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In Celebration of Les Valiant
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Hard to believe one man did all these . . .

• Computational Learning Theory. PAC Learning.

• Complexity of the Permanent, the class #P, and

the Complexity of Counting Problems.

• Parallel computation, routing, Bulk Synchronous

Model (BSP).

• Superconcentrators

Initially aimed for super linear lower bounds, then

gave a linear size construction. First use of expanders.

. . . (Golden, even not played out as initially thought.)

• Algebraic complexity theory. The Determinant vs.

Permanent Problem. VP and VNP.

• Space is more powerful than time (with Hopcroft and

Paul). Pebble games.
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• Formal Language theory, Equivalence problem for

Deterministic PDA, Lindenmeyer Systems, Boolean

matrix multiplication to o(n3) context free parsing.

• Randomized reduction of NP to UniqueSAT (with

V. Vazirani).

• Interpolation technique.

• Matchgates, Holographic Algorithms and Reductions.

• Circuits of the Mind.

• Evolvability.

. . .
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Counting Problems

Valiant defined the class #P, and established the first

#P-completeness results.

Most known NP-complete problems have counting

versions which are #P-complete.

Some counting problems are #P-complete even though

their corresponding decision problems are in P. e.g.,

#2SAT, Counting Perfect Matchings.

Counting PM over planar graphs is in P (Kasteleyn).
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Three Frameworks for Counting Problems

1. Graph Homomorphisms

2. Constrained Satisfaction Problems (CSP)

3. Holant Problems
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Graph Homomorphisms

Graph Homomorphisms or H-Coloring was defined by

Lovász (1967).

Let

H =









0 1 1

1 0 1

1 1 0









be a Triangle.

A graph homomorphism from G to H, is a mapping ξ from

V (G) to V (H) such that

(u, v) ∈ E(G) =⇒ (ξ(u), ξ(v)) ∈ E(H).

I.e., ξ is a Three-Coloring of G.
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Graph Homomorphisms

The counting graph homomorphisms is the following

counting problem.

Given any m × m (symmetric) matrix H, consider all

vertex assignments ξ : V (G) → [m].

ZH(G) =
∑

ξ:V (G)→[m]

∏

(u,v)∈E

Hξ(u),ξ(v).

H can be viewed as a single binary (edge) function.
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Constraint Satisfaction Problems (CSP)

Consider a bipartite graph G = (U, V, E).

Each u ∈ U is a variable.

Each v ∈ V is labeled by a constraint function.

Find an assignment that satisfies all constraints.

Counting version.

Constraint functions need not be 0-1 valued.
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Holant Problems: A more general framework

Given G = (V, E).

Put a function fv at each v ∈ V . They take 0-1 inputs (or

from some domain [m]) and output values in R or C.

Now consider all 0-1 (or from [m]) assignments σ at every

edge e.

The Holant Problem is to compute

Holant(G) =
∑

σ

∏

v

fv(σ |v).

CSP is the special case of Holant when all u ∈ U are

labeled with the Equality function.

Edge assignments can simulate vertex assignments.
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Holant Problems: Matchings

Consider a graph G = (V, E).

Put an At-Most-One function fv at each vertex v ∈ V .

Now consider all 0-1 assignments σ to each e ∈ E,
∑

σ

∏

v

fv(σ |v).

Each 0-1 assignment σ corresponds to a subset of E.

This counts the number of Matchings in G.
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Holant Problems: Perfect Matchings

Again, consider G.

Put an Exact-One function fv at each vertex, and consider

all 0-1 assignments σ to each e ∈ E,
∑

σ

∏

v

fv(σ |v).

This counts the number of Perfect Matchings in G.
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Holant Problems

As edge assignments can generally simulate vertex

assignments, one can also easily write every CSP problem,

or graph homomorphism problem, as a Holant Problem.

E.g., Vertex Covers, Independent Sets, k-Colorings,

Induced subgraph of an Odd number of edges, etc.
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Schaefer’s Dichotomy Theorem

Schaefer’s dichotomy theorem:

Replace Boolean Or by an arbitrary set of Boolean

operators in the SAT problem.

Then the generalized SAT is either solvable in P or

NP-complete.

Creignou and Hermann proved a dichotomy theorem for

counting SAT problems: Either solvable in P or

#P-complete.
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CSP Problems

The Feder and Vardi conjecture on (decision) CSP

problems.

Creignou, Khanna and Sudan:

Complexity classifications of boolean constraint satisfaction

problems.

SIAM Monographs on Discrete Mathematics and

Applications. 2001.
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Bulatov’s Dichotomy Theorem

Consider any set of 0-1 valued constrained functions.

Dichotomy theorem for #CSP (for 0-1 valued functions)

by Bulatov (2008).

Every problem in this class is either solvable in P or is

#P-complete.

Proof involves deep results from the structural theory of

universal algebra.

May not be effective.
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Dichotomy Theorems for more general Constraint

Functions

Dyer, Goldberg and Jerrum (2007) gave a Dichotomy

Theorem for all Boolean #CSP, where all functions take

real values.

Cai, Lu and Xia (2008) gave a Dichotomy Theorem for all

Boolean #CSP, where all functions take complex values.

With positive and negative values, or more generally with

complex values, there are possible cancelations, and this

could yield new interesting tractable computations.

Constrast that with permanent vs. determinant

or generally monotone vs. non-monotone complexity.
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Dichotomy Theorems for Graph Homomorphisms

Theorem (Hell and Nešetřil)

Dichotomy Theorem for the decision Graph

Homomorphism problem: Either in P or NP-complete.

Theorem (Dyer and Greenhill)

Dichotomy Theorem for ZH(G), for all 0-1 H: Either in P

or #P-hard.

Theorem (Bulatov and Grohe)

Dichotomy Theorem for ZH(G), for all non-negative H.

Theorem (Dyer, Goldberg and Paterson)

Dichotomy Theorem for all directed and acyclic H.
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Graph Homomorphisms when cancelations happen

When cancelations happen, there are new non-trivial

tractable cases.

Dichotomy Theorems are harder to prove: Essentially it

will amount to the claim that what we don’t know how to

solve efficiently must be provably hard.

Theorem (Goldberg, Grohe, Jerrum and Thurley)

Dichotomy Theorem for ZH(G), for all real H.

Theorem (Cai, Chen and Lu)

Dichotomy Theorem for ZH(G), for all complex H.
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Three Families by Holographic Algorithms

Using holographic algorithms we discovered that

F1 =
˘

λ([1, 0]⊗k + i
r[0, 1]⊗k)

˛

˛ λ ∈ C, k = 1, 2, . . . , & r = 0, 1, 2, 3
¯

F2 =
˘

λ([1, 1]⊗k + i
r[1,−1]⊗k)

˛

˛ λ ∈ C, k = 1, 2, . . . , & r = 0, 1, 2, 3
¯

F3 = { λ([1, i]⊗k + i
r[1, −i]⊗k)

˛

˛ λ ∈ C, k = 1, 2, . . . , & r = 0, 1, 2, 3
¯

give rise to tractable problems:

Holant(Ω) for any Ω = (G,F1 ∪ F2 ∪ F3) is in P.
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2-3 Regular Bipartite Graphs

G = (U, V, E), deg(u) = 3 ∀u ∈ U, and deg(v) = 2 ∀v ∈ V.

The most restrictive family where hardness occurs.

Consider the complexity of Holant problems, where

Holant(Ω) =
∑

σ

∏

v∈V

Fv(σ |E(v)).

Notation for symmetric signatures: [f0, f1, . . . , fn].

Let’s consider Boolean signatures: fi = 0, 1.

Includes Vertex Cover, Perfect Matching etc.
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A Dichotomy Theorem

Theorem

Every counting problem Holant([x0, x1, x2]
∣

∣[y0, y1, y2, y3]),

where [x0, x1, x2] and [y0, y1, y2, y3] are Boolean signatures, is

either

• in P; or

• #P-complete but solvable in P for planar graphs; or

• #P-complete even for planar graphs.
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Two brilliant ideas of Valiant

To prove this dichotomy theorem, we will use, not one,

but two great ideas of Valiant.

The First Step: Holographic algorithms and reductions.

To show Holant([x0, x1, x2]
∣

∣[y0, y1, y2, y3]) is #P-Complete, we

use holographic reductions to reduce either

[0, 1, 1]
∣

∣[1, 0, 0, 1]

or

[1, 0, 1]
∣

∣[1, 1, 0, 0]

to

[z0, z1, z2]
∣

∣[y0, y1, y2, y3]

for some z0, z1 and z2.

The first is Vertex Cover, the second is Matching.
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Second Step

Second, to show that Holant([x0, x1, x2]
∣

∣[y0, y1, y2, y3]) is

#P-Complete, we show how the pair

[x0, x1, x2]
∣

∣[y0, y1, y2, y3]

can “simulate” (or “interpolate”)

[z0, z1, z2]
∣

∣[y0, y1, y2, y3]

In fact, we show how to “simulate” [x, y, z]
∣

∣[y0, y1, y2, y3] for

all [x, y, z].
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Interpolation Method

The second idea is also due to Valiant: Interpolation.

This has been further developed by

• Vadhan

• Dyer

• Greenhill

• Bulatov

• Dalmau

• Grohe

• Creignou

• Hermann

• Goldberg
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• Jerrum

• Xia-Zhang-Zhao

• Goldberg-Grohe-Jerrum-Thurley, . . .
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Interpolation Method

Given Ω = (G, [x, y, z]
∣

∣[y0, y1, y2, y3]). Let

f = [x, y, z].

f(00) = x, f(01) = f(10) = y and f(11) = z.

Vf = the subset of V assigned f in Ω.

|Vf | = n.
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An Expression for Holant

Holant(Ω) =
∑

i+j+k=n

ci,j,kxiyjzk,

ci,j,k = is the sum over all edge assignments σ, of products

of evaluations at all v ∈ V (G) − Vf , where σ satisfies the

property that the number of vertices in Vf having exactly

0 or 1 or 2 incident edges assigned 1 is i or j or k,

respectively.
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Holant(Ωs)

A sequence of gadgets Ns will be recursively constructed,

not using f , having signature fs = [xs, ys, zs].

Replace f by fs in Ω.

Holant(Ωs) =
∑

i+j+k=n

ci,j,kxi
sy

j
sz

k
s . (1)

The same set of values ci,j,k occur.

ci,j,k is independent of s.

Now consider (1) as a linear system in the unknowns ci,j,k.
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Recursive Relation

With some initial gadget, the sequence of gadgets Ns will

have signatures fs = [xs, ys, zs] satisfying









xs

ys

zs









=









a11 a12 a13

a21 a22 a23

a31 a32 a33

















xs−1

ys−1

zs−1









. (2)
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Interpolation Theorem

Theorem

Suppose the recurrence matrix A satisfies

1. det(A) 6= 0,

2. The initial signature [x0, y0, z0] is not orthogonal to any

row eigenvector of A, and

3. For all (i, j, k) ∈ Z3 − {(0, 0, 0)} with i + j + k = 0,

αiβjγk 6= 1.

Then all ci,j,k can be computed in polynomial time.
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An Algebraic Condition via Galois Theory

The key condition is the lattice condition:

For all (i, j, k) ∈ Z3 − {(0, 0, 0)} with i + j + k = 0,

αiβjγk 6= 1.

Lemma

Let f(x) = x3 + c2x
2 + c1x + c0 ∈ Q[x], with roots α, β and γ.

It is decidable in P whether the lattice condition holds.

If f is irreducible, except of the form x3 + c for some c ∈ Q,

the condition holds.
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An example

The counting problem Holant([1, 1, 0]
∣

∣[1, 1, 1, 0]).

A recursive construction gives the following recursive

relation:








ai

bi

ci









=









7191 12618 5535

3816 6723 2961

2025 3582 1584

















ai−1

bi−1

ci−1









.

Characteristic polynomial

χ(x) = x3 − 15498x2 + 419904x − 19683.

=⇒

#P-complete
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The complexity of complexity proof

One can easily contemplate moderately sized gadgets with

over 50 or 100 edges, say, and then to verify a particular

gadget works, it may require the computation of 2100

steps, far exceeding most cryptosystems such as DES.

Is 2100-step computation as part of the proof a constant?

Are we getting a glimpse at a structural asymptotic

intractability only perceivable with 2100-step computation?
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HAPPY BIRTHDAY, LES!
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