
CIS 620 | Advanced Topics in AI

Profs. M. Kearns and L. Saul
Problem Set 1

Distributed: Wednesday, January 9, 2002

Due: Wednesday, January 23, 2002 (start of class)

1. E�ective horizon for discounted return. Let 0 � < 1, and let
P
1

i=0
iri

be an in�nite sum (which we may regard as the discounted return in an
MDP) with all ri 2 [0; 1]. Let 0 < � < 1. Prove that, for some constant
c0 > 0,

t �
c0

log(1=)
log

1

(1�)�

implies
P
1

i=t
iri � �. Thus, for any chosen amount of tolerated approxima-

tion (�), we can view in�nite-horizon discounted return as similar to �nite
horizon return, where the length of this �nite horizon grows as ! 1. Note
that as ! 1, log(1=) behaves like 1=(1 �).

2. Approximation to optimal value function yields near-optimal policy. Let
V � be the value function for the optimal policy �� in an MDP, and let V̂ be
an approximation to V � (as might be computed, for instance, via the value
iteration algorithm). Let �̂ = greedy(V̂). Recall that this means

�̂(s) = argmaxa

(
R(s; a) +

X
s0

P (s0js; a)V̂ (s0)

)

for every state s, where is the discount factor. (Note that V �̂ 6= V̂ in
general.) De�ne the regret L̂(s) of �̂ from s as

L̂(s) = V �(s)� V �̂(s):

Show that if jV �(s)� V̂ (s)j � � for every s, then maxsfL̂(s)g � 2�=(1�).
Thus, following the greedy policy determined by a good approximation to
the optimal value function is, in fact, a near-optimal policy. You may �nd
it helpful to break the proof into the following two steps (though you are
free to use any proof you like):

� Let a = ��(s) and b = �̂(s). First use the assumed approximation
bound on V̂ and the greediness of �̂ to give a bound on R(s; a)�R(s; b).

� Substitute your bound on R(s; a) � R(s; b) into a one-step expansion
of L̂(s).

1

3. Computation of optimal policy via linear programming. A linear program

is a maximization (or minimization) problem with the following special form:
maximize the linear function ~w �~x, subject to the linear inequalities A~x � ~b.
Here ~w;~b 2 <n are given vectors, A is a given n by n matrix of reals, � de-
notes inner product, and the problem is to compute ~x 2 <n accomplishing
the stated maximization. Show that the problem of computing the optimal
policy in a given MDP can be formulated as a linear program. Thus, stan-
dard linear programming algorithms (such as the simplex algorithm, whose
worst-case running time may be exponential in n, or Karmarkar's algorithm,
whose running time is polynomial) can be used to compute (exactly) opti-
mal policies.

4. Policy iteration improves policies. Recall that policy iteration maintains
a policy �̂t, and for each state s, sets

�̂t+1(s) argmaxafQ
�̂t(s; a)g = argmaxa

(
R(s; a) +

X
s0

P (s0js; a)V �̂t(s)

)

where the computation of V �̂ can be accomplished via the solution of a
system of linear equations, and no change is made to �̂t(s) if the argmaxa
is already achieved. Prove that if the policy �̂t+1 is di�erent than �̂t, it is
strictly better than �̂t | that is, V �̂t+1(s) � V �̂t(s) for all s, with strict
inequality for at least one state. (Hint: consider only the change at a sin-
gle state, and look at the time-dependent policy that makes the suggested
change on the �rst i steps of a random walk under �̂t, but not afterwards.
Show that i+ 1 is better than i.)

5. Relating value iteration and policy iteration. For any natural number k �
1, de�ne the algorithm rollout(k) as follows. Like value iteration, rollout(k)
will proceed in rounds, and maintain a current policy �̂t and value function
V̂t at round t. The update equations are

V̂t+1(s)

k�1X
i=0

i
X
s0

P (s0js; �̂t; i)R(s
0; �̂t(s

0))

!
+ k

X
s0

P (s0js; �̂t; k)V̂t(s
0)

and �̂t+1 = greedy(V̂t+1). Here P (�js; �̂t; i) is the distribution induced over
states by taking an i-step walk under �̂t starting from s. Prove that value
iteration is equivalent to rollout(1) and that policy iteration is equivalent to
rollout (1). Based on this observation, conjecture which algorithm is better,
and give your reasons. (Extra credit: prove your conjecture.)

2

