1. **Effective horizon for discounted return.** Let $0 \leq \gamma < 1$, and let $\sum_{i=0}^{\infty} \gamma^i r_i$ be an infinite sum (which we may regard as the discounted return in an MDP) with all $r_i \in [0, 1]$. Let $0 < \epsilon < 1$. Prove that, for some constant $c_0 > 0$,
\[
t \geq \frac{c_0}{\log(1/\gamma)} \log \frac{1}{(1 - \gamma)\epsilon} \]
implies $\sum_{i=t}^{\infty} \gamma^i r_i \leq \epsilon$. Thus, for any chosen amount of tolerated approximation (ϵ), we can view infinite-horizon discounted return as similar to finite horizon return, where the length of this finite horizon grows as $\gamma \to 1$. Note that as $\gamma \to 1$, $\log(1/\gamma)$ behaves like $1/(1 - \gamma)$.

2. **Approximation to optimal value function yields near-optimal policy.** Let V^* be the value function for the optimal policy π^* in an MDP, and let \hat{V} be an approximation to V^* (as might be computed, for instance, via the value iteration algorithm). Let $\hat{\pi} = greedy(\hat{V})$. Recall that this means
\[
\hat{\pi}(s) = \arg \max_a \left\{ R(s,a) + \gamma \sum_{s'} P(s'|s,a)\hat{V}(s') \right\}
\]
for every state s, where γ is the discount factor. (Note that $V^* \neq \hat{V}$ in general.) Define the *regret* $\hat{L}(s)$ of $\hat{\pi}$ from s as
\[
\hat{L}(s) = V^*(s) - \hat{V}(s).
\]
Show that if $|V^*(s) - \hat{V}(s)| \leq \epsilon$ for every s, then $\max_s \{\hat{L}(s)\} \leq 2\gamma\epsilon/(1 - \gamma)$. Thus, following the greedy policy determined by a good approximation to the optimal value function is, in fact, a near-optimal policy. You may find it helpful to break the proof into the following two steps (though you are free to use any proof you like):

- Let $a = \pi^*(s)$ and $b = \hat{\pi}(s)$. First use the assumed approximation bound on \hat{V} and the greediness of $\hat{\pi}$ to give a bound on $R(s,a) - R(s,b)$.
- Substitute your bound on $R(s,a) - R(s,b)$ into a one-step expansion of $\hat{L}(s)$.
3. Computation of optimal policy via linear programming. A linear program
 is a maximization (or minimization) problem with the following special form:
 maximize the linear function $\bar{w} \cdot \bar{x}$, subject to the linear inequalities $A\bar{x} \geq \bar{b}$.
 Here $\bar{w}, \bar{b} \in \mathbb{R}^n$ are given vectors, A is a given $n \times n$ matrix of reals, \cdot
 denotes inner product, and the problem is to compute $\bar{x} \in \mathbb{R}^n$ accomplishing
 the stated maximization. Show that the problem of computing the optimal
 policy in a given MDP can be formulated as a linear program. Thus, standard
 linear programming algorithms (such as the simplex algorithm, whose
 worst-case running time may be exponential in n, or Karmarkar’s algorithm,
 whose running time is polynomial) can be used to compute (exactly) optimal
 policies.

4. Policy iteration improves policies. Recall that policy iteration maintains
 a policy π_t, and for each state s, sets
 \[
 \pi_{t+1}(s) \leftarrow \text{argmax}_a \{Q^\pi_t(s, a)\} = \text{argmax}_a \left\{ R(s, a) + \gamma \sum_{s'} P(s'|s, a)V^\pi_t(s') \right\}
 \]
 where the computation of V^π can be accomplished via the solution of a
 system of linear equations, and no change is made to $\pi_t(s)$ if the argmax$_a$
 is already achieved. Prove that if the policy π_{t+1} is different than π_t, it is
 strictly better than π_t — that is, $V^\pi_{t+1}(s) \geq V^\pi_t(s)$ for all s, with strict
 inequality for at least one state. (Hint: consider only the change at a single state, and look at the time-dependent policy that makes the suggested
 change on the first i steps of a random walk under π_t, but not afterwards.
 Show that $i + 1$ is better than i.)

5. Relating value iteration and policy iteration. For any natural number $k \geq 1$, define the algorithm rollout(k) as follows. Like value iteration, rollout(k)
 will proceed in rounds, and maintain a current policy π_t and value function
 \hat{V}_t at round t. The update equations are
 \[
 \hat{V}_{t+1}(s) \leftarrow \left(\sum_{i=0}^{k-1} \gamma^i \sum_{s'} P(s'|s, \pi_t, i) R(s', \pi_t(s')) \right) + \gamma^k \sum_{s'} P(s'|s, \pi_t, k)\hat{V}_t(s')
 \]
 and $\pi_{t+1} = \text{greedy}(\hat{V}_{t+1})$. Here $P(\cdot|s, \pi_t, i)$ is the distribution induced over
 states by taking an i-step walk under π_t starting from s. Prove that value
 iteration is equivalent to rollout(1) and that policy iteration is equivalent to
 rollout(∞). Based on this observation, conjecture which algorithm is better,
 and give your reasons. (Extra credit: prove your conjecture.)