Next Generation Network Science: MURI Third Year Review

Ali Jadbabaie and Michael Kearns
University of Pennsylvania

Third Year Review: October 29, 2010
AUGUST 2009

- **Jadbabaie**
 Collective behavior, social aggregation

- **Chung Graham**
 Network games and percolation

- **Hill**
 Social network signatures

- **Kearns**
 Behavioral network science

- **Steckler**
 Hastily Formed Networks

- **Hassibi**
 Information flow and consensus

- **Doyle**
 Architecture of complex networks

- **Carlson**
 Complex disaster phenomena

- **Alderson**
 Network centric infrastructure

Theory
- First principles
- Rigorous math
- Algorithms
- Proofs

Data Analysis
- Correct statistics
- Only as good as underlying data

Numerical Experiments
- Simulation
- Synthetic, clean data

Lab Experiments
- Stylized
- Controlled
- Clean, real-world data

Field Exercises
- Semi-Controlled
- Messy, real-world data

Real-World Operations
- Unpredictable
- After action reports in lieu of data
Jadbabaie
Coordination &
distributed
optimization

Preciado
Local Motifs and
Global Invariants

Hill
Re-identification in
social networks

Kearns
Behavioral
network formation

Craparo
Emergency
decision-making

Hassibi
Information flow
in networks

Chung Graham
Graph analysis of
scaling and clustering

Doyle
Universal Laws
and Architectures

Alderson
Disaster
response

Bassett
Info exchange and
collective behavior

Theory
• First principles
• Rigorous math
• Algorithms
• Proofs

Data
Analysis
• Correct
statistics
• Only as good
as underlying
data

Numerical
Experiments
• Simulation
• Synthetic, clean data

Lab
Experiments
• Stylized
• Controlled
• Clean, real-world
data

Field
Exercises
• Semi-Controlled
• Messy, real-world
data

Real-World
Operations
• Unpredictable
• After action
reports in lieu
of data

OCTOBER 2010
Schedule of the day

- 09:30-10:00 Fan Chung (UCSD) **Graph analysis of scaling and clustering**
- 10:00-10:30 Babak Hassibi, (Caltech), **Information flow in networks**
- 10:30-11:00 John Doyle, (Caltech), **Universal laws and architectures**
- 11:00-11:30 Coffee Break
- 11:30-12:00 Ali Jadbabaie, (Penn), from social learning to fast distributed network optimization
- 12:00-12:30 Shawndra Hill (Penn), **Re-identification in social networks**
- 12:30-1:30 Lunch Break (served in Levine 307)
- 1:30-2:00 Victor Preciado, (Penn), **From Local Network motifs to global invariants:**
 - 2:00-2:30 Michael Kearns, (Penn) **Behavioral network formation**
 - 2:30-3:00 David Alderson (NPS), Jean Carlson (UCSB), Emily Craparo (NPS),
 - **Time-critical decisions for disaster response and threat evasion**
 - 3:00-3:30 Danielle Bassett(UCSB), Jean Carlson (UCSB), David Alderson (NPS),
 - **The role of information exchange on collective behavior**
- 3:30- 4:00 Coffee Break
- 4:00-4:30 David Alderson (NPS), Danielle Bassett(UCSB), Jean Carlson(UCSB), Emily Craparo(NPS), Michael Kearns (Penn), **Evacuation Games: theory and experiment**
- 4:30-5:00 Discussion
- 5:00-5:30 Feedback from the government team
Singh Program in Market and Social Systems Engineering

• bring network science and related topics to the undergraduate level
• a “major for the 21st century”
• launches Fall 2011
• “elite” admissions; ~40 matriculants/year
• joint CIS/ESE program; partner with Economics and others
• new faculty hires:
 – Andreas Haeberlen: incentive-centric system design
 – Aaron Roth: differential privacy and algorithmic game theory
 – more coming...
• core scientific and engineering content (sample):
 – network science: mathematical models, large-scale data projects
 – Internet advertising: sponsored search auctions, contextual/targeted, privacy
 – algorithmic game theory and mechanism design
 – scalable and cloud computing
 – strong project component: data, technology design, implementation and usage
 – partnerships with technology companies, startups, VCs,...
• emphasize scientific rigor and social aspects of technology
Chung Graham
Graph analysis of scaling and clustering
Hassibi
Information flow in networks

Theory
- First principles
- Rigorous math
- Algorithms
- Proofs

Data Analysis
- Correct statistics
- Only as good as underlying data

Numerical Experiments
- Simulation
- Synthetic, clean data

Lab Experiments
- Stylized
- Controlled
- Clean, real-world data

Field Exercises
- Semi-Controlled
- Messy, real-world data

Real-World Operations
- Unpredictable
- After action reports in lieu of data
Hill
Re-identification in social networks

Theory
- First principles
- Rigorous math
- Algorithms
- Proofs

Data Analysis
- Correct statistics
- Only as good as underlying data

Numerical Experiments
- Simulation
- Synthetic, clean data

Lab Experiments
- Stylized
- Controlled
- Clean, real-world data

Field Exercises
- Semi-Controlled
- Messy, real-world data

Real-World Operations
- Unpredictable
- After action reports in lieu of data
Preciado
Local Motifs and Global Invariants

Theory
- First principles
- Rigorous math
- Algorithms
- Proofs

Data Analysis
- Correct statistics
- Only as good as underlying data

Numerical Experiments
- Simulation
- Synthetic, clean data

Lab Experiments
- Stylized
- Controlled
- Clean, real-world data

Field Exercises
- Semi-Controlled
- Messy, real-world data

Real-World Operations
- Unpredictable
- After action reports in lieu of data
Kearns
Behavioral network formation

Theory
- First principles
- Rigorous math
- Algorithms
- Proofs

Data Analysis
- Correct statistics
- Only as good as underlying data

Numerical Experiments
- Simulation
- Synthetic, clean data

Lab Experiments
- Stylized
- Controlled
- Clean, real-world data

Field Exercises
- Semi-Controlled
- Messy, real-world data

Real-World Operations
- Unpredictable
- After action reports in lieu of data
Theory
- First principles
- Rigorous math
- Algorithms
- Proofs

Data Analysis
- Correct statistics
- Only as good as underlying data

Numerical Experiments
- Simulation
- Synthetic, clean data

Lab Experiments
- Stylized
- Controlled
- Clean, real-world data

Field Exercises
- Semi-Controlled
- Messy, real-world data

Real-World Operations
- Unpredictable
- After action reports in lieu of data

Craparo
Emergency decision-making

Alderson
Disaster response

Bassett
Info exchange and collective behavior
OCTOBER 2010

Theory
- First principles
- Rigorous math
- Algorithms
- Proofs

Data Analysis
- Correct statistics
- Only as good as underlying data

Numerical Experiments
- Simulation
- Synthetic, clean data

Lab Experiments
- Stylized
- Controlled
- Clean, real-world data

Field Exercises
- Semi-Controlled
- Messy, real-world data

Real-World Operations
- Unpredictable
- After action reports in lieu of data

Kearns
- Behavioral network formation

Craparo
- Emergency decision-making

Alderson
- Disaster response

Bassett
- Info exchange and collective behavior