
Pebbles and Branching
Programs

Stephen Cook

On the occasion of

Les Valiant’s 60th Birthday Celebration

May 30, 2009

Joint work with

Mark Braverman

Pierre McKenzie

Rahul Santhanam

Dustin Wehr

1

“Perhaps the principal embarrassment of com-

plexity theory at the present time is its failure

to provide techniques for proving non-trivial

lower bounds on the complexity of some of

the commonest combinatorial and arithmetic

problems.”

2

“Perhaps the principal embarrassment of com-

plexity theory at the present time is its failure

to provide techniques for proving non-trivial

lower bounds on the complexity of some of

the commonest combinatorial and arithmetic

problems.”

Les Valiant, STOC 1975

On Non-Linear Lower Bounds in Computational

Complexity

(Constructs linear size superconcentrators)

3

Complexity Classes

AC0(6) ⊆ NC1 ⊆ L ⊆ NL ⊆ LogCFL

⊆ AC1 ⊆ NC2 ⊆ P ⊆ NP ⊆ PH

As far as is known, AC0(6) cannot determine

whether a majority of its input bits are ones.

Yet it is open whether AC0(6) = PH.

Here we introduce the

Tree Evaluation Problem (TEP)

We show TEP is in LogDCFL.

We are trying to prove TEP /∈ L

(and TEP /∈ NL)

4

Tree Evaluation Problem

(Generalizes a problem in [Taitslin05])

Tree of height h = 3 with heap numbering

Th
d : Balanced d-ary tree of height h

DEFAULT: d = 2

[k] = {1, ..., k}

TEP(h, k) Applies to Th
2 . Assume h, k ≥ 2

Input:

vi ∈ [k] for each leaf i

Function fi : [k] × [k] → [k] for each internal

node i

(Thus every node i gets a value vi ∈ [k])

Output: root value v1 ∈ [k]

Decision Problem: Does v1 = 1?

Claim: TEP(h, k) ∈ LogDCFL

5

Space-efficient algorithms for TEP come

from pebbling

Deterministic algorithms come from

‘black’ pebbling. [Paterson/Hewitt70]

Rules:

• Place a pebble on any leaf.

• If both children of node i are pebbled, slide

one of them to the parent.

• Remove any pebble at any time.

Goal: Pebble the root using a minimum

number of pebbles.

Easy Theorem: Th
2 requires exactly h pebbles.

6

Recall: Th
2 requires exactly h pebbles.

Corollary: TEP(h, k) ∈ DSPACE(h log k)

This is NOT a log space algorithm.

Input size n = (2h − 1)k2 log k

logn = Θ(h + log k)

7

k-way Branching Programs

A k-way BP B solving TEP(h, k) is a directed

multigraph with nodes called states. Each non-

final state q is labeled either with a leaf node i,

with k outedges from q labeled 1, ..., k indicat-

ing the possible values for vi, or labeled with

(i, x, y) where i is an internal node and the out-

edges are labeled with the possible values for

fi(x, y). Each final state has a label from [k]

indicating the output v1.

Size(B) is the number of states in B.

A Turing machine M solving TEP(h, k) in space

s(h, k) can be simulated by a family of BPs of

size 2O(s(h,k)) (the number of possible config-

urations of M).

8

Size(h, k) is the number of states in the

smallest deterministic BP solving TEP(h, k).

Sizeh(k) = Size(h, k) for fixed h.

Lemma Sizeh(k) = O(kh)

Proof: h pebbles suffice to pebble Th
2 ,

and for fixed h, the number of steps in the

pebbling of Th
2 is constant.

This is the best upper bound known for the

order of Sizeh(k).

Lemma: A lower bound of Sizeh(k) = Ω(kr(h))

for some unbounded function r(h) implies

L 6= LogDCFL.

9

Recall best known upper bound:

Sizeh(k) = O(kh)

Best known lower bounds:

Sizeh(k) = Ω(k3) for each h ≥ 3.

(Tight bounds are known for h = 2 and h = 3)

h = 2: Size2(k) = Ω(k2)

This is obvious because each state of the BP

can only make one query of the form (i, x, y),

and there are k2 possible values for (x, y).

h = 3: Size3(k) = Ω(k3)

This is not obvious, because the number of

input variables is only O(k2).

Proof I: Use Nec̆iporuk’s method

Proof II: Use the “state sequence” method.

Nec̆iporuk’s method counts the number of BPs

on s states and compares this with the number

of functions obtainable by various restrictions

of TEPh(k). This method cannot beat Ω(n2)

states, and so cannot show TEP /∈ L.

10

Theorem: Size3(k) ≥ k3

Proof: (“State Sequence” method)

For r, s ∈ [k] let Er,s be the set of inputs I s.t.

• fI
1(x, y) = (x + y) mod k

• fI
2(x, y) = fI

3(x, y) = 0 for all (x, y) 6= (r, s)

• vI
4 = vI

6 = r and vI
5 = vI

7 = s

Thus |Er,s| = k2 because each I ∈ Er,s deter-

mined by vI
2, vI

3.

Let Γr,s be the set of states which query either

f2(r, s) or f3(r, s). It suffices to show

(*) |Γr,s| ≥ k for all r, s ∈ [k].

Proof of (*): (γI , vI
i) determines the output of

C(I) (the computation on input I), where γI is

the last state of C(I) in Γr,s, and i is the node

queried by γI.

11

Thrifty Branching Programs

A deterministic BP solving TEPh(k) is thrifty if

for every query fi(x, y) (for every input), (x, y)

are the values of the children of node i.

Thrifty BPs can implement black pebbling, and

hence solve TEPh(k) with O(kh) states. It

turns out that this is also a lower bound.

Theorem: Thrifty deterministic BPs solving

TEPh(k) have Ω(kh) states.

The proof is nontrivial.

Thus any BP beating the O(kh) upper bound

must make queries fi(x, y) which are irrelevant

to the value vi of the node i.

Thrifty Hypothesis: Thrifty BPs are optimal

among deterministic BPs solving TEPh(k).

(Not true for solving the decision version of

TEP)

12

Nondeterministic Branching Programs

Black/White Pebbling: A white pebble can

be placed on any node at any time (represent-

ing a guess as to the value). The pebble can be

removed if the node is a leaf, or both children

have pebbles.

Th
2 can be B/W pebbled with ⌈h/2⌉+1 pebbles.

(This is optimal.)

Recall Th
2 requires h pebbles to black pebble it.

13

Nondeterministic Branching Programs

Black/White Pebbling: A white pebble can

be placed on any node at any time (represent-

ing a guess as to the value). The pebble can be

removed if the node is a leaf, or both children

have pebbles.

Th
2 can be B/W pebbled with ⌈h/2⌉+1 pebbles.

(This is optimal.)

Recall Th
2 requires h pebbles to black pebble it.

Nondeterministic BPs implement B/W pebbling,

so NSizeh(k) = O(k⌈h/2⌉+1).

For h = 3 this gives O(k3) states, but best

lower bound is k2.5 states (via both Nec̆iporuk

and ‘state-sequence’ methods).

This led us to discover “fractional pebbling”.

T3
2 can be B/W pebbled with 2.5 pebbles, so

NSize3(k) = Θ(k2.5).

14

Fractional Pebbling

Fractional pebbling is like B/W pebbling, ex-

cept now a node i can have a pair (b(i), w(i))

of real values, where

0 ≤ b(i), w(i) b(i) + w(i) ≤ 1

If both children of node i have total pebble

value 1, then w(i) can be set to 0, and any

black fraction can be slid up from the children

to increase b(i).

The tree T3
2 can be fractionally pebbled with

2.5 pebbles.

Theorem Thrifty nondeterministic BPs can

implement fractional pebbling to solve TEPh(k).

15

Theorem Bounds on fractional pebbling.

#FRpebbles(T3
2) = 2.5

#FRpebbles(T4
2) = 3

h/2 − 1 ≤ #FRpebbles(Th
2) ≤ h/2 + 1

Theorem(Repeat) Thrifty nondeterministic BPs

can implement fractional pebbling.

Corollary NSize3(k) = Θ(k2.5)

NSize4(k) = O(k3)

NSizeh(k) = O(kh/2+1), h ≥ 2

(All upper bounds use thrifty BPs)

Theorem ThriftyNSize4(k) = Θ(k3)

Open Question: Can nondeterministic Thrifty

BPs beat fractional pebbling bound for h > 4?

(Recall that black pebbling is optimal for

deterministic thrifty BPs.)

16

Conclusion

Thrifty Hypothesis: Thrifty BPs are opti-

mal among deterministic k-way BPs solving

TEPh(k).

(i.e. Sizeh(k) = Ω(kh).)

In other words, the black pebbling method is

the most space-efficient deterministic method

for solving TEPh(k).

A proof implies L 6= LogDCFL

(so NC1 (NC2).

A disproof would involve a new space-efficient

algorithm and would also be interesting

(think superconcentrators).

Next Step: Prove or disprove Size4(k) = Ω(k4)

(Best known bound: Size4(k) = Ω(k3).)

Separating L from P is important!
17

