,u K xt t t th= +  as previously. More intricate explo-
ration strategies are possible, as described in “Optimism 
and Thompson Sampling.” To understand why such per-
turbations are necessary, consider again the least-squares 
algorithm (4). Recall that the error of the estimator 

( , )A Bs s si =t t t  satisfies the following equation:

	 w x u
x
u x us t

t

s

t t
t

tt

s

t t
0

1

0

1 1

i i- =*
< < < <

=

-

=

- -

t e eo o6 ; 6@ E @/ / � (41)

Paper Setting Method Upper Bound Lower Bound

[22] SF: (A, B) 
unknown

Optimism ( )O Tu  but 
intractable

[93] SF: (A, B) 
unknown

CE ( )O T /2 3u

[94] CE

[72] SF: (A, B) 
unknown

CE ( )O Tu

[95] Optimism

[39] SF: (A, B) 
unknown

CE ( )O d d Tx u
2 ( )d d T2

uxX

[96] SF: A 
unknown

CE ( )logO Tu

b Scalar 
unknown

CE ( )TX

[97] PO: (A, B, C) 
unknown

Gradient ( )O Tu

[92] SF: (A, B) 
unknown

( )d d T2
x uX

PO: (A, B, C) 
unknown

( )TX

[98] SF: (A, B) 
unknown

CE ( ( )

)

expO

d d Tx u
2#

l
d T1 2

x
X lc m

SF: state feedback; PO: partially observed.

TABLE 3  A summary of the results: regret minimization in 
adaptive control (the state of the art is in blue).
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provided that the matrix inverse on the right-hand side of 
(41) exists. As mentioned in the preceding, as long as the 
covariates do not grow more than polynomially with the 
time horizon, it can be shown, using the theory of self-nor-
malized martingales, that the rate of convergence of si i- *

t  
is dictated by the smallest eigenvalue of the covariates matrix

	 .O
x
u x uop mins

t

tt

s

t t
1

0

1

i i m- =*
< <-

=

-
t u e e o o= ; 6E @ G/ � (42)

Suppose, for the moment, u K xt t. *  in (42). In this case, 
the matrix

	
x
u x u

I
K x x I K

t
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t t
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t t d
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*
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=
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=

-

; 6 ; 6E @ E @/ / � (43)

is nearly singular. To see this, note that I Kdx *
< <6 @  is a tall 

matrix—the outer product of tall matrices is singular. Thus, 
the error (42) diverges if the policy is too close to the opti-
mal policy ;K*  that is, the true parameters A*  and B*  are 
not identifiable under the optimal closed-loop policy .K*  In 

fact, this lack of identifiability is true under any policy of 
the form ut = Kxt. Alternatively, the need for exploration can 
be seen by noting that for every perturbation Rd duxT ! #  
and ( ( ), ( ))A BT T  of the form ( ) , ( )A A s K B B sT TT T= - = +**  
( ),s R!  t he c losed-loop system s A B K+ * **  a nd 

( ) ( )A B KT T+ *  are identical: ( ) ( )A B K A B KT T+ = +* * * *  
for all such , .sT  Thus, from observing trajectories gener-
ated by the two systems

( )
( ( ) ( ) )

x A B K x w

x A B K x w
t t t

t t t

1

1 T T

= + +

= + +

* * *

*

+

+

it is impossible to distinguish between them. The reason-
ing in the preceding indicates that to obtain estimates that 
converge sufficiently quickly to the true parameters 
( , ),A B**  exciting inputs that lead to exploration away from 
the optimal policy K*  are necessary.

Do We Actually Need to Identify the True Parameters (A*, B*)?
The answer to this question is in the affirmative. To see 
this, we recall from [36, Lemma 2.1] that

	
( , )

( ) ( ).
ds
d K A s K B s

B P B R P A B K
s 0

1T

T T- +

=- + +

* * *

* * * * * * *
< <

=

-
�

(44)

As long as ( )A B K+ * **  in the matrix on the right-hand 
side of (44) is nonzero, this implies that there exists a con-
fusing parameter variation (which is not closed-loop dis-
tinguishable) that has a different optimal policy. Hence, 
one necessarily must identify the true parameters A*  and 
B∆  in the adaptive control problem.

A Historical Tangent on Identifiability
Closed-loop identifiability issues are well known in the 
system identification literature [95], [96], [97]. Indeed, in 
the LQR setting, Polderman [97] gives an elegant geo-
metric argument showing that the true parameters need 
to be identified. It is also interesting to note that, pre-
cisely because the minimum variance controller 
( , )Q I R 0= =  is closed-loop identifiable [95] (in contrast 
to the more general LQR controller), logarithmic regret 
can be achieved in this setting [93]. Reiterating the point 
in the preceding: the reason for the necessity of the 
“exploratory signals” th  in (40) is precisely a lack of 
closed-loop identifiability.

Returning to the estimation guarantee (42), note that an 
i.i.d. sequence th  of rescaled isotropic noise of magnitude 
(standard deviation) t a-  is sufficient to guarantee parame-
ter recovery at the rate ( ).O top

/
t

1 2i i- =*
a-t u  In this case, 

smoothness (combined with a naive Taylor expansion) 
suggests that ( , ) ( ).K A B K O top

/
t t

1 2- =*
a-t t u  Balancing the 

two terms in (40) demonstrates that /1 4a =  leads to 
( ),R O TT = u  which is optimal. While the reasoning in the 

Optimism and Thompson Sampling

A lternative exploration strategies include optimism and 

Thompson sampling. Indeed, the first complete treat-

ment of regret minimization in the linear quadratic regulator, 

due to Abbasi-Yadkori and Szepesvári [21], relies on the 

principle of optimism in the face of uncertainty (OFU). Just 

as in the certainty-equivalent (CE) approach discussed in 

the main text, OFU is based on constructing parameter es-

timates ( , ).A Bt t  However, OFU also maintains a (tuned) 

confidence interval for these estimates. The adaptive con-

trol law is then obtained by selecting the most optimistic 

parameter and CE control law—those resulting in the low-

est estimated cost—in this confidence interval. The original 

algorithm of [27] was not computationally tractable, but this 

was later remedied by [S9]. A related method, Thompson 

sampling, is studied in [S10] and [S11]. Even though these 

strategies, in principle, are more sophisticated, to date, the 

tightest bounds have been proved for the simple input per-

turbation approach described in the main text [36].
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preceding about the necessity of the perturbations th  is 
entirely heuristic, it can be made formal and will be dis-
cussed further in the following section.

Regret Lower Bounds
We now argue that the scaling ( )R d d TuxT

2H=r  is optimal 
for state feedback systems by finding matching lower 
bounds. The modern approach to lower bounds, or funda-
mental performance limits, for sequential decision-making 
problems seeks to characterize local minimax lower 
bounds. Such bounds quantify statements of the form 
“there exists no algorithm that uniformly outperforms a 
certain fundamental limit across a small (local) neighbor-
hood of problem parameters.” For the regret minimization 
problem, such lower bounds typically take the form

	 ( ) ( , , )sup R f TE
( , )B

T $i i f*
!i i f

r

*

� (45)

for some ,02f  some function f, and every (causal) policy .r  
The lower bound (45) states that the worst-case expected 
regret over a neighborhood of the true parameter is lower 
bounded by some function of the instance parameter i*  and 
the horizon T. The appearance of sup ( , )B!i i f*  in inequality 
(45) is not restrictive—while such lower bounds are “worst-
case,” one can typically allow for .0"f  In other words, 
such lower bounds are applicable to all algorithms that are, 
in some sense, robust to infinitesimal perturbations in the 
model parameter ,i*  a rather mild criterion. Put differently, 
a lower bound of the form (45) for vanishing 0"f  states 
that there exists no algorithm that uniformly outperforms 
the lower bound in an infinitesimal neighborhood.

Regret Lower Bounds via Reduction  
to Bayesian Estimation
To arrive at a local minimax lower bound (45), suppose, for 
simplicity, that QT = P so that (37) becomes
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(46)

where ( ( ) ( ) ( ) ) ( ) .min B P B R R 0( , ) min minB 2$m m i i i m= +<
!f i i f*  

The next step is crucial: we relax the supremum in inequal-
ity (46) by a introducing a prior m  over ( , ).B!i i f*  The 
exact choice of m  is not particularly interesting, and its 
influence on the final bound can be made to vanish. By 
weak duality, we have for any such m  that

	 ( ) ( ) .sup R s u K xE E E
( , )

~
B

T
t

T

t t
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2
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Li i-
!i i f

r
i m i
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The key insight is now that the quantity inf E ~ut i m

( )u K xE t t 2
2

i-i
r  is simply the minimum mean-square 

error for estimating the random variable ( ) ,K xti  where i  is 
drawn according to the prior distribution .m  Although it does 
require rather a few intermediate steps [84, Th. 4.1], one can, 
in principle, lower bound the right-hand side of inequality 
(47) by using estimation-theoretic lower bounds, such as 
the Bayesian Cramér–Rao inequality [61], namely, Van 
Trees’ inequality The leading term in such lower bounds is 
the inverse of the Fisher information:

	 I ( ) .
x
u x uEp
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t
t t

t
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w0

1 1

7i i= < <
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c m= ; 6E @ G/ / � (48)

Heuristically, as ,0"f  for two problem-dependent con-
stants ( ), ( ),c ci il

	 I( ) ( ) ( ( ) ( )) .sup R T c cE E
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T p
1#$i i m i i+* * *

!i i f

r
i
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*

*

l � (49)

The reason the constant ( )c i*  is nonzero is a conse-
quence of the derivative calculation (44). This expression 
concludes that the Jacobian terms discussed in “Van Trees’ 
Inequality and Fisher Information” are invertible. Further, 
it is instructive to note that the expression inside the condi-
tional expectation in (48) is proportional to the leading 
term in the estimation error (41) related to the recovery of 
the parameter ( , ).A Bi =  As argued in the preceding, 

Van Trees’ Inequality and  
Fisher Information

Van Trees’ inequality is a mean-square-error lower bound for 

Bayesian estimation problems. Suppose the learner seeks 

to estimate a smooth function ( )} i  of a parameter .i  The learn-

er is given access to a sample Z, which is drawn conditionally 

from a density ( )p z i  and has access to a prior ( ) .m i  To state 

Van Trees’ inequality, define the Fisher information as

I ( ) ( ) ( ) ( )log logp z p z p z dzp d d_i i i i
<

i i6 6@ @#

and the prior information as

J ( ) ( ) ( ) ( ) .log log dd d_m m i m i m i i<
i i6 6@ @#

Under a few relatively mild regularity conditions, Van 

Trees’ inequality states that any estimate using Z satisfies 

the lower bound

I J([( ( ))( ( )) ] ( )[ ] [ ( )]( ) )E E E Ep
1d d*} } i } } i } i } ii m- - + <<

i i
-t t

where E denotes expectation with respect to ( , ) ( )p y p yi i=  

( ).m i  For these purposes, note that the Fisher informa-

tion I ( )p i  for , ,Z x ut t t
T

0
1= =
-" ,  with x Ax Bu wt t t t1 = + ++  and 
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following (43), the optimal policy ut = Kxt renders the matrix 
(48) singular, and so one needs to deviate from this policy 
to consistently estimate the parameter ( , ).A Bi =  In fact, it 
can be shown that the expected regret is an upper bound 
for the Fisher information (48):

	 I( ( )) ( ) ( )c RE Emin p T#m i i ii
r rm � (50)

for a third problem-dependent constant ( );c im  see [84, 
Lemma 3.6]. This offers a slight change of perspective: the 
expected regret (36) acts as a constraint on the set of possi-
ble experiment designs available to the learner. This idea 
has also been explored from the perspective of regret upper 
bounds in [98]. Balancing the upper and lower bounds on 
the Fisher information in terms of the regret, as in the heu-
ristic inequalities (49)–(50), yields that the optimal scaling 
must be .T  In particular, any policy attaining expected 
regret on the order of magnitude ( )O T  generates a data-
set in which the smallest eigenvalue of the Fisher information 
is ( ) .O T  Hence, identification of the parameter ( , )A Bi = * **  
can occur no faster than at the rate ( / )O T1  for a regret-
optimal policy, by which we deduce that the optimal rate is 

( ) .TX  To obtain the correct dimensional dependence in 
the lower bound ( ),d d Tux

2X  this argument needs to be 
slightly refined. Namely, we note that it, in fact, is not 
just the smallest eigenvalue of I ( )p i  that is zero for laws 
of the form ut = Kxt but all the smallest d d -manyux  eigen-
values. To see this, note that the entire linear manifold 
{( , ) : }A B A BK A B K+ = +* * **  corresponds to parameters 
lacking PE in a closed loop. As mentioned in the preceding, 
the optimal dimensional scaling of regret for feedback sys-
tems has been settled by [36]. However, there is currently a 
gap in our understanding of the best possible scaling of the 
regret in terms of key system-theoretic quantities. In partic-
ular, tight bounds for the scaling in terms of the solution P*  
to the steady-state Riccati equation are unavailable; the best 
known upper bound is due to [36, Th. 2] and is of order ,P op

11
*  

whereas the best known lower bound is of order ( )Pminv *  [84, 
Corollaries 4.2 and 4.3]. Note that ascertaining the exact 
optimal dependence of the regret on P*  and other system-
theoretic quantities in the LQR remains an open problem.

Quantity P* Can Be Exponential in the Dimension
We saw in the preceding that if one regards system-theoretic 
parameters as “dimension-less,” the optimal dimensional 
dependency for the state feedback regret minimization sce-
nario is polynomial in dx  and .du  We now see that these sys-
tem-theoretic quantities can be rather significant. To this end, 
consider the following system, which consists of two indepen-
dent subsystems:
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The first subsystem (A1, B1), corresponding to the top and 
leftmost part of the arrays in (51), is just a simple memory-
less system. The second subsystem (A2, B2) is an integrator 
of order .d 1x-  The system (51) is decoupled but is very sen-
sitive to misspecification in the coupling, due to the integra-
tor component’s potential for error amplification. Moreover, 
the solution ( , )P A B2 2*  is on the order 2dx  [90, Lemma 9]. 
Using this, one can construct a local minimax regret lower 
bound for the instance (A, B) [system (51)] with scaling:

( ) .sup R T2E
(( , ), )B A B

T
dxi X=

!i f

r ^ h

A more general statement is given in [90, Th. 3]. While 
the particular system (51) has exponential complexity in 
the state dimension ,dx  it establishes a more general phe-
nomenon: the controllability index the—l  number of steps 
it takes to reset a noise-free system to the origin—can be 
used to characterize the local minimax regret, and this 
dependence is exponential (see also Table 3). The preceding 
discussion leads to two conclusions:

1)	 Learning to control can be hard; exponential com-
plexity in the dimension can arise, for example, as 
simply as integrators.

2)	 To appreciate this hardness, we need to understand 
the role of control-theoretic quantities, such as .P*

Partially Observed Systems
While our current understanding of the state feedback set-
ting is relatively complete, less is known when the learner 
has access only to a measured output and not the actual 
system state. In the state feedback setting, we know that the 
correct scaling with time is ,T  that the dimensional depen-
dence is ,d dux

2  and that the key system-theoretic quantity is 
.P*  In contrast, in the partially observed setting, we cur-

rently know only that the correct scaling with the time hori-
zon is .T  Determining the correct instance-specific scaling, 
and which quantities are key to this, is an open problem. 
Moreover, no current approach can handle the general LQG 
cost structure (34) but instead applies to the criterion

( ) .V y Qy u RuET t
t

T

t t t
0

1

_i + <<r
i
r

=

-
u = G/

With these caveats in mind, we now sketch an elegant 
approach due to [89] and based on the classical Youla 
parameterization [99], [100], leading to ( )O Tu  regret for 
partially observed systems.

Disturbance Feedback Control
Unrolling the dynamics (33), it is straightforward to verify that

	 y e C A w C A B ut t
s

t
t s

s
s

t
t s

s
0

1
1

0

1
1= + +* * * **

=

-
- -

=

-
- -/ / � (52)

for some error signal et decaying exponentially fast to zero 
for stable systems. The approach as sketched here requires 

( )A 11t *  but can be extended to open-loop unstable 
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systems [89, Appendix C]. The representation (52) suggests 
that there are two separate components to the input–output 
dynamics. The first component,

	 y e C A wnat
t t

s

t
t s

s
0

1
1= + **

=

-
- -/ � (53)

is referred to as “nature’s y” and is a counterfactual object 
representing the evolution of the output in the absence of 
controller inputs. The second component is simply the dis-
crete convolution of the inputs u :t0 1-  with the system 
Markov parameters ,G :t0 1

*
-  where ( ) .G s C A Bs= * * **  Hence, 

.y y G unat :
:t t

t
t

0 1
0 1)= + *

-
-  With these preliminaries established, 

for a sequence of matrices { }Ms s
m

0
1

=
-  [89], define distur-

bance response controllers (DRCs) of order m as controllers 
of the form

	 .u M ynat
t s

s

m

t s
0

1

=
=

-

-/ � (54)

Notice that since ,y y C A B unat
t t s

t t s
s0

1 1R= - * **=
- - -  these are 

admissible causal controllers by construction—had the 
dynamics ( , , )A B C* **  been known, we would have been 
able to execute controllers of the form (54). It can be shown 
that controllers of the form (54) can approximate linear 
dynamic controllers, such as the separation principle solu-
tion to the LQG (a Kalman filter with an LQR controller).

Regret Bounds for Partially Observed Systems
The following algorithm combines the convex Youla-like 
parameterization (54) with modern online convex optimi-
zation [101]. In particular, Simchowitz et al. [89] propose an 
algorithm in which they

1)	 inject exploratory noise for a period of length propor-
tional to T

2)	 use this dataset to estimate the Markov parameters M
3)	 for the remainder of the horizon, compute estimates of 

nature’s y (53) using the estimated Markov parameters
4)	 use the estimated nature’s y to run online (projected) 

gradient descent on the parameters Ms of the distur-
bance feedback controller.

Simchowitz et al. [89] show that for a properly tuned 
order m of DRCs, the approach outlined in the preceding 
yields ( )O Tu  regret. While, in this setting, there is no gen-
eral lower bound to date, the authors of [84] have shown 
that ( )TX  regret is unavoidable in the worst case by con-
sidering instances with a large input dimension.

Logarithmic Regret?
It is also interesting to note that for an alternative notion of 
regret, in which the learner competes with the best persis-
tently exciting policy instead of the optimal policy, [102] has 
shown that logarithmic regret is possible in the partially 
observed setting. Note, however, that the optimal LQG 
policy might not necessarily be persistently exciting. Indeed, 

known lower bounds show that it is not persistently exciting 
in 1) the state feedback setting [see (43)] and 2) the partially 
observed setting for certain large-input-dimension systems. 
Thus, it is an open problem to characterize the relation 
between the regret definition (35) and the one defined in 
[102]. Note that a related situation arises in the state feed-
back setting if the learner is given access to the precise value 
of .B*  In this case, it suffices to identify the matrix ,A*  which 
is identifiable in a closed loop given knowledge of .B*  Cassel 
et al. [88] show that this observation leads to logarithmic 
regret—against the optimal controller—if B*  is known a 
priori. A related problem where logarithmic regret is possi-
ble is that of adaptive Kalman filtering or online prediction 
[45], [103], [104], [105]. The objective is to predict future 
observations yk online based on the past , , , , .y u y uk k1 1 0 0f- -  
Since the only goal is prediction, the cost of control does not 
enter the objective. Interestingly, for this problem, it is pos-
sible to attain logarithmic regret [103], [104], [105]. Hence, we 
can learn the Kalman filter online with a smaller regret than 
that achievable in online LQR control. In light of our discus-
sion, this is hopefully no longer surprising. In the LQR 
problem, we need to inject additional exploratory signals 
into the system, which also affects the cost of control. In the 
prediction problem, exploration is “free,” as the cost of con-
trol does not affect prediction performance. In fact, we can 
predict even without PE [104]; informally, if the covariates 
lie on a certain subspace, so will their future versions.

Open Problem 4
Provide matching upper and lower bounds on either the 
regret (35) or the expected regret (36). In the partially 
observed setting, we currently do not even know the cor-
rect dimensional dependence (or what the correct notion 
of the dimension is, although it is to be suspected that 
this is related to the order of the system and the input and 
output dimensions du  and ).dy  To resolve this problem, it 
is required to find a function f such that for a universal 
constant c 01 2  independent of all problem parameters,

( , ) ( , , , , , , , )A B c f A B C Q R TRT W V1# R R* * * * *
r

for some specific algorithm r  and T sufficiently large 
with high probability (or in expectation). A resolution 
will also provide a matching lower bound, which for 
some ( )o 1Tf =  and some constant c 02 2  depending 
only on ,f  establishes that

( , ) ( , , , , , , , )sup A B c f A B C Q R TR
, (( , ), )A B B A B

T W V2$ R R* * *
! f

r

* *

for all algorithms r  and T sufficiently large with at least 
constant probability (or in expectation). A partial reso-
lution applying only to state feedback systems, thus 
determining the correct dependence on system-theo-
retic quantities, is also of interest.
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SUMMARY AND DISCUSSION
We have provided a tutorial survey of recent advances in 
statistical learning for control. One of the key takeaway 
messages is that we now have a relatively complete picture 
of the learning problem in fully observed linear dynamical 
systems, both in terms of system identification (as summa-
rized in Table 1) and in terms of regret minimization (as 
summarized in Table 3). We have also provided an over-
view and listed a number of open problems with respect to 
partially observed extensions of the previously mentioned 
results. As exciting as the developments over the past few 
years in this field have been, there is still much work to be 
done. With this mind, we now outline some future direc-
tions we believe are important for the field to consider as 
next steps.

Future Directions

Control-Oriented Identification
In finite-sample analysis of system identification, we stud-
ied methods of obtaining high-probability bounds on the 
parameter estimation error of the form

A A opT # f- *
t

where AT
t  is the output of the least-squares algorithm (4). 

Similar bounds can be obtained for the other state param-
eters as well. As discussed in the “Confidence Ellipsoids” 
section, the operator norm picks up the worst-case direc-
tion, which is the most difficult to identify. As shown in 
[24], the sample complexity of identifying the worst-case 
direction can grow very large for certain systems. How-
ever, a question that arises is whether this worst-case direc-
tion affects control: Does the bottleneck of identification, that 
is, the worst direction, affect control design? Do we always 
need to identify everything? Consider, for example, the fol-
lowing system:

, ,A B
0
0
0

0
0

0

0

0
0
1

1
0
0

1
0
0

w1

a

b R= = =

<

> > > >H H H H

where only a  and b  are unknown. Let the control objective 
be stabilization by state feedback, that is, finding a feed-
back gain K such that the closed-loop system A + BK is 
asymptotically stable. The only way to excite x ,k 2  is via ;x ,k 3  
the coupling coefficient b  determines the degree of excita-
tion. Note that as the coupling b  goes to zero, the excitation 
of x ,k 2  becomes smaller. As a result, if b  is very small, it is 
very difficult to identify the parameter ,a  and the complex-
ity of the system identification increases with .1b-  How-
ever, it is trivial to stabilize the system, even without 
knowledge of ,a  for example, with K = 0. In this particular 
example, the worst direction of the identification error is 
not relevant for stabilization. Hence, the complexity of 

stabilization should be independent of .1b-  On the other 
hand, consider system

, ,A B
1
0
0

0
0

0

0

0
0
1

1
0
0

1
0
0

w2

a

b R= = =

<

> > > >H H H H

where now the first state has marginally stable dynamics. 
Unfortunately for this pathological example, it is, in fact, 
necessary to identify a  to stabilize the system (this example 
is adapted from [90]) suffering from complexity that scales 
with .1b-  In particular, we cannot stabilize the system 
unless we identify the sign of ,a  showing that for some sys-
tems, the worst direction of the identification error matters. 
The preceding example shows a system for which stabiliza-
tion depends on an identification bottleneck. However, it 
seems that the constructed systems are artificial or patho-
logical. It is an open problem to characterize the conditions 
under which we can avoid such corner cases. Similar ques-
tions have been previously studied in the context of control-
oriented identification or identification for control [106]. In 
many situations of practical interest, we need to identify 
only the part of the model that matters for a specific closed-
loop objective. In this case, it is reasonable to tune the iden-
tification toward the objective for which the model is to be 
used, that is, to ensure that the model error is “orthogonal” 
to the control objective. This is particularly important in the 
case of agnostic learning, that is, when there is no “true 
model” and the model class can only approximate the 
system, which is typically the case in practice.

Learning With Structure and Regularization
In many practical situations, certain structural properties 
of the system to be identified and controlled are known a 
priori. For instance, when trying to learn a networked 
system, the engineer might have prior knowledge that 
interconnections between states are relatively sparse. Other 
examples of relevant structural priors include low-order (as 
captured by the rank of a system Hankel matrix) or physi-
cal properties, such as passivity and dissipativity.

Sparsity
In the case of a linear dynamical system, sparsity amounts 
to the matrix A*  in the dynamics x A x wt t t1 = +*+  having 
many zero entries; that is, A*  will be sparse and have only 
s dx

2%  nonzero entries. Many modern networked systems 
have the property that they are large-scale but not maxi-
mally connected, leading to a high-dimensional state 
vector with a sparse .A*  There are many other examples 
that fall into this category, including snake-like robots, 
which can be modeled by an integrator-like structure:

.A
a a

a a0
0 0

0
0
0snake

11 12

22 23

h j j j j h

= > H
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The matrix Asnake  has only s d d2 xx
2%=  many nonzero 

entries, and so one is justified to hope for a polynomial 
speedup in the sample complexity of the system identifica-
tion as compared to the standard minimax rate achieved by 
the least-squares estimator.

In such high-dimensional situations, running linear 
regression, which suffers a minimax rate of convergence 
proportional to dx

2  in the Frobenius norm (proportional 
to dx  in the operator norm), is not sample efficient or 
might not even be tractable. To alleviate this issue,  
Fattahi et al. [34] analyze the least absolute shrinkage and 
selection operator (LASSO) estimator as applied to sys
tem identification. Recall that the 1,  norm of a vector  

( , , )v v v Rd
d1 f !=  takes the form .v vd

i i11 R=, =  The 
LASSO penalizes the least-squares solution by this norm 
by using a fixed regularization parameter 02m  and takes  
the form

	 vec ( ) .argminA T x Ax A1
A

t t
t

T

1 2
2

0

1

Rd

1

x

! m+ + ,
!

+

=

-
t ) 3/ � (55)

It is by now well known that 1,  regularization promotes 
sparse least-squares solutions [107], [108]. The authors of 
[34] show that the LASSO also avoids polynomial depen-
dence on the state dimension for linear dynamical sys-
tems. Unfortunately, the rate in [34] degrades with the 
stability of the system—precisely that which we sought to 
avoid in our discussion of the finite-sample analysis of 
system identification by leveraging the PE and small-ball 
bounds. Moreover, by instantiating recent results in [109], 
it can be shown that the minimax rate (in the Frobenius 
norm) over the class of s-sparse linear dynamical systems 
is no more than ( ) ,/O s minw T

2v m Cu ^ h  where TC  is as in (7) 
(with ).B 0=*  Unfortunately, instantiating [109] does not 
yield an effective algorithm and reduces to running 

( ( ))expO d s2x
s
dx

2 =` j  separate regressions, each one over an 
s-dimensional submanifold. This quickly becomes intrac-
table, even for rather moderate cases of the degree of 
sparsity s.

Open Problem 5
Studying the tension between dependence on mixing 
time (stability) and computational intractability is an 
exciting direction for future work. Can we refine exist-
ing analyses of the LASSO (or provide some other poly-
nomial algorithm) to match minimax rates, or is there a 
fundamental computational barrier introduced by 
sparsity? Resolving this issue may well require the 
development of new tools since existing analyses of the 
LASSO in the i.i.d. setting invariably depend on the 
condition number of the covariates matrix [23], [110], 
which, for a linear dynamic system, is proportional to 
the mixing time (degree of stability), leading to subop-
timal rates.

Low-Order Models
Sparsity, as discussed in the preceding, is also relevant 
when estimating input–output models of unknown order. 
For example, consider the following model:

	 , .y A y B u w y j0 0fort j
j

t

t j j
j

t

t j t j1
0 0

#= + + =+

=

-

=

-/ / � (56)

In this scenario, there is no nontrivial upper bound on 
the lag order available to the engineer, and it may be as 
large as the entire horizon T. Converting the process (56) 
into state-space form and running least squares is not trac-
table: recall that the minimax rate of convergence depends 
on the ratio of the number of unknown parameters and the 
number of samples (in this case, given by the horizon T). 
Without further assumption, this ratio is constant in the 
worst-case for model (56). However, if there is hope that the 
true model is of low order so that many of the { , }A Bj j  are 
zero, a variation of the LASSO (55) may also be appropriate 
for model selection in this scenario.

Low-Rank Models
A more sophisticated notion of model order than discussed 
in the preceding section is that of the Hankel matrix rank 
(McMillan degree). Let h C B C A B C A B2 f= ** * * * * * * *6 @ 
denote the impulse response (matrix) associated to the 
tuple ( , , ),A B C* **  and notice that model (1) can be written as

y h u :t t t0 1) h= +-

where ) denotes discrete convolution and { }th  is some (not 
necessarily i.i.d.) noise sequence. Denote by H  the Hankel 
(linear) operator mapping impulse responses to Hankel 
matrices. The nuclear norm of a matrix M Rd d! #  is 

( ).M Md
i i1vR=) =  This norm plays a similar role to the 1,  

norm but promotes low-rank solutions rather than sparse 
solutions [108]. Since the rank of the Hankel matrix ( )hH *  
coincides with the McMillan degree of the system (1), it is 
natural to consider the following nuclear norm-regularized 
problem (see, for example, [56]):

	 .( )argminh T y h u h1 H:h t t
t

T

1 0 2
2

0

1

)! m+ + )-

=

-
t ) 3/ � (57)

As of the writing of this article, no finite-sample analy-
sis exists for the nuclear norm-regularized estimator (57).

Learning for Nonlinear Identification and Control
While the vast majority of the literature on statistical learn-
ing for identification and control has been on linear sys-
tems, most real systems are not linear. Learning in linear 
dynamical systems escapes many nonlinear phenomena 
and does not capture one of the most fundamental issues in 
modern machine learning: distribution shift. For linear 
models, parameter recovery is always possible as long as 
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the average covariance matrix of the covariates is suffi-
ciently nondegenerate (invertible) and the rate of the 
parameter recovery is (asymptotically) completely described 
by the second-order statistics of the process under investi-
gation. Put differently, all equilibrium points of a linear 
system are (dynamically) equivalent. This stands in stark 
contrast to more general nonlinear systems in which, in the 
worst case, learning the behavior around one equilibrium 
point gives no information about the behavior of the system 
in other regions of the state space. Moreover, recent 
advances in learning and estimation for nonlinear dynam-
ics bypass these issues of distribution shift by either con-
sidering models that behave almost linearly [111], [112], 
[113], [114], [115] or by sidestepping the issue entirely and 
considering only a prediction error associated with the 
invariant measure of the system [109], [116]. For statistical 
learning to be truly informative for downstream control 
applications, a more integrated understanding of learnabil-
ity, nonlinear dynamic phenomena, and control-theoretic 
notions, such as incremental stability or contraction, are 
needed [117], [118], [119].

Realizability and Approximation
Existing work on learning in dynamical systems makes 
strong realizability assumptions. For instance, it is often 
assumed that the true model is generated by a linear 
dynamical system of the form (1) driven by i.i.d. mean-zero 
(or martingale difference) noise. Even if one considers more 
complicated nonlinear models, such additive mean-zero 
noise models completely sidestep bias or misspecification 
challenges. This is significant since ignoring this issue 
might mean that existing analyses are overly optimistic. 
The work in [120] shows that in the worst case, misspecifi-
cation in a simple linear regression model leads to a deflated 
sample complexity by a factor linear in the mixing time of 
the covariates process. This stands in stark contrast to the 
results in [4], in which linear regression over a well-speci-
fied model class is analyzed completely without reference 
to mixing. While the fundamental limits in [120] may seem 
discouraging at first, they are worst-case and may be avoid-
able by introducing further regularity assumptions. As a 
first step, one could analyze the sample complexity of 
recovering the best linear approximation to an almost 
linear autoregression, for example, adding a small nonlin-
earity, or considering a generalized linear model with a 
nearly isometric link function.

Structured Nonlinear Identification
A host of new opportunities present themselves in struc-
tural nonlinear identification as compared to the linear set-
ting. While sparse and low-rank structures are certainly of 
interest and applicable to learning in nonlinear dynamical 
systems, there are other exciting (and arguably more fun-
damentally system-theoretic) alternatives. For instance, 
one might ask how properties such as passivity or 

dissipativity affect the minimax rate of estimation and 
whether there are efficient algorithms that might take 
advantage of this. More concretely, one might be interested 
in the 1D autoregression ( )x f x wt t t1 = +*+  and seek to iden-
tify f*  under the physically motivated hypothesis that f*  is 
the negative gradient of an unknown convex potential. 
Taking advantage of structure may also be inherently more 
important in nonlinear identification since, otherwise, the 
curse of dimensionality is quick to present itself. For 
instance, in the model

( )y f x wt t t= +*

running regression over the hypothesis class F { :f Rdx "=  
[ , ] }f k0 1 and is smoothR1  incurs a minimax rate that 
degrades exponentially with a large .dx
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