
COMPUTATION OF EQUILIBRIA

IN FINITE GAMES�

Richard D. McKelvey
Division of Humanities & Social Sciences

California Institute of Technology
Pasadena, California 91125

rdm@hss.caltech.edu

Andrew McLennan
Department of Economics
University of Minnesota

Minneapolis, Minnesota 55455
mclennan@walleye.econ.umn.edu

July 14, 1994
June 30, 1996

�This research was funded in part by National Science Foundation grants SBR-9308637 to the Cal-
ifornia Institute of Technology and SBR-9308862 to the University of Minnesota. We are grateful to
Robert Wilson and an anonymous referee for detailed comments on earlier drafts.

COMPUTATION OF EQUILIBRIA

IN FINITE GAMES

Richard D. McKelvey Andrew McLennan

Abstract
We review the current state of the art of methods for numerical computation of

Nash equilibria for �nite n-person games. Classical path following methods, such as the
Lemke-Howson algorithm for two person games, and Scarf-type �xed point algorithms
for n-person games provide globally convergent methods for �nding a sample equilibrium.
For large problems, methods which are not globally convergent, such as sequential linear
complementarity methods may be preferred on the grounds of speed. None of these meth-
ods are capable of characterizing the entire set of Nash equilibria. More computationally
intensive methods, which derive from the theory of semi-algebraic sets are required for
�nding all equilibria. These methods can also be applied to compute various equilibrium
re�nements.

JEL classi�cation numbers:

Key words:

COMPUTATION OF EQUILIBRIA

IN FINITE GAMES

Richard D. McKelvey Andrew McLennan

Contents

1 Introduction 1

2 Notation and Problem Statement 2

3 Computing a Sample Equilibrium 5

3.1 Two-Person Games: The Lemke-Howson Algorithm : : : : : : : : : : : : 5
3.1.1 Finding one Nash equilibrium : 5
3.1.2 Finding multiple Nash equilibria : : : : : : : : : : : : : : : : : : : 12
3.1.3 Zero sum games : 13
3.1.4 Summary : 14

3.2 N-Person Games: Simplicial Subdivision : : : : : : : : : : : : : : : : : : 14
3.2.1 Fixed triangulation : 14
3.2.2 Re�ning the triangulation : 17
3.2.3 Computational complexity : 18

3.3 Non Globally Convergent Methods : 18
3.3.1 Nash equilibrium as non-linear complementarity problem : : : : : 18
3.3.2 Nash equilibrium as a minimum of a function : : : : : : : : : : : 19

4 Extensive Form Games 20

4.1 Notation : 21
4.2 Extensive versus normal form : 24
4.3 Computing sequential equilibria : 25

5 Equilbrium Re�nements 26

5.1 Two Person Games : 26
5.2 N Person Games : 28

6 Finding all Equilibria 28

6.1 Feasibility : 30
6.2 Exemplary Algorithms for semi-algebraic sets : : : : : : : : : : : : : : : 31

6.2.1 The resultant : 31
6.2.2 Univariate Systems : 34
6.2.3 Numerical computation of the solutions : : : : : : : : : : : : : : : 39

6.3 Complexity of �nding game theoretic equilibria : : : : : : : : : : : : : : 39
6.3.1 Two Person Games : 41
6.3.2 N -Person Games : 42

7 Practical Computational Issues 43

7.1 Software : 43
7.1.1 Current version of GAMBIT : 43
7.1.2 Revisions to GAMBIT : 44

7.2 Computational Complexity : 47

8 References 49

ii

1 Introduction

In this paper, we review the current state of the art of methods for numerical computation
of Nash equilibria { and re�nements of Nash equilibria { for general �nite n-person games.
For the most part, we simply survey existing literature. However, we also provide proofs
and technical details for certain results that may be well known to practitioners, but for
which there is not an accessible treatment in the literature.

Although our perspective will emphasize the concerns of economists, we exclude from
consideration algorithms that e�ciently solve the speci�c games that arise in various
areas of application (e.g., auctions, bargaining, matching, repeated games, stochastic
games, games of perfect information.) Such specialized procedures constitute a subject
area that is, at least potentially, almost as rich as the whole of economic theory. We
also do not attempt to describe the very extensive literature concerned with procedures,
such as programs for playing chess, that attempt to �nd relatively e�ective choices of
actions without completely solving the game. Finally, although some of the algorithms
we present have been implemented, so that we will be able to discuss some applications,
the bulk of the work to date has been theoretical, and it is this aspect that will be
emphasized.

Students of game theory, their teachers, and researchers who use these concepts, are
generally aware that solving for Nash equilibria can be a tedious, error-prone a�air, even
when the game is very simple, and they also know that the need to solve a game arises
with fair frequency. We will therefore not argue for the general utility of such software
in any detail. It is, perhaps, less obvious that suitable software could support styles of
research that are currently infeasible. For theorists it could be useful to test an hypothesis
by systematically searching for a counterexample before launching an e�ort to prove it,
and in some cases such a search could itself constitute a proof. Experimentalists might
wish to search parameter spaces in order to obtain experimental designs that maximize
the statistical distinction between competing hypotheses. Mechanism designers might
conduct such searches with di�erent goals in mind. Finally, econometric analysis of
strategic decisions requires the ability to solve a given extensive or normal form repeatedly
with di�erent parameter values, for the purpose of computation of likelihood functions
and subsequent parameter estimation.

The appropriate method for computing Nash equilibria for a game depends on a
number of factors. The �rst and most important factor involves whether we want to
simply �nd one equilibrium (a sample equilibrium) or �nd all equilibria. The problem
of �nding one equilibrium is a well studied problem, and there exist a number of di�erent
methods for numerically computing a sample equilibrium. The problem of �nding all
equilibria has been addressed more recently. While there exist methods for computation
of all equilibria, they are very computationally intensive. With current methods, they
are only feasible on small problems. We discuss those methods in this paper.

The second factor of importance concerns whether n; the number of players, is greater
than two. The polynomials that arise in the de�nition of Nash equilibrium are of degree

1

n � 1 in the variables describing the agents' mixed strategies, so for games with two
players, a Nash equilibrium solves a system of linear equations over the variables in the
support of the equilibrium. Among other things, if the input data are rational numbers,
the set of all Nash equilibria is the union of a set of convex polyhedra, each of which can
be completely characterized by specifying a �nite number of extreme points (which also
have rational coordinates). Because of this, for two person games there exist methods for
�nding exact sample Nash equilibria, and for characterizing exactly the entire set of Nash
equilibria. For games with more than two players, even if the input data are rational, the
set of Nash equilibria with a given support need no longer be a convex, or even connected
set. Even if it is a singleton, it need not have rational coordinates. The methods that
work for two person games can not typically be directly extended for n-person games.

The third factor that determines the choice of method concerns the type of Nash equi-
libria we wish to �nd. It is well known that not all Nash equilibria are equally attractive.
For example, Nash equilibria can be dominated, and if there are multiple equilibria, they
may be Pareto ranked. A large literature exists on equilibrium re�nements, which de-
�nes criteria for selecting among multiple equilibria (such as perfect equilibria, proper
equilibria, sequential equilibria, stable sets, etc.) The issue of equilibrium re�nements
has not been extensively addressed in the literature on computation of Nash equilibria.
We discuss here the limited results that are available. The methods for �nding a sample
equilibrium are only guaranteed to �nd a Nash equilibrium. Thus there is no guarantee
that the equilibrium found will satisfy whatever re�nement condition is deemed impor-
tant. So any method intended to �nd a sample Nash equilibrium needs to be modi�ed
to �nd a particular re�nement. Since the set of re�nements is a subset of the set of all
Nash equilibria, a method that �nds all Nash equilibria can serve as a basis for a method
to �nd the set of all re�ned Nash equilibria, as long as we can characterize the set of
re�ned Nash equilibria as a subset of the set of Nash equilibria in a computable way. The
Tarski-Seidenberg theorem implies that most of the equilibrium re�nements that have
been proposed can be expressed as semi-algebraic sets. Thus, the same methods as are
used to �nd all Nash equilibria can in principle be used to �nd any of these re�nements.

The remainder of the paper is organized as follows. Section 2 introduces notation and
states the problem. Section 3 reviews methods for computing sample equilibria in normal
form games. Section 4 deals with computation of equilibria on extensive form games.
Section 5 discusses the computation of equilibrium re�nements. Section 6 discusses meth-
ods for �nding all equilibria. Finally, Section 7 discusses practical computational issues
and experience.

2 Notation and Problem Statement

Consider a �nite n-person game in normal form: There is a set N = f1; : : : ; ng of
players, and for each player i 2 N a strategy set Si = fsi1; : : : ; simi

g; consisting of mi

pure strategies. For each i 2 N; we are given a payo� function, ui : S 7! R; where

2

S =
Q
i2N Si:

Let Pi be the set of real valued functions on Si: For elements pi 2 Pi we use the
notation pij = pi(sij): Let P =

Q
i�N Pi and let m =

P
i�N mi: Then P is isomorphic to

R
m : We denote points in P by p = (p1; : : : ; pn); where pi = (pi1; : : : ; pimi

) 2 Pi: If p 2 P;
and p0i 2 Pi; we use the notation (p0i; p�i) for the element q 2 P satisfying qi = p0i; and
qj = pj for j 6= i: We use similar notation for any vector.

The payo� function u is extended to have domain Rm by the rule

ui(p) =
X
s2S

p(s)ui(s); (2.1)

where we de�ne

p(s) =
Y
i2N

pi(si): (2.2)

Let �i = fpi 2 Pi :
P
j pij = 1; pi � 0g be the set of probability measures on Si: Let

� =
Q
i�N �i � R

m : We use the abusive notation sij to denote the element pi 2 �i with
pij = 1: Hence, the notation (sij; p�i) represents the strategy where i adopts the pure
strategy sij; and all other players adopt their components of p:

De�nition 1 We say p� 2 P is a Nash equilibrium if p� 2 � and for all i 2 N; and
all pi 2 �i; ui(pi; p

�
�i) � ui(p

�):

We start by giving several alternative characterizations of a Nash equilibrium. We
�rst de�ne three functions x; z; and g : P 7! R

m ; derived from the normal form game u:
For any p 2 P; and i 2 N; and sij 2 Si; de�ne the i; jth component by

xij(p) = ui(sij; p�i) (2.3)

zij(p) = xij(p)� ui(p) (2.4)

gij(p) = max[zij(p); 0] (2.5)

Nash equilibrium as a �xed point of a correspondence

De�ne the best response correspondence � : � 7!7! � by

�(p) = argmax
q2�

[
X
i2N

ui(qi; p�i)] (2.6)

Then p� 2 � is a Nash equilibrium if and only if it is a �xed point of �, in other words
p� 2 �(p�):

3

It is well known (and easy to prove) that � has a closed graph, is nonempty, and
convex valued. It follows by the Kakutani �xed point theorem that there is a �xed point.

Nash equilibrium as a �xed point of a function

De�ne y : � 7! �, with i; jth component

yij(p) =
pij + gij(p)

1 +
P
j gij(p)

: (2.7)

Then p� 2 � is a Nash equilibrium if and only if it is a �xed point of y; in other words
p� = y(p�):

Since y is a continuous function from a compact set � into itself, it follows from the
Brouwer �xed point theorem that y has a �xed point. This argument is used by Nash
[1951] to prove existence of equilibrium for �nite n-person games.

Nash equilibrium as a solution to a non-linear complementarity problem

The function z : P 7! R
m de�ned above satis�es pi � zi(p) = 0 for all p and each i

(i. e., pi and zi(p) are orthogonal.) A point p� 2 � is a Nash equilibrium if and only if
z(p�) � 0: The Nonlinear Complementarity Problem (NCP) on � then consists of �nding
a point p 2 � with z(p) � 0: Such a point p is complementary to z(p): I. e., pij �zij(p) = 0
for all i; j: Thus the set of Nash equilibria are the solution to a NCP on �:

Nash equilibrium as a stationary point problem

A point p� 2 � is a Nash equilibrium if and only if it satis�es

(pi � p�i) � xi(p
�) � 0 (2.8)

for all i and p 2 �: This is the stationary point problem for the function x : � 7! R
m on

the polytope � � R
m :

Nash equilibrium as a minimum of a function on a polytope

De�ne the real valued function v : � 7! R by

v(p) =
X
i2N

X
1�j�mi

[gij(p)]
2: (2.9)

This is a continuous, di�erentiable real valued function satisfying v(p) � 0 for all p:
Further, p� is a Nash equilibrium if and only if it is a global minimum of v: In other
words v(p�) = 0:

Nash equilibria as a semi-algebraic set

The set of Nash equilibria is the set of points p 2 R
n satisfying

p 2 � and z(p) � 0: (2.10)

4

But � is de�ned by a set of linear inequalities, and z : Rm 7! R
m is a polynomial in p:

Hence the set of Nash equilibria is a semi-algebraic set.

From the above alternative formulations of a Nash equilibrium, it is clear that the
problem of �nding a Nash equilibrium for a �nite game can be expressed in terms of a
number of standard problems in the theory of optimization. Each of these problems has
been extensively studied, although not always with the application of computing Nash
equilibria as the goal. However, an array of methods can potentially be brought to bear
on the problem of computing a Nash equilibrium of a �nite game.

3 Computing a Sample Equilibrium

Most of the literature on computation of Nash equilibria deals with the computation of a
sample Nash equilibrium. In this section we review this literature. We �rst discuss meth-
ods which are globally convergent. As discussed in the introduction, di�erent methods
must be used for two person and n-person games. We conclude with a brief discussion
of methods that are not globally convergent.

3.1 Two-Person Games: The Lemke-Howson Algorithm

Any review of methods of computation for game theory must start with the work of
Lemke and Howson [1964]. Historically, the Lemke-Howson algorithm was the �rst of the
so called path following algorithms. Lemke and Howson's algorithm was developed
originally for two person games and was then extended to solve more general linear
complementarity problems (Lemke [1965], Eaves [1971]), of which a two person game is a
speci�c example. Shapley [1974] describes a nice geometrical interpretation of the Lemke-
Howson algorithm for the nondegenerate case, which lends itself to easy visualization if
the number of strategies for both players are small enough. In this section, we give a
precise description of the Lemke-Howson algorithm as modi�ed by Eaves [1971] to deal
with degenerate problems.

3.1.1 Finding one Nash equilibrium

Consider a two person game with strategy sets Si = fsi1; : : : ; simi
g for player i, i = 1; 2.

Let Ui be the payo� matrix for player i, with rows indexed by the strategies for player i
and columns indexed by the strategies for player ` 6= i. In other words, the entry in row
j, column k of Ui is ui(sij; s�i;k). We assume, without loss of generality, that all entries
in Ui are positive.

A Nash equilibrium is a pair of column vectors pi 2 R
mi satisfying

Ui � p�i + ri = vi � 1 (3.1)

5

subject to pi � 0; ri � 0; pi � 1 = 1; and pi � ri = 0 for i = 1; 2: Here, vi is a scalar
representing player i's payo�, and ri 2 R

mi is a column vector whose elements rij are
\slack" variables which must be 0 if i uses strategy sij with positive probability. The
notation 1 indicates a column vector of 1's of appropriate dimension.

If all entries in the Ui are positive, then we are assured that the vi are positive, and
we can reformulate the above problem. De�ne p0i = pi=v�i; and r

0
i = ri=vi: Then equation

(3:1) can be re-written as

Ui � p
0
�i + r0i = 1 (3.2)

subject to p0i � 0; r0i � 0; p0i � 1 = 1=v�i; and p0i � r
0
i = 0 for i = 1; 2: We can drop the

constraint that p0i �1 = 1=v�i at the expense of obtaining one additional solution in which
p01 = p02 = 0: This solution is called the extraneous solution.

De�ne U to be the m�m matrix

U =
�
0 U1

U2 0

�
; (3.3)

and x; y; and q to be column vectors of length m:

x =
�
r01
r02

�
; y =

�
p01
p02

�
; q =

�
1

1

�
: (3.4)

Then equation (3:2) can be rewritten as

Uy + x = q: (3.5)

subject to x � 0; y � 0; and x � y = 0: This is exactly in the form of a linear comple-

mentarity problem. We now discuss methods of solving such problems.
A pair of vectors x; y 2 R

m is said to be a solution of (3:5) if Uy+x = q: A solution
is feasible if x � 0 and y � 0. As the intersection of �nitely many half spaces of the form
f � 2 R

2m : � � � � c g, the set of feasible solutions is a closed convex polyhedron, which
may be either empty or nonempty, and if nonempty, either bounded or unbounded. In
the case of interest to us U has nonnegative entries, and each of its columns contains
a positive entry, while q has positive components. These conditions guarantee that the
set of feasible solutions is both nonempty (since the extraneous solution is feasible) and
bounded.

A solution is said to be complementary if x � y = 0. Note that a feasible solution is
complementary if and only if, for each 1 � i � m, either xi = 0 or yi = 0. Clearly the
extraneous solution (x = q; y = 0) is a complementary feasible solution. Any Nash equi-
librium corresponds to a complementary feasible solution. Further, any complementary
feasible solution corresponds either to a Nash equilibrium or the extraneous solution.

Described geometrically, the Lemke-Howson algorithm starts at a given complemen-
tary feasible solution, then proceeds, from vertex to vertex, along a certain path of one
dimensional faces of the polyhedron of feasible solutions, until it reaches a di�erent com-
plementary feasible solution. For \nondegenerate" problems (which are generic in the

6

space of parameters U and q) the speci�c construction of the path is not di�cult to
describe, as we will see below. But for exceptional problems (which can easily arise in
games derived from extensive forms) there are ambiguities that must be resolved.

We write the system (3:5) in the form

[U Im] �
�
y
x

�
= q: (3.6)

Let A = [U Im], and let z =
�
y
x

�
. Consider a collection of indices � = fb1; : : : ; bmg

with 1 � bi � 2m, and let B� be the m�m matrix whose ith column is the �i
th column

of A. We say that � is a basis if B� is nonsingular, and we say that a solution z is a
basic solution if there is a basis � such that zi = 0 for all i =2 �. Note that for each
basis � there is exactly one solution z: the components of z with indices in � are the
components of (B�)�1q. A basis is feasible if its corresponding solution is feasible. Basic
feasible solutions are vertices of the polyhedron of feasible solutions, and conversely.

A basis � is complementary if, for each 1 � j � m, exactly one of j and m + j
is in �. A basis is i-almost complementary if, for all 1 � j � m di�erent from i,
either j =2 � or m + j =2 �. Note that a complementary basis is i-almost complementary
for every i. For an i-almost complementary basis � that is not complementary there
is some 1 � j � m with j =2 � and m + j =2 �; we call j the omitted index of �.
The idea will be to start at a complementary feasible solution, then, for some i, move
along a sequence of i-almost complementary feasible solutions until we reach another
complementary solution.

For a basis � let q� = (B�)�1q and let A� = (B�)�1A. Then de�ne

T � = [�q� A�] = (B�)�1 [�q A] : (3.7)

Let
 = fg1; : : : ; gmg be another basis. We are particularly interested in the case in which
� and
 di�er by one element, so assume that
 = � � frg [fsg, where r = bh. Note
that

T
 = [�q
 A
] = P
� [�q� A�] ; (3.8)

where P
� = (B
)�1B� is referred to as the pivot matrix.
At the numerical level, a key observation is that (P
�)�1 = ((B
)�1B�)�1 = (B�)�1B

is a collection of columns from A� = (B�)�1A. We think of the entries in column u of
A� = (B�)�1A as specifying the linear combination of the columns of B� that coincides
with column u of A, and with one exception, the columns of B
 are columns of B�. So,
writing a�jk for the element in row j, column k of A�, we have

7

(P
�)�1 = (B�)�1B
 =

2
6666666666664

1 a�1s
. . .

...
1 a�h�1;s

a�hs
a�h+1;s 1
...

. . .

a�ms 1

3
7777777777775

(3.9)

(Although we have represented the matrix as a diagonal matrix with a column replaced,
in general it will not be of this form, since the indices of the rows may not be in the
same order as the corresponding columns. The essential point is that the column whose
h-component is 1 is replaced with the s-column of A�.) Evidently we must have a�hs 6= 0,
else B
 is singular, and by simply multiplying (P �
)�1 by the following matrix to obtain
the identity matrix, one can verify that

P
� =

2
6666666666666666664

1 �
a
�
1s

a
�
hs

. . .
...

1 �
a
�
h�1;s

a
�
hs

1

a
�
hs

�
a
�
h+1;s

a
�
hs

1

...
. . .

�a
�
ms

a
�
hs

1

3
7777777777777777775

(3.10)

Substituting into (3:8) yields, for any 1 � k � 2m

a
jk =

8>><
>>:

a
�
hk

a
�
hs

if j = h,

a�jk �
a
�
js

a
�
hs

a�hk if j 6= h.
(3.11)

We use the notational convention that a
j0 = �q
j , and similarly for �. Then analogous
formuli for the q
j are obtained from the above.

The Lemke-Howson algorithm proceeds by \pivoting" along a sequence of i-almost
complementary feasible bases, for some given i, at each step maintaining the \tableaux"
T � = [�q� A�] in memory, along with the list of current basis elements and the cor-
respondence between the basis elements and the rows of the tableaux. The speci�c
numerical computations in moving from one basis to the next are given above, and the
further description of the algorithm is a matter of specifying the choice of basis to move
to next. In general we will want the new basis to be feasible, i-almost complementary,
and di�erent from the basis we were at just before arriving at the current basis. If we

8

begin at a complementary feasible solution, then the basis reached on the �rst pivot will
be obtained by adding i or m + i to the basis. If we are at an i-almost complementary
feasible basis � that is not complementary, then the new element of the basis will be
either j or m+ j, where j is the omitted index of �. Speci�cally, the new element will be
j (m+ j) if m+ j (j) was the element that was dropped in the last pivot. If the element
that is dropped in this pivot is either i or m + i, then the new basis is complementary,
and otherwise the new basis is also i-almost complementary.

Geometrically, when we add an element to the basis we are looking at the edge of the
set of feasible solutions determined by the equation Az = q and the conditions zj = 0
for all j, other than the one being added, that are not in the basis �. The basic feasible
solution corresponding to � is one endpoint of this edge, and the basic feasible solution
corresponding to the new basis is the other endpoint. The pivoting procedure described
above is the numerical embodiment of this procedure.

For problems whose parameters are generic in the relevant sense, there will always
be a unique basis determining the other endpoint of the edge under consideration. It is
this case that was worked out by Lemke and Howson. In the general case it can happen
that several components of z vanish simultaneously when one reaches the new endpoint,
so that any one of these variables could be the one dropped. The procedure described
below for resolving this ambiguity is due to Eaves [1971].

A matrix of real numbers is lex negative (positive) if the �rst nonzero entry of
each row is negative (positive). A basis is lex-feasible if T � is lex-negative. Note that
as long as q > 0, the extraneous solution is lex-feasible. Suppose that we are given
T � = [�q� A�], that � is a lex-feasible basis, and we have decided to add s to the
basis, so that we must choose an index r = bh to drop. The choice will be dictated by
the requirement that the new basis
 = ��frg[fsg be lex-feasible, as we now explain.

We have already seen that we must choose r = bh with a�hs 6= 0. If r = bh were a
feasible choice with a�hs < 0, it would have to be the case that q�h = 0, in which case
the nonzero components of q
 are the same as the nonzero components of q�. In e�ect
the passage from the basis � to the basis
 has not changed the underlying solution.
We wish not to allow this possibility, and we therefore require that h should be an
element of S = f j : a�js > 0 g. This set must be nonempty since otherwise the set of
feasible solutions would be unbounded. (Any solution would remain a solution if one
increased the component of z corresponding to s by 1 while increasing the component
corresponding to each h by �a�hs.) Let S0 = argminfq�j =a

�
js : j 2 S g. If the components

of q
 are to be nonnegative, h must be chosen from S0, clearly. Conversely, if S0 is a
singleton, there is nothing more to it: since q�h � 0 and a�hs > 0, if a�js � 0 then q
j � 0
automatically, and otherwise it is nonnegative by virtue of the choice of h. For generic
choices of U and q it will be the case that S0 is always a singleton; such problems are said
to be nondegenerate. (Eaves [1971] points out that a weaker notion of nondegeneracy
su�ces.)

When S0 has more than one element, we must re�ne our method of choosing which
element of the basis to drop. As above, we write a�j0 = �q�j , and similarly for
. Also

9

write S = S�1. For k = 0; : : : ; 2m de�ne

Sk = argmaxf
a�jk

a�js
: j 2 Sk�1 g: (3.12)

For su�ciently large `, S` is a singleton (otherwise two rows would be related by scalar
multiplication so that the rank of A� would be less than n), and we let h be its unique
member.

Theorem 2 If � is a lex-feasible basis and
 = ��frg [fsg is the basis obtained when
s is added to �, as per the procedure described above, then
 is lex-feasible, and � is the
lex-feasible basis obtained when r is added to
, as per the procedure described above.

Proof: We �rst show that
 is lex-feasible. We must show that each row of T
 is lex-
negative. Consider row j. If j = h, then the row is simply a positive scalar multiple of
the corresponding row of T �, which is lex-negative since � is lex-feasible. If j =2 S, so that
a�js � 0, then row j of T
 is equal to the corresponding row of T � plus a non-negative
scalar multiple of row h of T �. Since each of these is lex-negative, the resulting sum must
be lex-negative. The remaining rows are those with j 2 S`�1 � S`, for some ` � 0.

It follows that for k < `, j 2 Sk, which implies

a
jk = a�jk � a�js
a�hk
a�hs

= a�jk � a�js
a�jk

a�js
= 0:

For k = `, the second equality becomes an inequality, yielding a
j` < 0. Hence row j
is lex-negative. We have established that T
 is lex-negative, hence
 is lex-feasible.

In the remainder of the proof, we show that � is obtained when r is added to
. It
su�ces to show when starting at the basis
 and adding r, that h 2 Sk for all k. We will
use the fact that, since r 2 �, a�jr is either 1 or 0 according to whether j = h.

Since a�hs > 0 was a requirement of the construction of
,

a
hr =
a�hr
a�hs

=
1

a�hs
> 0;

it follows that h 2 S = S�1. Now, for ` � 0, assume by way of induction that h 2 S`�1.
Then for any k < `,

a
hk
a
hr

= a�hs
a�hk
a�hs

= a�hk:

For any other j 2 S`�1,

a
jr = a�jr �
a�js

a�hs
a�hr = �

a�js

a�hs
;

10

it follows that
a
jk
a
jr

=
1

a
jr
(a�jk �

a�js

a�hs
a�hk) = a�hk +

1

a
jr
a�jk:

Hence, since a
jr > 0

a
hk
a
hr

�
a
jk
a
jr

, a�jk � 0:

with equality on the left if and only if there is equality on the right. Thus, if j 2 S`�1,
we must have a�jk = 0 for all k < m. By lex-feasibility of �, it must be that a�j` � 0,
which implies that

a
h`
a
hr

�
a
j`
a
jr

:

Hence, h 2 S`. The result now follows by induction on `.

Let B� be the set of all complementary lex-feasible bases, and B�i be the set of all
i-almost complementary lex-feasible bases. For any �,
 2 B�i , we say that � is adjacent
to
 if
 is obtained from � by adding either j or m + j, as described above, where j
is the omitted index for �. If � 2 B�; we also say that � is adjacent to
 2 B�i if
 is
adjacent to �.

The important consequence of the Theorem is that if � is adjacent to
, then
 is
adjacent to �. Any � 2 B� is adjacent to exactly one element in B�i namely the one
obtained by adding either i or m+ i as the case may be, and any
 2 B�i �B

� is adjacent
to precisely two elements in B�i , since any adjacent basis must be obtained by adding
either j or m + j, where j is the omitted index.

Now for any 1 � i � m, let 'i be the transitive closure of the adjacency relation on
B�i : Since B

�
i is �nite, 'i partitions B

�
i into a �nite number of equivalence classes, each

of which has a �nite number of members. Every member � of an equivalence class is
adjacent to either one or two other members. An element that is adjacent to exactly
one other member is called an endpoint. It follows that each equivalence class must be
of the form of a loop or a path. In a loop, there are no endpoints and every member
of the equivalence class is adjacent to exactly two other members. In a path, there are
exactly two endpoints, which are connected by a path through the remaining elements. A
member � is an endpoint if and only if it is a complementary lex-feasible basis. It follows
that B� contains an even number of elements. We know that B� 6= ;; since the extraneous
solution is in B�: This establishes the existence of at least one complementary feasible
basic solution other than the extraneous solution. It follows from the above argument
that there exists at least one Nash equilibrium. In the non-degenerate case, lex-feasibility
is equivalent to feasibility, and the above argument establishes that the number of Nash
equilibria is odd.

This leads to the Lemke-Howson algorithm, which amounts to just following the
adjacency chain, starting at a complementary lex-feasible basic solution:

11

1. Pick �0 2 B�; and 1 � i � m. Find the unique new basis �1 resulting from adding
whichever of i or m+ i is not in �0, as per the procedure above. Set k = 1.

2. If �k 2 B, halt. Otherwise proceed to 3.

3. Given �k from which j (resp. m + j) has just been dropped, add m + j (resp. j)
and �nd the unique new basis �k+1 allowed by the procedure above. Set k = k + 1
and return to 2.

From the above remarks, we see that the algorithm cannot cycle. Since there are
�nitely many bases, the algorithm must eventually halt. Shapley [1974] points out that in
the non-degenerate case, the Lemke-Howson algorithm connects equilibria with opposite
indices. Since the extraneous solution has index of �1, this means that any equilibria
reached by starting from the extraneous solution must have index of +1.

We have described the Lemke Howson algorithm for a somewhat larger class of prob-
lems than that generated by two person games. In the case of a two person game, U has
a partitioned form, as in equation (3:3). In this case, by rearranging the columns, we can
write

A =
�
A1 0
0 A2

�
; Ai = [Ii U�i] :

Then, we can write B� in the form

B� =
�
B�
1 0
0 B�

2

�
;

It follows that

T
 = P
�T � =
�
�P
�

1 q�1 P
�
1 A�1 0

�P
�
2 q�2 0 P
�

2 A�2

�
;

where P
�
i = (B

i)
�1B�

i ; q
�
i = (B�

i)
�11; and A�i = (B�

i)
�1Ai: Thus, the pivot operation

leaves the zero blocks of A untouched. For the same reason, the above shu�ing of the
columns does not a�ect lex-feasibility. Further, when � and
 di�er by only one element,
one of P
�

i , i = 1; 2 must be an identity matrix.
From a numerical point of view the above observations mean that for two person

games, we need not do computations on (or even store) the whole tableau. Rather, the
tableau can be decomposed into two smaller tableaus T �i = [�q�i A�i] ; which can be
computed on independently, since any pivot operation only a�ects one of them. (In fact
the Lemke-Howson algorithm requires that pivot operations alternate between the two
tableaus.) Further computational simpli�cation results since one only has to maintain
data for the current non-basic columns of each tableau.

3.1.2 Finding multiple Nash equilibria

In order to initiate the Lemke-Howson algorithm, one needs to choose an index 1 � i � m,
and a complementary lex-feasible basic solution (clbs) �0 2 B

�: Typically, one will start

12

with �0 being the extraneous solution, but this is not necessary. The algorithm can be
initiated from any � 2 B�, as long as one can �nd it. This suggests a means of using the
Lemke-Howson algorithm to �nd more than one solution. For any set B0 � B� de�ne

A`(B
0) = f� 2 B� : � '` �

0 for some � 0 2 B0g;

and
A(B0) = [m`=1A`(B

0):

Thus A(B0) is the set of clbs's that are immediately accessible from B0 via the
Lemke-Howson algorithm. For any integer t; de�ne At(B0) = A(At�1(B0)); where we de-
�neAo(B0) = B0: Since B� is �nite, clearly, there must exist a T for which At(B0) = Ar(B0)
for all r; t � T: De�ne A�(B0) = AT (B0): This is the set of clbs's that are accessible via
the Lemke Howson algorithm from B0:

If we want to �nd all Nash equilibria to a normal form game, one might try to set
B0 = f�0g; where �0 is the extraneous solution, and then use successive applications of
the Lemke-Howson algorithm to �nd A�(B0): One would then hope that A�(B0) = B�:
Unfortunately, Wilson constructed an example of a two person game (reported in Shapley
[1974]) for which A�(B0) 6= B�: The example is generic, in the sense that small pertur-
bations of the payo�s do not change the property that A�(B0) 6= B�: Thus, we cannot
in general hope to �nd all equilibria by computing the accessible equilibria. Shapley
[1981] has shown that it is possible to perturb a game so that the set of Nash equilibria
remains unchanged, but the accessibility relation changes. However, he does not provide
any general method of perturbing a game so that all Nash equilibria become accessible.

3.1.3 Zero sum games

For two person zero sum games, the problem of �nding Nash equilibria simpli�es consid-
erably, as we are able to express the problem as a linear program.

The value of a game is de�ned as the maximum that a player can guarantee him/-
herself irrespective of the strategy of the opponent. For a two person game, the value of
the game, vi; to player i is expressed as the solution to the following linear program:

minimize vi
subject to Ui � p�i � vi � 1

pi � 0
(3.13)

It follows from the minimax theorem that for two person zero sum games, v1 = �v2;
and that a strategy pair is minimax if and only if it is a Nash equilibrium. Hence, the
set of Nash equilibria is exactly the set of solutions to the above linear program. Since
the set of solutions to a linear program is a convex polyhedron, it follows that the set
of all Nash equilibria is a convex set, which can be completely characterized by a �nite
number of extreme points. These are just the set of optimal basic feasible solutions of
the above linear program.

13

3.1.4 Summary

In summary, the Lemke-Howson algorithm provides a way to �nd at least one Nash
equilibrium for any two person game. As long as the data of the problem are rational,
the algorithm can provide exact solutions, since all computations are done in the rational
�eld. The Lemke-Howson algorithm is guaranteed to eventually �nd a solution in any
problem. But, because there is no objective function in the Lemke-Howson algorithm,
there is no way of determining how close one is to a solution during the computation.

Regarding the computational complexity of the Lemke-Howson algorithm, Murty
[1978] showed an exponential lower bound for Lemke's algorithm when applied to lin-
ear complementarity problems. However, there are no results giving the computational
complexity of the Lemke-Howson algorithm for �nite two person games.

The Lemke-Howson algorithm can also sometimes be used to �nd multiple Nash
equilibria. It can compute a set of accessible Nash equilibria. But there is no guarantee
that the accessible equilibria include all Nash equilibria.

In two person, zero sum games, the problem reduces to a linear program. In this
case, the set of all Nash equilibria is a convex set, which can be characterized as the set
of optimal basic feasible solutions to the same linear program.

3.2 N-Person Games: Simplicial Subdivision

For n-person games, with n greater than two, the problem of �nding a Nash equilibrium
is no longer a linear complementarity problem, so we can not apply the Lemke-Howson
algorithm any longer. Rosenm�uller [1971] and Wilson [1971] independently extended the
Lemke-Howson algorithm to �nd Nash equilibria for n-person games, but this extension
requires following a solution set of a set of non linear equations, and has not (to the
authors' knowledge) been implemented in computer code. More tractable approaches
use path following approaches derived from Scarf's algorithm for �nding �xed points for
a continuous function on a compact set.

3.2.1 Fixed triangulation

The simplicial subdivision algorithms derive from the work of Scarf [1967, 1973]. Most
of the original work in this area deals with �nding �xed points of a function f : �n 7!
�n de�ned on an (n � 1)-dimensional simplex, �n = fp = (p1; : : : ; pn) :

Pn
i=1 pi = 1;

pi � 0g: For application to game theoretic problems, we need a version which operates on
the product of unit simplices, � =

Q
i�i; called the simplotope. We describe a version

of a simplicial subdivision algorithm that works on this product set.
It is convenient to represent player i's jth pure strategy as sij = eij; where eij is the

i; jth basis vector in R
m : Thus eij is the vector with a 1 in element

Pi�1
l=1ml + j; and 0

everywhere else, and player i's set of pure strategies is Si = fei1; : : : ; eimi
g: We can write

�i = �(Si) = �(ei1; : : : ; eimi
); and � =

Q
i�i =

Q
i �(Si).

14

The algorithm treats each agent's set of pure strategies as an ordered set. There are
no constraints on these orderings, and we will use the ordering given by the indexation.
Thus a set T � [iSi is said to be ordered if, for all i; there is a ki � 0 such that
Ti = fsij : j � kig: For such an ordered set de�ne T i = Ti [fsi;ki+1g:

We now give a formal de�nition of simplicial subdivision. For any t + 1 a�nely
independent points fv0; : : : ; vtg in Rr ; the convex hull � = �(v0; : : : ; vt) of fv0; : : : ; vtg is
called a t dimensional simplex with vertices v0; : : : ; vt: A simplex � is a face of � if the
set of vertices of � is a subset of the vertices in �: A proper face is a face that is not
all of �; the interior of � is the set of points in � that are not elements of some proper
face. If � is a face of � with one less vertex than �; then � is called a facet of �: A �nite
collection G of simplices is a triangulation of a compact, convex set C if the interiors
of the faces of all simplices partition C: An equivalent condition is that the union of the
simplices in G is C, and if two simplices have a nonempty intersection, their intersection
is a face of each.

Suppose that we are given a triangulation G of the simplotope �: Then G induces a
triangulation of each face of �, as we now explain. For any T � [iSi; de�ne Ti = T \Si.
Any face of � is of the form

Q
i �(Ti) where each Ti � Si is nonempty. If the interior of a

face of a simplex in G intersects
Q
i �(Ti), then that face is entirely contained in

Q
i �(Ti).

Every point in
Q
i �(Ti) is in the interior of some simplex in G, and of course the interiors

of such simplices are pairwise disjoint, since this is true for G.
A labeling on � is a function l : � 7! [iSi. Assume that T is an ordered set, and

let � 2 G be a simplex in
Q
i �(T i); of maximal dimension, so that � has 1 +

P
i#(Ti)

vertices. Then � is said to be almost completely labeled if the labels associated with
the vertices of � include each Ti. An almost completely labelled simplex � is completely

labeled if the labels associated with the vertices of � include T i for some i 2 N , in which
case � is called an i-stopping simplex. The goal of the algorithm will be to �nd such
a simplex for any labelling that is Sperner-proper: for all T � [iSi with Ti 6= ; for all
i; l(

Q
i �(Ti)) � T: Concretely, a labeling is Sperner proper if, for any v 2 �; vij = 0)

l(v) 6= eij:
Let �T denote the set of almost completely labeled simplices of the ordered set T � S:

Let � = [T�T , where the union is over all ordered sets T . We now de�ne adjacency, a
binary relation on �.

Unless � 2 �T is 0-dimensional , which happens precisely when Ti = ; for all i, any
� 2 �T has at least one facet � with an almost complete set of labels� i. e., l(�) = T:
Possibly � is also a facet of one other (

P
i#(Ti))-dimensional simplex in

Q
i �(Ti), say �

0.
Since � � �0, �0 is completely labelled. In this case � and �0 are adjacent. If � is not
a face of two simplices of maximal dimension in

Q
i �(T i), then � must be contained in

the boundary of this set, so that � � �(T j �fsjlg)�
Q
i6=j �(T i) for some j and sjl 2 Sj.

Since l is Sperner proper, sjl cannot be a label of a vertex of � , i.e., sjl =2 T , so we must
have sjl = sjkj . Two ordered sets T and T 0 are said to be adjacent if they di�er by at
most one element, say sjkj 2 T �T

0:When T and T 0 are adjacent, a simplex � 2 �T and
a simplex � 2 �T 0 are adjacent if l(�) = T (so � is completely labeled) and � is a facet

15

of �: The de�nition of adjacency is now complete, in the sense that there are no cases in
which two simplices in � are adjacent aside from the two just described.

Summarizing, given � 2 �T and a facet � with an almost complete set of labels, � is
adjacent either to � itself or to another simplex in �T which also has � as a facet. Let v
be the vertex in � � � . If l(v) 2 T; then � has one other facet with an almost complete
set of labels, so that � must be adjacent to precisely two other simplices. If l(v) =2 T;
then � is completely labeled, say with l(v) = sj;kj+1, then � is adjacent to the unique
almost completely labeled simplex in �(T j [fsjkj+2g)�

Q
i6=j �(T i), unless kj + 1 = mj,

so that the labels for � include all the pure strategies of j.
By the de�nition of adjacency, every almost completely labeled simplex � 2 �T for

some ordered set T � S is adjacent to at most two other simplices. A simplex that
is adjacent to at most one other simplex is called a terminal simplex. It follows
that if � 2 � and J is the set of simplices in � that can be reached by starting at �
and proceeding along a sequence of simplices in which each simplex is adjacent to its
predecessor, then J must be: (a) a loop � there is no terminal simplex; (b) a string �
there are two terminal simplices; or (c) a point � J contains a single (terminal) simplex
adjacent to no other simplex. A terminal simplex must either be the 0-dimensional
simplex �0 that is the unique element of

Q
i �(T i) when Ti = ;, an i-stopping simplex

for some i 2 N , or both. The last possibility (namely a point) is ruled out if we require
that mi � 2 for all i. With this trivial case eliminated, it follows that there are an odd
number of i-stopping simplexes.

Given algorithmic procedures for elaborating the triangulation and computing labels,
the above results de�ne an algorithm for �nding a stopping simplex: start at �0 and
follow the adjacency relation to the other endpoint of the string. In order for a stopping
simplex to be of interest, it must approximate a Nash equilibrium to the game. We now
present a labeling function which achieves this.

For any n-person game, and any p 2 �; we de�ne, as in section 2, equation (2.5)

gij(p) = max[ui(sij; p�i)� ui(p); 0] and yij(p) =
pij + gij(p)

1 +
P
j gij(p)

:

As noted previously, y : � 7! � is a continuous function whose �xed points are precisely
the Nash equilibria. For p 2 �; de�ne l(p) = sij; where (i; j) is the lexicographic least
index in argminl2N;1�k�ml

ylk(p)� plk.
Now let fGrg1r=1 be a sequence of triangulations whose meshes converge to 0. For

each r let �r be an i-stopping simplex for some i. Since we may pass to a subsequence,
we may assume that it is the same i for all r, and we may also assume that the sequence
�r converges, in the obvious sense, say to p�. Now for each sij 2 Si and each r there
is a vertex v of �r with l(v) = sij. Among other things this implies that yij(v) � vij,
and passing to the limit yields yij(p

�) � p�ij. This is true for all 1 � j � mi, so we
must have yij(p

�) = p�ij for all 1 � j � mi. In view of the de�nition of l, it follows that
0 = minl2N;1�k�ml

ylk(p)� plk, so for all k 2 N and 1 � h � mk, ykh(p
�) � p�kh. But then

ykh(p
�) = p�kh for each k and all relevant h. That is, p

� is a �xed point of y, hence a Nash

16

equilibrium.
Thus we have described an algorithm which, for given �, halts at a point p 2 � with

ky(p) � pk < �, namely execute the procedure for �nding an i-stopping simplex on a
sequence of successively �ner triangulations of � until some vertex of such a simplex
satis�es the halting criterion. It should be stressed that we have not given a procedure
for �nding a point that is within � of some �xed point of y. This is inherent in any
algorithm that assumes only that y is continuous, and which uses only the values of y at
particular points to regulate its behavior. To see this imagine such an algorithm halting
after computing the value of y at some sequence of points p1; : : : ; pz. Then the algorithm
would behave in the same way if y was replaced by h�1 � f � h where h : � ! � is
a homeomorphism that leaves p1; : : : ; pz and y(p1); : : : ; y(pz) �xed, but by choosing h
appropriately we are free to locate the �xed points of h�1 � f � h almost arbitrarily.

In fact for the problem of �nding Nash equilibrium, additional information is available,
in that the given functions are algebraic. One could imagine combining the procedure
above with an additional step using this information to test whether the candidate ap-
proximate equilibrium was, in fact, near an actual equilibrium. To our knowledge this
issue has not been investigated.

3.2.2 Re�ning the triangulation

One of the problems with the Scarf type simplicial subdivision algorithms described
above is that they depend on a given triangulation. If one �nds an approximation to a
solution using a triangulation G with a given mesh, and one then wants to get a better
approximation, one must start all over with a new triangulation with a smaller mesh.
The computational e�ort that went into �nding an original approximation does not help
in �nding a �ner approximation.

This problem has been dealt with in two ways. The �rst is the homotopy method,
originally developed by Eaves [1972]. Here the idea is to add a dimension to the problem
representing the accuracy of the approximation, say t 2 [0; 1]: Then one triangulates the
product space �� [0; 1] in such a way that (roughly) as t approaches 1; the mesh of the
triangulation approaches 0: Doup and Talman [1987b] provide a triangulation which is
suitable for application of this method to the simplotope, and which allows for arbitrary
rate of grid re�nement.

The second approach to getting better approximations is the restart method. Here
the idea is to develop path following algorithms that allow for start at an arbitrary point
in the solution space. Merrill [1972], Kuhn and MacKinnon [1975], and van der Laan
and Talman [1979] developed methods that allow restart at an arbitrary point in the
space, with a triangulation of smaller mesh. In a series of articles, Van der Laan and
Talman [1979, 1980, 1982], van der Laan, Talman and van der Heyden [1987] and Doup
and Talman [1987a] have developed versions of these algorithms which can be applied to
the simplotope, and also investigated in considerable detail the advantages of di�erent
triangulations.

17

3.2.3 Computational complexity

Hirsch, Papadimitriou and Vavasis [1989] showed that Scarf's algorithm, (actually any
algorithm for computing a Brouwer �xed point based on evaluation of function values),
has a worst case complexity which is exponential in the dimension and the number of
digits of accuracy. Todd [1982] showed an exponential lower bound for piecewise-linear
path-following algorithms applied to triangulations of a�ne linear problems.

On the other hand Saigal [1977] shows that if the underlying function is continuously
di�erentiable and satis�es a Lipschitz condition, that simplicial subdivision methods can
achieve quadratic rates of convergence (in the limit) if the change in mesh size is chosen
appropriately.

One problem with restart methods for use on game theory problems that apparently
does not arise in �xed point problems on the simplex is related to the de�nition of a
stopping simplex when one works in the simplotope rather than in a single simplex. The
results discussed above guarantee us that as we re�ne the triangulations, sending the
mesh size to zero, there will be a sequence of stopping simplices converging to a Nash
equilibrium. However, we are not guaranteed that the sequence of stopping simplices will
be stopping simplices for the same player. After a restart, the search for the right player
with a stopping simplex can sometimes cause the algorithm to go out to the boundary of
the simplotope before returning to the approximate starting location. It is possible that
these problems may be avoided in the homotopy methods applied to the simplotope, or
in algorithms such as that of Garcia, Lemke and Luethi [1973] who, instead of using the
simplotope, embed the problem in a simplex of dimension m � 1: Unfortunately, there
is not much in the way of comparative computational experience of these algorithms as
applied to game theory problems reported in the literature.

3.3 Non Globally Convergent Methods

In this section, several methods for �nding Nash equilibria are presented which are not
globally convergent. Despite the fact that they do not satisfy global convergence, these
methods are important because they o�er other features, such as speed or the ability to
�nd a particular equilibrium for the purposes of doing comparative statics, for example.

3.3.1 Nash equilibrium as non-linear complementarity problem

We saw in section 2 that an n-person game can be represented as a non-linear com-
plementarity problem. Mathiesen [1987] and others have been very successful at �nding
economic equilibria by formulating the problem as a non-linear complementarity problem,
and then solving that problem by a sequence of approximations by linear complementary
problems (SLCP). Harker and Pang [1990] survey recent developments in this area as
well as the more encompassing set of variational inequality problems.

The general idea of the SLCP approach is that one picks a starting point p0 2 � in
the simplex, and then approximates the non-linear problem at that point with the linear

18

complementarity problem obtained by taking the �rst order Taylor expansion around
the point. One then uses Lemke's algorithm for the linear complementarity problem to
�nd an exact solution to that problem. This gives a new point, p1 2 �; from which
one can repeat the process. One then hopes the sequence fptg converges to a solution
of the original non-linear complementarity problem. The method can be thought of as
a generalization of Newton's algorithm for �nding local optima of a C2 function, and is
also related to the \global Newton method" of Smale [1976].1 Like Newton's method,
the SLCP method is not globally convergent, and requires judicious choice of a starting
point.

Since an n-person game can be formulated as a non-linear complementarity problem
also, the SLCP method should be applicable to solving large normal form games. Van den
Elzen and Talman [1992] have used similar ideas in the computation of game theoretic
equilibria. They formulate the Nash equilibrium as a stationary point problem, and
then approximate the stationary point problem by a sequence of linear stationary point
problems.

These methods do not satisfy global convergence. However, they do have the advan-
tage of speed. Hence even without global convergence, the ability to repeatedly try a
number of starting points if convergence fails can make these methods attractive, espe-
cially in large problems, if the only goal is to �nd a sample Nash equilibrium.

3.3.2 Nash equilibrium as a minimum of a function

As discussed in section 2, the problem of �nding a Nash equilibrium can be reformulated
as a problem of �nding the minimum of a real valued function on a polytope, where
the global minima of the function correspond to the Nash equilibria of the underlying
problem. Under this approach, every isolated Nash equilibrium has a basin of attraction.
So if one starts close enough to an isolated Nash equilibrium, then one can guarantee to
�nd it with any level of accuracy desired.

Recall, we de�ned the function v : P 7! R in equation (2:9) by

v(p) =
X
i2N

X
1�j�mi

[gij(p)]
2:

First, note that v(p) is a non-negative function that is zero if and only if p is a Nash
equilibrium for the game. Further, as is shown in McKelvey [1992], v is everywhere
di�erentiable.

We want to minimize v(p) subject to the constraints that
P
j pij = 1 and pij � 0 for all

i; j: One can use methods for constrained optimization to �nd solutions. Alternatively,
we can impose the constraints as penalty functions, yielding a revised version of the
objective function:

1Contrary to the suggestion of the name, the global Newton is not globally convergent. See e.g.,
Doup [1988].

19

w(p) = v(p) +
X
ij

fmin[pij ; 0]g
2 +

X
i�N

(1�
X
j

pij)
2:

This is also a di�erentiable function, de�ned over all of P; and p� is a Nash equilibrium
if and only if it w(p�) = 0: Any of a number of standard algorithms for �nding the
unconstrained minimum to a function on Rm can be applied to �nd the minima of w:

Note that it was not established in the above characterization that all minima to the
function v or w are global minima. Hence, there may be local minima to the objective
function that are not global minima, and hence not Nash. So it is important to check
the value of the objective function after convergence, to verify that the point found is
indeed a Nash equilibrium.

The speed of the algorithm (in the authors' experience) is generally slower than other
methods, and as is evident from the discussion in the preceding paragraph, the algorithm
may sometimes require judicious choice of a starting point. Nevertheless, there are some
situations in which the algorithm is preferred to existing methods. The path following
algorithms discussed above are not capable of �nding all of the Nash equilibria. Even if
one uses a restart algorithm to start them close to a given Nash equilibrium, there is no
guarantee they will �nd the nearby equilibrium. However, every isolated Nash equilibrium
will have an open region around it where the value of the objective function v is strictly
greater than 0: Hence, every Nash equilibrium will have a radius of convergence such that
if one starts within this radius of the Nash equilibrium, and uses any descent method
which guarantees that the objective function decreases at at each step, then the algorithm
proposed in this section will converge to the nearby Nash equilibrium. Therefore, the
method proposed here is useful for investigating the comparative statics of a particular
equilibrium, as a function of the payo�s of the game.

The function v can also be used to de�ne a di�erential equation system whose zeros
are Nash equilibria (see McKelvey [1992]). However, since there may be local minima
that are not global minima, the system is not globally convergent. Other work has been
done on di�erential equation systems for solving for Nash equilibria. Brown and von
Neumann [1950] construct a di�erential equation systems for �nite two person zero sum
games which is globally convergent. Rosen [1964] de�nes a di�erential equation system
for n-person games, and he gives conditions for global convergence. Rosen's conditions
require a property of \diagonal strict concavity" on the matrix of cross derivatives of the
payo� functions, which would not in general be satis�ed for �nite n-person games.

4 Extensive Form Games

To this point we have discussed only normal form games, ignoring all computational issues
that might arise out of the derivation of the normal form from some underlying extensive
form game. This is re
ective of the state of the literature, which has only recently
begun to address computation of extensive form equilibrium concepts. Nevertheless, the

20

possibility of using information in the extensive form to guide computation has enormous
intuitive appeal, and is one of the principle factors that motivated Kreps and Wilson
(1982) (henceforth KW) to develop the concept of sequential equilibrium, which we now
review. With minor modi�cations, our notation is that of KW.

4.1 Notation

In an extensive form game the set of physically possible sequences of events is described
by a tree or, somewhat more generally, an arborescence (the accepted term in computer
science is `forest'), which may be thought of as a �nite collection of trees. Let (T;�) be a
pair consisting of a �nite set T of nodes and a binary relation � on T . We interpret x � t
as meaning that the node x precedes the node t, and we require that � be transitive
and acyclic. In addition we require that, for any t 2 T , the set P (t) = f x 2 T : x � t g of
predecessors of t is completely ordered by �. In e�ect this amounts to a decision to treat
equivalent positions reached by di�erent sequences of moves (e.g., the positions reached
in chess after 1. P-Q4, N-KB3; 2. P-QB4 and 1. P-QB4, N-KB3; 2. P-Q4) as distinct.
For most purposes this is a harmless simpli�cation, but we hasten to point out that it is
far from benign from the point of view of minimizing computational burden.

The set of initial nodes is W = fw 2 T : P (w) = ; g, and Y = T �W is the set of
noninitial nodes. Similarly, the set of terminal nodes is Z = f z 2 T : P�1(z) = ; g,
and X = T � Z is the set of nonterminal or strategic nodes. The assumption that
P (t) is always completely ordered implies that the immediate predecessor function
p1 : Y ! X, p1(y) = maxP (y), is well de�ned. We let `(t) be the cardinality of P (t),
and for ` � 2 we de�ne p` : f y 2 Y : `(y) � ` g ! X to be the `-fold composition of
p1 with itself. Also, let p0 be the identity function on T . The number of predecessors of
t 2 T is `(t), the largest integer such that p`(t)(t) is de�ned.

We adopt the convention that 0 represents \nature" or \chance." There are �nite
sets H, A, and I = f 1; : : : ; n g of information sets, actions, and agents, respectively,
and functions � : X ! H, � : Y ! A, and � : H ! f 0 g [I, interpreted as follows.
The information partition is the collection of sets of the form ��1(h), h 2 H. (The
information partition is taken as given in most formal de�nitions of extensive form games,
which do not include the function �.) We will often abuse notation by equating h with
��1(h) so that we write x 2 h to indicate �(x) = h. For h 2 H, the agent who chooses
an action when a node in h occurs is �(h). Let H i = ��1(i) be the set of information
sets at which i chooses, i = 0; : : : ; n. When an action is chosen at h 2 H i, agent i
knows that some node in ��1(h) has occurred, but not which one. For y 2 Y , �(y)
is interpreted as the action that was chosen at the immediate predecessor of y, so that
A(x) = �(p1

�1(x)) is the set of actions that are available at x 2 X. To make sense out of
the choice problems in this structure we must assume that: (a) if y; y0 2 Y are distinct
with p1(y) = p1(y

0) = x, then �(y) 6= �(y0); (b) A(x) = A(x0) for all h and x; x0 2 h.
For h 2 H let A(h) be the set of actions that can be chosen at h. It is conventional to
assume that A(h) \ A(h0) = ; for distinct h; h0 2 H.

21

In KW it is assumed that nature has no decisions, so the range of � is I, and all
`physical' uncertainty is summarized in the initial assessment � 2 �(W). For many
purposes this is a harmless simpli�cation | one can shu�e once at the beginning of the
game, rather than before each card is drawn| but again this may not be computationally
e�cient, so we do not adopt this assumption. The behavior of nature at the information
sets where it chooses is represented by �0, a vector of probability measures �0h 2 �(A(h)).
(The information partition of the nodes at which nature chooses will play no essential
role in the theory. It will be easy to see that postulating this structure entails no loss
of generality, since we could have each node at which nature chooses be a singleton
information set.)

In games played by teams it can be sensible to allow an agent (construed as the team)
to forget information from one move to the next, but we will take the usual perspective
and assume that this does not happen. What this means precisely is that the game is
one of perfect recall: for any information set h and any x; x0 2 h, if x� is a predecessor
of x at which the same agent chooses (that is, �(�(x�)) = �(�(x))) then �(x�) contains a
node x0� that is a predecessor of x0, and if y and y0 are the nodes with y 2 f x g [P (x),
p1(y) = x� and y0 2 f x0 g[P (x0), p1(y0) = x0�, then �(y) = �(y0). More verbally, at �(x),
�(�(x)) knows that �(x�) occurred, and that at that point �(y) was chosen; we require
that this is also true when x0 occurs.

A behavior strategy for agent i is a vector �i = (�ih)h2Hi of probability measures
�ih 2 �(A(h)). Let �i =

Q
h2Hi �(A(h)) be the set of such objects. The interpretation is

that, conditional on h being reached, for a 2 A(h), �ih(a) is the probability that a will be
chosen. The term behavior strategy is also used to refer to vectors � = (�i)i2I whose
components are behavior strategies for the various agents. Let � =

Q
i2I �

i be the space
of behavior strategies in this sense. (Formally we do not include �0 as a factor of �, but
in many expressions we will treat the given �0 as a component of �.) It simpli�es many

expressions to write �h and �x in place of �
�(h)
h and �

�(�(x))
�(x) respectively. Given a behavior

strategy �, the probability that a node t is reached is

P�(t) = �(p`(t)(t)) �
`(t)Y
`=1

�p`(t)(�(p`�1(t)));

and if x � t, then the probability that t will be reached conditional of x having been
reached is

P�(tjx) =
`(t)�`(x)Y
`=1

�p`(t)(�(p`�1(t))):

Recently Koller and Megiddo [1992], von Stengel [1993], and Koller, Megiddo, and
von Stengel [1994] have pointed out that there are computational advantages in working
with the sequence form, which is essentially a representation of behavior strategies in
terms of the induced probabilities, for each agent and each sequence of actions for that
agent, that the sequence will be chosen if nature and the other agents behave in a way
that permits the sequence. More precisely, suppose that s = (a1; : : : ; aq) is a sequence of

22

actions that might be chosen by agent i, meaning that the information set at which a1
might be chosen can occur without any earlier choices by agent i, and, for j = 2; : : : ; q,
the information set at which aj may be chosen can occur after aj�1 is chosen, without any
intervening actions by agent i. For each such sequence for agent i set ��ii (s) =

Qq
j=1 �i(aj);

this de�nes an induced realization plan ��ii for agent i. The critical point is that for
each node t, P�(t) is a product of sequence form variables, with one factor for each
agent. As a monomial in sequence form variables, the degree of P�(t) can easily be much
lower than its degree as a monomial in behavior strategy variables. It is computationally
trivial to pass from a realization plan to the set of behavior strategies that induce it, so
for many solution concepts it is likely to be e�cient to solve for equilibria in terms of
the sequence form, then pass to behavior strategies. This is not possible for sequential
equilibrium, since the sequence form suppresses information about an agent's `intended'
behavior at information sets that the agent never allows to be reached, whereas sequential
equilibrium imposes conditions on such intentions. Nonetheless, it seems likely that a
suitable generalization of the sequence form will be the natural vehicle for computation
of sequential equilibrium.

When every possible event has positive probability, there are unambiguous condi-
tional probabilities de�ning beliefs at the various information sets. For i 2 I let
�i� =

Q
h2Hi ��(A(h)) be the set of totally mixed behavior strategies for i, and let

�� =
Q
i2I �

i�. For a totally mixed behavior strategy �, each node t is reached with
positive probability, so for each h there is an induced probability distribution �h 2 �(h)
given by

��h(x) = P�(x)=
X
x02h

P�(x0):

The vector �� = (��h)h2H 2 M �
Q
h2H �(h) is called the belief induced by �. The

equilibrium concept we are working towards requires not just ex ante rationality, but also
rationality, conditional on certain beliefs, at information sets that have no probability of
being reached under the equilibrium strategies. Thus there arises the question of what is
the appropriate requirement concerning the relation between the behavior strategy and
the belief. KW de�ne the set of interior consistent assessments to be 	� = f (��; �) :
� 2 �� g, and the set 	 of consistent assessments is its closure inM��. KW express
doubts about this notion of consistency, but recently Kohlberg and Reny [1993] have
shown that it is equivalent to a conceptually natural condition that is slightly stronger
than independence.

We now introduce a payo� u 2 R
Z�I which speci�es a reward for each agent at each

terminal node. A behavior strategy induces an expected payo�

E�(uijt) =
X
z2Z

P�(zjt) � ui(z)

for each i 2 I at each t 2 T , and an assessment (�; �) induces an expected payo�

E(�;�)(uijh) =
X
x2h

�h(x)E
�(uijx)

23

for each i 2 I at each h 2 H i. The assessment (�; �) is sequentially rational if, for
each i 2 I and h 2 H i, there does not exist �̂i 2 �i such that

E(�;�j�̂i)(uijh) > E(�;�)(uijh);

where �j�̂i is � with �i replaced by �̂i. A sequential equilibrium is a sequentially
rational consistent assessment.

4.2 Extensive versus normal form

There are computational aspects of many of the conceptual issues that arise in connection
with this model. Perhaps the most important questions, and the �rst to be addressed
historically, involve the comparison of the extensive with the normal form. A pure

strategy for agent i is a function si : H
i ! A with si(h) 2 A(h) for all h in the

domain. Given a pure strategy vector s = (s1; : : : ; sn), � and �
0 induce a distribution on

terminal nodes, and, for a given payo� u 2 R
Z�I , a pure strategy vector s = (s1; : : : ; sn)

consequently induces expected payo�s ui(s), i 2 I. This construction is the most common
way of passing from an extensive to a normal form game (there are others), and is what
is generally understood as \the" normal form of the given extensive game.

Any behavior strategy �i for agent i induces a normal form mixed strategy ��
i

i accord-
ing to the formula ��

i

i (si) =
Q
h2Hi �ih(si(h)). There are mixed strategies that do not arise

in this way, so one can ask whether an agent sacri�ces any signi�cant strategic
exibility
by using only behavior strategies. Kuhn [1953] showed that, provided the game is one
of perfect recall, behavior strategies are strategically adequate in the sense that for any
mixed strategy there is a behavior strategy that is realization equivalent: regardless
of the mixed strategies of the other agents, the mixed strategy and the behavior strategy
induce the same distribution on terminal nodes. In particular, a Nash equilibrium in be-
havior strategies, that is, a vector of behavior strategies such that no agent can increase
expected payo� by switching to another behavior strategy, is a true Nash equilibrium in
that no agent has an improving deviation in the space of mixed strategies. Conversely,
for any mixed strategy Nash equilibrium, a behavior strategy consisting of realization
equivalent behavior strategies for the various agents is also a Nash equilibrium.

For agent i the dimension of the set of mixed strategies is (
Q
h2Hi #A(h))�1 while the

dimension of the set of behavior strategies is
P
h2Hi(#A(h) � 1). The general principle

that the di�culty of solving an algebraic system is severely a�ected by the dimension
suggests that the ability to work with behavior strategies is an important simpli�cation,
and indeed, in the authors' experience, for particular examples the extensive form is
generally much easier to solve. In this vein, Wilson [1972] developed a version of the
Lemke-Howson algorithm for two person extensive form games. Koller, Megiddo, and
von Stengel [1994] show how, for two person games of perfect recall, in the space of
sequence strategies (which has the same dimension as the space of behavior strategies)
the de�nition of Nash equilibrium can be expressed as a linear complementary problem,

24

so that the Lemke-Howson algorithm can be applied without �rst passing to the normal
form, which could be much larger.

4.3 Computing sequential equilibria

The behavior strategies of a sequential equilibrium constitute a Nash equilibrium, but
there are behavior strategy Nash equilibria that are not sequential, in the sense that there
is no consistent belief for which the behavior at unreached information sets is sequentially
rational. Sequential equilibrium is generally regarded as better founded conceptually,
and we now discuss the computational issues that are particular to it. One important
simpli�cation is that, for a game of perfect recall, a consistent assessment is sequentially
rational if and only if it satis�es the following weaker condition: the assessment (�; �) is
myopically rational if, for each i 2 I and h 2 H i, there does not exist �̂ih 2 �(A(h))
such that

E(�;�j�̂i
h
)(uijh) > E(�;�)(uijh):

(For a proof see KW.) Since E(�;�j�̂i
h
)(uijh) is a linear function, it is su�cient that this

condition hold with �̂ih = a for each a 2 A(h). Thus we can replace sequential rationality,
a nonlinear quanti�ed condition, with a �nite collection of unquanti�ed inequalities.

Since unquanti�ed systems are generally easier to solve, it is also signi�cant that
consistency can be expressed in an unquanti�ed manner. A basis is a set b = bA [bX
where bA � A and bX � X. A basis is consistent if there is a consistent assessment
(�; �) in which bA is the set of actions that are assigned positive probability by the various
components of � and bX is the set of nodes that are assigned positive probability by the
various components of �. Kohlberg and Reny [1993] (see also Azhar, McLennan, and Reif
[1992] and the Appendix of KW) establish the characterization of consistency expressed
in the following two results.

Lemma 3 b is a consistent basis if and only if: (a) for each h 2 H there is at least one
a 2 A(h) with a 2 bA; and (b) there is a function w : A! R+ with w(a) > 0 if and only
if a 2 A� bA, such that for each h 2 H,

bX \ h = argminx2h

`(t)�1X
`=0

w(�(p`(t))):

Lemma 4 If b is a consistent basis and � is a behavior strategy such that, for all h and
a 2 A(h), �h(a) > 0 if and only if a 2 bA, then (�; �) is consistent if and only if there
is a function : A! R++ with (a) = �(a) for all a 2 bA such that, for all h 2 H and
x 2 h

�h(x) =

8>><
>>:

�(p`(x)(x))�
Q`(x)�1

`=0
 (�(p`(x)))P

x02h\bX
�(p`(x0)(x

0))�
Q`(x0)�1

`=0
 (�(p`(x0)))

x 2 bX ,

0 x =2 bX .

25

The conditions stated in Lemma 1 can be expressed as a feasibility problem for a
linear program, so the simplex algorithm can be used to determine if a given basis is
feasible. For any feasible basis, Lemma 2 parameterizes the associated set of consistent
assessments, and since sequential rationality is an algebraic condition without quanti�ers,
once beliefs are given, we have a characterization of the sequential equilibria for this basis
in terms of an unquanti�ed system of algebraic equations and inequalities.

Practical experience in solving games suggests that signi�cant increases in computa-
tional e�ciency can be obtained by using dominance, and more sophisticated types of
reasoning, to eliminate certain bases from consideration without solving the associated
algebraic systems. It is intuitively plausible that the beliefs can play an important role
in such analysis. In particular examples it is also easy to see how the beliefs can facili-
tate generalizations of backward induction. For example, if an information set contains
two nodes, and the game beginning at this information set is self contained, in that no
descendant node is in an information set containing nodes not descended from one of
these nodes, then it is natural to solve the part of the game below this information set,
treating the beliefs at this information set parametrically, then solve the rest of the game
using the derived relation between beliefs at this information set and expected payo�s
conditional on each of its two nodes. At this point the e�cacy of this approach has not
been given formal expression, either in computational theory or in actual software.

It is known that the problem of solving for equilibrium in the extensive form is
computationally demanding. Blair and Mutchler [1993] show that, even in a relatively
simple class of examples, the computational problems are already NP-hard.

5 Equilbrium Re�nements

The ability to compute not just Nash or sequential equilibrium, but also the various
re�nements that have been proposed in a now quite voluminous literature, would facilitate
both application and testing of these concepts. The computational issues associated
with these concepts have not been studied in depth. We will �rst describe the current
literature, then discuss the subject in more general terms.

5.1 Two Person Games

Eaves' modi�cation of the Lemke-Howson algorithm to deal with degenerate games is a
method of introducing a class of perturbations of the game to make it non-degenerate. As
long as the lex-order (the ordering of the columns of the tableau) is chosen appropriately,
the algorithm will only terminate at a perfect equilibrium. We now prove this assertion.
For this discussion, we use the same notation as that of section 3.1.

Lemma 5 Eaves' modi�cation of the Lemke-Howson algorithm (as described in section
3.1) will only terminate at a perfect equilibrium.

26

Proof: Assume that the algorithm has terminated at the complementary lex-feasible basic
solution �: Then, since � is a lex-feasible basis, T � = [�q� A�] is lex-negative. Let
Z be a 2m � (2m + 1) dimensional matrix, whose ith column, Zi, is the basic solution
for basis � (that is, components of Zi corresponding to nonbasis indices are zero) to the
equation A�Zi = �T �i , where, T

�
i is the ith column of T �: For any � > 0 de�ne �� to be

the 2m+ 1 dimensional vector

�� = (1; �1; �2; : : : ; �m; 0; : : : ; 0);

and set z� = Z��. Write z� = (y�; x�); where y� and z� are the �rst m and last m
components of z�:

The ith row of Z is a vector of zeros if i is not in the basis, so z� is complementary. If i
is in the basis, then the ith row of Z is equal to the negative of the row of T � containing a 1
in column i, so Z is lex-positive since T � is lex-negative. Therefore z� � 0 for su�ciently
small �.

In view of the de�nition of Z we can write

[�q� A�] + A�Z = 0: (5.1)

Multiplying this equation through by �� yields

[�q� A�]�� + A�z� = 0:

Recalling that A = [U Im], set U� = (B�)�1U . Then we can rewrite the last equation
as

U�(y� + ��) + (B�)�1x� = q� or U(y� + ��) + x� = q:

where � = (�1; : : : ; �m) consists of the second through m + 1 entries of ��.
But the last equation is just an expression of the restriction that z� = (y�; x�) is

a complementary basic feasible solution for a perturbed problem obtained by requiring
that each strategy be played with a probability of at least �jv�i (where v�i is the value
of the game to the player who does not choose strategy j.) By taking a sequence of such
solutions as � goes to zero, we obtain a test sequence that converges to z0; the lex-feasible
basic solution of the original speci�cation of the problem. Hence, z0 must be a perfect
equilibrium.

A stable set, as de�ned by Kohlberg and Mertens [1988], is (roughly) a set of strategies
that is an equilibrium, and which continues to intersect the set of Nash equilibria for any
su�ciently small perturbation of the game. Wilson [1992] uses the properties of the
lexical version of the Lemke-Howson algorithm to construct an algorithm for computing
\simply stable sets" of equilibria in �nite two-person games. A simply stable set is
a weakening of the notion of a stable set de�ned by Kohlberg and Mertens [1988]. It
is a set of strategies that is an equilibrium under a restricted set of perturbations to
the game. Wilson's algorithm only �nds a sample stable set. However the algorithm
is a generalization of the Lemke-Howson algorithm, and like that algorithm, it can be
modi�ed to �nd all `accessible' stable sets.

27

5.2 N Person Games

Yamamoto [1993] proposes a homotopy method for computation of a sample proper equi-
librium for a general n-person �nite game. Since the path of the algorithm is determined
by nonlinear equations, there are issues of numerical approximation similar to those raised
by Wilson [1971] and Rosenm�uller [1971]. Talman and Yang [1994] propose a simplicial
subdivision algorithm for �nding a sample proper equilibrium of �nite n-person games.

Mertens [1988, p. 24] points out that there is in principle a �nite procedure for com-
putation of stable sets for n-person games based on a nearly exhaustive procedure based
on triangulation of semi-algebraic sets (these are de�ned in x6), although he does not
provide a practical algorithm for implementing this. For extensive form games, McK-
elvey and Palfrey [1994] propose a homotopy based algorithm for computing a generically
unique selection from the set of sequential equilibria for extensive form games.

Turning now to general considerations, perhaps the most important feature presented
by the re�nement literature is its diversity of methods. While most re�nements exclude
certain Nash equilibria from the set of solutions, the various notions of stability (Kohlberg
and Mertens [1988]) de�ne a solution to be a set of equilibria, so to solve for the set of
stable equilibria means �nding certain subsets of the set of Nash, or perhaps sequential,
equilibria. Some re�nements are de�ned by requiring approximation by certain types
of approximate equilibria (Selten [1975], Myerson [1977]). Testing an equilibrium by
comparing it, in some sense, with the set of all equilibria (McLennan [1985]), or selected
subsets of the set of equilibria (Cho and Kreps [1987], Cho [1987], Banks and Sobel [1987])
is a possible method. Kalai and Samet [1984] ask for equilibria whose supports are, in
a certain sense, minimal. Although it has not been much discussed in this literature, it
is also possible to use index theory to eliminate some equilibrium, and it is noteworthy
that, as is pointed out by Shapley [1974], for nondegenerate games, starting from the
extraneous solution the Lemke-Howson algorithm halts at an equilibrium with positive
index. (More generally, it always locates an equilibrium with opposite index from the
index of the starting point.)

To a very large extent the computability, in principle, of questions associated with
these concepts, is a consequence of their being describable as semi-algebraic sets. (See,
e.g., Schanuel, Simon and Zame [1989] and Blume and Zame [1994].) Since the various
notions of stability are set valued, they present potential counterexamples to this general
principle.

6 Finding all Equilibria

For many purposes, an algorithm that yields a single sample equilibrium is unsatisfactory.
Even if the resulting equilibrium is perfect, or satis�es some other criterion posed in the
literature on re�nements of Nash equilibrium, we cannot eliminate the possibility that
other equilibria exist and are more salient. Some re�nements pose standards that involve
comparison of a candidate equilibrium with the other equilibria of the game. Even if

28

(perhaps especially if) one believed that models with multiple equilibria were treacherous,
and therefore ill-suited for applications, one would still have an interest in algorithmic
methods for determining if there are multiple equilibria, or other facts about the set of
Nash equilibria.

In recent years computer scientists have made a great deal of progress in under-
standing algorithms that deal with systems of equations and inequalities of multivariate
polynomials. The set of Nash equilibria can be represented as such a system, as we
explained in section 2, so this material is directly applicable to the task at hand, and
the goal of this section will be to give some feeling for the subject by presenting some
of the algorithms that appear, at this point, to have the greatest promise. At this point
there is no literature concerning how these algorithms might be customized for the par-
ticular problems of noncooperative game theory. There is also no literature concerning
how these algorithms might e�ectively utilize knowledge of a sample equilibrium. In the
authors' experience, an important idea in organizing the analysis of a game by hand is
to �nd one equilibrium, then ask how other equilibria might di�er from this one; there
is currently no substantiation of this wisdom in theory or in computational experience.

Generally, the algorithms below are much slower than those discussed earlier, with
running times, and in some cases memory requirements, that grow exponentially as var-
ious parameters of the input (in particular the dimension) are increased. Exponential
algorithms are sometimes loosely described as impractical, and problems for which no
better algorithms exist are thought to be intractable, but here these terms seem inappro-
priate. If all the problems of interest were large in scale, then indeed these algorithms
would have little utility, but in fact the simplest games are the ones referred to most
frequently in the literature, and many interesting models can be expressed in relatively
small trees. While these procedures will not be useful for many problems of interest,
they should certainly vastly expand the set of examples for which complete analysis is
possible.

To begin with, it is important to recognize that a variety of computational tasks are
possible.

1. Determine whether an equilibrium exists or, more commonly, since existence is
usually guaranteed, determine whether there exists an equilibrium with some ad-
ditional property.

2. Determine the dimension of the set of equilibria with some property.

3. In the event that the set of equilibria with some property is 0-dimensional, deter-
mine its cardinality.

4. Compute numerical estimates of the equilibria.

5. Determine the topology of the set of equilibria, for instance by presenting a trian-
gulation.

29

This list is exemplary rather than exhaustive. In fact many re�nements of Nash equi-
librium depend on the topological relationship between the graph of the best response
correspondence and its intersection with the diagonal in �� �. Also, some of the tasks
subsume others, obviously. Even when the less demanding tasks are not the ultimate
goal, they can be useful preparatory steps in more demanding calculations. In particular,
computation of numerical values of the various elements of a set of Nash equilibria can be
facilitated in several ways by a knowledge of how many equilibria there are to compute.

6.1 Feasibility

Important theorems of pure mathematics show that all the tasks above are, in principle,
computationally feasible. A semi-algebraic set is a subset A � R

m that is the set
of points satisfying a propositional formula P (x) built up from polynomial equations
and inequalities in the variables x1; : : : ; xm, the logical operators `and', `or', and `not',
and parentheses. For example P (x) might be the condition `(x1 � 0 and x1

2 = x2
3) or

x2 < 1'. As we stressed in Section 2, the set of Nash equilibria is a semi-algebraic set.
There is a more general class of quanti�ed propositional formulas of the form

P (x) = (Q1y1) : : : (Qkyk)R(x; y)

where Q1; : : : ; Qk 2 f 8; 9 g and R(x; y) is an unquanti�ed propositional formula. In this
formula the variables y1; : : : ; yk are said to be bound by the quanti�ers 8 and 9, while
the variables x1; : : : ; xm are said to be unbound. Perfect equilibrium is an example of
a solution concept for which all known de�nitions involve quanti�ed expressions such as
\for all � > 0 there exists � > 0 such that for all trembles ... " The celebrated Tarski-
Seidenberg theorem asserts that any quanti�ed propositional formula is equivalent to
some unquanti�ed formula, in the sense of determining the same subset of Rm , and in
fact the original proof essentially speci�ed an algorithm for generating the unquanti�ed
equivalent. This algorithm is obviously impractical, and has never been implemented.
More plausible algorithms for quanti�er elimination have been developed (cylindrical
algebraic decomposition (Collins [1975]) can be adapted to this task), but it has also
been shown that the problem is inherently di�cult.

It is easily seen that the class of semi-algebraic sets is closed under intersection, union,
and complementation. It was long an open problem to show that any such set could be
triangulated: Hironaka [1975] was the �rst to present an acceptable proof. An algorithm
developed by Collins [1975], cylindrical algebraic decomposition, supplies a more
general type of decomposition, from which a triangulation can be derived, so this algo-
rithm constitutes an alternative proof of Hironaka's theorem. These facts are important
because the topology of a space with a �nite triangulation is completely determined by
the �nite, combinatoric, data specifying the simplicial complex. Thus a large amount of
topological information is, in principle, computable.

30

6.2 Exemplary Algorithms for semi-algebraic sets

During the last decade the literature in computer science concerning algorithmic analysis
of algebraic systems has grown rapidly. There are now many methods that are, at least
in principle, applicable to the problems that arise in game theory. In contrast, virtually
nothing is known about how one might customize such procedures to take advantage of
the special properties of the systems that arise in game theory. (For instance, expected
payo�s have degree 0 or degree 1 in each of the strategic probabilities.) Here we will
describe two algorithms that currently seem among the most promising from the point
of view of the computation of equilibrium.

The support of a Nash equilibrium is the set of pure strategies that are assigned pos-
itive probability. For a given support the de�nition of Nash equilibrium can be expressed
as a conjunction of polynomial equations (any two strategies in an agent's support have
equal expected payo�, probabilities sum to one) and weak inequalities (a strategy for an
agent outside his/her support does not have a higher expected payo� than a strategy in
the support, probabilities are nonnegative).

We now abstract away from the game-theoretic origins of the problem. Let p1; : : : ; pm
and q1; : : : ; qk be polynomial functions of x 2 R

m . A sign assignment for q1; : : : ; qk is
a vector � = (�1; : : : ; �k) 2 f�; 0;+g

k. The sign assignment is said to be satis�ed at a
point x 2 R

m if �i is the sign of qi(x), and we let �(x) denote the sign assignment that
is satis�ed at x. The computational problem studied here is: determine the number of
common roots of p1; : : : ; pm satisfying each possible sign assignment for q1; : : : ; qk. (We
think of p1; : : : ; pm as the polynomials used to express the requirements that probabilities
sum to one, and that each agent is indi�erent between two alternatives that both receive
positive probability, while q1; : : : ; qk are the polynomials used to express the nonnegativity
of probabilities, and the requirement that the expected utility resulting from an unused
alternatives does not exceed the expected utility resulting from the alternatives that
are used.) A related problem is to determine the set of consistent sign assignments for
q1; : : : ; qk; by de�nition this is f �(x) : x 2 R

m g. Note that these problems are una�ected
if one of the polynomials is multiplied by a positive rational number.

The algorithm outlined here proceeds in two steps. First, we show how to pass from
an instance of the multidimensional problem to a sign assignment problem in which
m = 1. We then describe the Ben-Or, Kozen, Reif [1986] algorithm for unidimensional
sign assignment problems.

6.2.1 The resultant

Let p1; : : : ; pm+1 be homogeneous polynomial functions of x 2 R
m+1 . That is, each pi is a

sum of monomials of the same degree, and in particular, if pi(x) = 0 then, for any � 2 R,
pi(�x) = 0. For each i, the set of monomials whose coe�cients in pi are allowed to be
nonzero is �xed, and we regard the coe�cients of pi as variables, so that each pi may
be viewed as a function of the vector of coe�cients ai. The set of vectors of coe�cients
c = (a1; : : : ; am+1) such that p1; : : : ; pm+1 have a common nonzero root (hence a one-

31

dimensional linear subspace of roots) is the set of points satisfying a particular quanti�ed
formula, so the Tarski-Seidenberg theorem implies that it can be expressed as the set of
points, in the space of the coe�cients, satisfying some unquanti�ed formula. In fact (cf.
van der Waerden [1950]) the closure of this set of coe�cient vectors is the set of roots of a
single irreducible (i.e., unfactorable) polynomial, and the resultant of p1; : : : ; pm+1 is, by
de�nition, the lowest degree polynomial in the coe�cients of p1; : : : ; pm+1 that vanishes
precisely on the closure of the set of coe�cient vectors for which p1; : : : ; pm+1 have a
nonzero root. There is a very familiar example: when each pi is linear, the resultant is
the determinant of the (m+1)�(m+1)-matrix whose i'th row is the vector of coe�cients
of pi.

Some methods for computing the resultant have been known for a long time. (See
van der Waerden [1949].) These methods are \general" in that they allow all monomials
of the same degree as pi to have a nonzero coe�cient in pi. For most problems of
interest the numerical values of at least some of the coe�cients are known at the outset.
It is possible to compute the relevant resultant symbolically, then substitute the given
coe�cient values, but for all but the smallest problems this method is too slow and
consumes too much memory. Recently a literature in mathematics and computer science
has developed around the computation of the sparse resultant, which is the polynomial
derived from the resultant by setting some of the coe�cients to zero. Some of the
proposed algorithms also feature methods of taking advantage of prior knowledge of some
of the nonzero coe�cients. The subject is complex, utilizing surprising and sophisticated
methods. It is developing at a rapid pace, and does not seem near resolution, so that
although it is a central component of methods for computing game theoretic equilibria,
we are unable to treat it in any detail here. For the interested reader we recommend
Canny and Emeris [1993], which in many respects represents the current state of the art,
and references therein.

Now recall that we began withm polynomial functions p1; : : : ; pm on Rm , but more re-
cently we have been considering m+1 polynomial p1; : : : ; pm+1 in the variables x0; : : : ; xm.
We pass from the �rst situation to the second as follows. First, convert the polynomi-
als, originally functions of x1; : : : ; xm into homogeneous polynomials by multiplying each
monomial by a suitable power of the \homogenizing variable" x0, where by \suitable"
we mean that, after all such multiplications, in each polynomial all monomials have the
same total degree. Geometrically this corresponds to the obvious embedding of Rm as
the hyperplane in Rm+1 given by the condition x0 = 1, in the sense that the zeros of the
derived polynomials in this hyperplane correspond to the zeros of the original polynomi-
als. We will not distinguish notationally between the two versions of p1; : : : ; pm. Second,
we add another linear homogeneous polynomial pm+1 = u0x0+ : : :+umxm to the system.

The resultant of the derived system p1; : : : ; pm+1 is called the u-resultant of the
given system p1; : : : ; pm. Taking the coe�cients of p1; : : : ; pm as given numerically, we
regard the u-resultant as a polynomial R(u0; : : : ; um) in u0; : : : ; um. Suppose the system
p1; : : : ; pm (viewed as a system of homogeneous polynomials in the variables x0; : : : ; xm)
has �nitely many one dimensional subspaces of solutions, and �(1); : : : ; �(q) are nonzero

32

points on these lines. Then, according to our de�nition, the resultant should vanish if
and only if some inner product �(�) � u vanishes. Since the resultant is the lowest degree
polynomial in the coe�cients with this property, it follows that R =

Qr
�=1 �

(�) � u. Note
that �(�) corresponds to a root of the original m-variate system p1; : : : ; pm if and only if
�
(�)
0 6= 0.
The following analysis, due to Canny [1988], is the reduction to a single dimension.

The construction begins with the choice of numerical constants c1; : : : ; cm such that

(y) for all � = 1; : : : ; q, if �
(�)
0 = 0, then

Pm
j=1 cj�

(�)
j 6= 0.

(z) for k = 1; : : : ; m and all distinct �; �;
 = 1; : : : ; m,

mX
i=1

ci�
(
)
i � �

(
)
k 6= 2

mX
i=1

ci�
(�)
i �

mX
i=1

ci�
(�)
i � �

(�)
k :

Of course we do not know the points �(1); : : : ; �(q) in advance, so we cannot know
that a particular choice of c1; : : : ; cm is acceptable, but it turns out that a bad choice
can be diagnosed at run time, so one can either take a Monte Carlo approach, choosing
c1; : : : ; cm randomly, which works \with probability one," or one can keep systematic
track of which choices fail, so that with enough such \failure" one will be able to solve
for �(1); : : : ; �(q) by linear algebra.

Form the univariate polynomials

p(x) = R(�x; c1; : : : ; cm)

and
t+i (x) = R(�x; c1; : : : ; (ci + 1); : : : ; cm);

t�i (x) = R(�x; c1; : : : ; (ci � 1); : : : ; cm);

for i = 1; : : : ; m.
Recall that R(u0; : : : ; um) factors as the product of the linear forms u0�

(�)
0 + : : : +

um�
(�)
m . Now if �

(�)
0 = 0, then, as a function of x, the corresponding linear factor of p

is a constant that is nonzero by (y). Since R is de�ned only up to multiplication by a

nonzero scalar, we may assume without loss of generality that the vectors (�
(�)
0 ; : : : ; �(�)m)

with �
(�)
0 6= 0 have been normalized to have �

(�)
0 = 1. The roots of p are then the numbers

�� = c1�
(�)
1 + : : :+ cm�

(�)
m

for those � for which �(�)0 6= 0.
It is possible that some t+i (x) or t

�
i (x) has multiple roots, a situation we wish to

avoid. A polynomial is quadratfrei if it has no square factors. Any polynomial has a
unique factorization as a product of powers of linear factors; the quadratfrei part of
the polynomial is the product of these factors. As we explain in greater detail below,

33

the Euclidean remainder sequence provides a method of computing all square factors
of a univariate polynomial. Let t̂+i (x) and t̂�i (x) be the quadratfrei parts of t

+
i (x) and

t�i (x) respectively. From the factorization of R we conclude that the roots of t̂+i (x) are

the numbers of the form �� + �
(�)
i , while the roots of t̂�i (x) are the numbers of the form

�� � �(�)i . Evidently for given � the roots of t̂+i (2� � x) and t̂�i (2� � x) are the numbers

2� � �� � �
(�)
i and 2� � �� + �

(�)
i respectively. If � = ��, then t̂�i (x) and t̂+i (2�� � x)

have the root �� � �
(�)
i in common, and a little algebra shows that (z) implies that they

cannot have any other common root.
For each i = 1; : : : ; m we form a sequence of polynomials in the variables (�; x) by

setting z0i (�; x) = t̂+i (2� � x), z1i (�; x) = t̂�i (x), and, for j > 1, setting

zji (�; x) = wji (�)z
j�2
i (�; x)� yji (�)z

j�1
i (�; x)xei

where the polynomials wji (�), y
j
i (�), and the integer ei are chosen in some way that insures

that the degree of zji , as a function of x with coe�cients that are polynomials in �, is
less than the degree of zj�1i . Thus ei will be the di�erence between the degrees of zj�2i

and zj�1i , and wji and y
j
i could be the leading coe�cients of zj�1i and zj�2i respectively.

(In practice one may wish to check whether these leading coe�cients have any common
factors, in which case wji and y

j
i could be simpli�ed.) For some J , z

J+1
i will be a function

of � only. If �
(�)
0 6= 0, then zJ+1i (��) = 0, since z0i (��; �) and z1i (��; �) have a common

root, as we saw above. Also, zJi must have degree one as a function of x, since otherwise
z0i (��; �) and z

1
i (��; �) would have multiple common roots.

Thus we may write zJi (�; x) = di(�)x+ni(�). Since z
J
i (��; ��� �

(�)
i) = 0 for all � such

that �
(�)
0 6= 0, setting

ri(�) =
ni(�)

di(�)
+ �;

gives a rational function such that ri(��) = �
(�)
i . (Note that, while ni(�) and di(�) may

depend on the choices of wji and y
j
i made above, their quotient does not.)

Summarizing, once we have computed p and t+i ; t
�
i , i = 1; : : : ; m, the polynomials di

and ni are computed using polynomial remainder sequences, and the rational function ri
is computed according to the formula above. Since p and r1; : : : ; rm have the properties
indicated at the outset, questions about the possible sign assignments of q1; : : : ; qk at
such roots can be rephrased as univariate problems by substituting the functions ri for
the various arguments of q1; : : : ; qk.

6.2.2 Univariate Systems

Now let p and q1; : : : ; qk be polynomials in a single real variable x with rational coef-
�cients. Our goal is to �nd an algorithm determining the number of real roots of p
satisfying each possible sign assignment for q1; : : : ; qk.

For any pair of univariate polynomials f and g, the Euclidean remainder sequence

r0(f; g); : : : ; rn(f; g) is de�ned by

34

r0 = f
r1 = g
ri+1 = si � ri � ri�1 with deg ri+1 < deg ri (i = 1; : : : ; n� 1)
0 = sn � rn � rn�1

(6.1)

That is, ri+1 is the remainder resulting from division of ri�1 by ri, with rn being the last
nonzero remainder.

For most readers the Euclidean remainder sequence will be familiar as the algorithm
for determining the greatest common divisor rn of f and g. In particular, writing p =Q
j(x��j), where the product is over the roots �j of p, then di�erentiating, one can show

that p has multiple roots if and only if gcd(p; p0) is a polynomial of positive degree. More
generally, if p = p1 � p2

2 � : : : � phh, where each p` is quadratfrei (has no square factor),
then (up to multiplication by a nonzero constant)

gcd(p; p0; : : : ; p(`)) = p`+1 � p`+2
2 � : : : � ph

h�`;

so that

p` =
gcd(p; p0; : : : ; p(`�1)) � gcd(p; p0; : : : ; p(`+1))

gcd(p; p0; : : : ; p(`))2
:

Evidently we have described an algorithm for decomposing p into a product of powers
of quadratfrei polynomials. The given problem, determining the number of roots of p
with each sign assignment, is evidently solved if we can determine the number of roots
of each p` with each sign assignment, so henceforth we will assume that p is quadratfrei .
Similarly, we assume that for each j, p and qj are relatively prime, since computation of
gcd's allows us to express the solution of the given problem in terms of the solutions of
smaller problems for which this is the case.

Consider relatively prime polynomials f and g, and let r0 = r0(f; g); : : : ; rn = rn(f; g)
be the Euclidean remainder sequence. For a point a 2 R at which none of the polynomials
in this sequence vanish, let

�(f; g; a) = #f i = 1; : : : ; n : sign(ri�1(a)) 6= sign(ri(a)) g:

For numbers �1 � a < b � 1 at which none of the polynomials r0; : : : ; rn vanish, let

�(f; g; a; b) = �(f; g; a)� �(f; g; b)

A classical result, known as Sturm's Theorem, states that if p is a quadratfrei polynomial,
and a � b are numbers that are not roots of r0 = r0(p; p

0); : : : ; rn = rn(p; p
0), then

�(p; p0; a; b) is the number of roots of p between a and b. The Ben-Or, Kozen, Reif
(1986) algorithm (hereafter BKR) is based on the following generalization, which they
describe as essentially due to Tarski.

35

Theorem 6 p, p0 = dp

dx
, and q are relatively prime polynomials, and a � b are numbers

that are not roots of r0 = r0(p; p
0q); : : : ; rn = rn(p; p

0q), then

�(p; p0q; a; b) = #f x 2 (a; b) : p(x) = 0 and q(x) > 0 g
�#f x 2 (a; b) : p(x) = 0 and q(x) < 0 g:

(6.2)

Proof: To begin with note that (6:2) holds trivially when a = b. We argue by considering
how each side of (6:2) changes as we pass from b = c� � to b = c+ �, where c is a root of
some ri and there are no other roots of any of the polynomials r0; : : : ; rn in the interval
[c � �; c + �]. Since p and p0q are relatively prime, rn is a nonzero constant, so i = n is
not a possibility.

Suppose 1 � i � n� 1. Then (6:1) reduces to ri�1(c) = �ri+1(c), so there is exactly
one sign change in passing from ri�1(c� �) to ri(c� �) and then to ri+1(c� �), regardless
of the sign of ri(c� �). Thus the LHS of (6:2) is una�ected by passing from b = c� � to
b = c+ �, and since i � 1 the RHS is also una�ected.

The interesting case occurs when c is a root of r0 = p. To be concrete, suppose that
q(c) > 0 and p0(c) > 0. Then p0(c)q(c) > 0, and since p0(c) > 0, we have p(c� �) < 0 <
p(c+ �). Therefore

�(p; p0q; c+ �) = �(p; p0q; c� �)� 1:

We see that if (6:2) holds with b = c � � then it also holds with b = c + �. The other
three possibilities for the signs of q(c) and p0(c) are similar, so the proof is complete.

Fix p and q satisfying the hypotheses of the theorem: p, p0, and q are pairwise
relatively prime. Let �+ and �� be the numbers of roots of p between a and b at which
q is positive and negative, respectively. Let

A =
�
1 1
1 �1

�
:

Then

A �
�
�+
��

�
=
�
�(p; p0; a; b)
�(p; p0q; a; b)

�
:

Inverting this system yields

�+ = 1
2
(�(p; p0; a; b) + �(p; p0q; a; b));

�� = 1
2
(�(p; p0; a; b)��(p; p0q; a; b)):

(6.3)

To generalize this we introduce a concept from linear algebra. If B = [bhj] is an m�m
matrix and C = [cik] is an n � n matrix, then the Kronecker product of B and C,
denoted by B
 C, is the mn�mn matrix whose (hi; jk)-entry is bhjcik. Below we will
need the following property of this construct.

Lemma 7 If B and C are nonsingular square matrices, then B
 C is nonsingular.

36

Proof: Letting B and C be as described above, suppose v 2 R
mn is an element of the

kernel of B
 C. Then, for all h and i,

0 =
X
j;k

(bhjcik)vjk =
X
j

bhj(
X
k

cikvjk):

This means that, for each i, the m-vector with jth component
P
k cikvjk is in the kernel

of B and therefore 0. But then we see that for each j, (vj1; : : : ; vjm) is in the kernel of
C. Thus v = 0.

Let p be a quadratfrei polynomial, and let q1; : : : ; qk be polynomials, each of which
has no factor in common with either p or p0. Fix a < b, where these numbers are not
roots of p; p0; q1; : : : ; qk. Let �1; : : : ; �r be the sign assignments that are satis�ed by at
least one root of p between a and b, and let ��1 ; : : : ; ��r be the corresponding numbers of
such roots. Let �1; : : : ; �r be a collection of products of the form q1

e1 � : : : � qk
ek in which

each ei is either 0 or 1. Finally let Z be the r � r matrix whose entry Zij is 1 or �1
according to whether the sign of �j is positive whenever sign assignment �i is satis�ed.
Then

Z �

2
64
��1
...
��r

3
75 =

2
64
�(p; p0�1; a; b)

...
�(p; p0�r; a; b)

3
75 (6.4)

If qk+1 is another polynomial that has no factor in common with p or p
0, then (thinking of

Z
A as obtained by replacing each entry of Z with a 2� 2 cell containing A multiplied
by that entry) the Theorem implies that

(Z
 A) �

2
6666664

��1+
��1�
...

��r+
��r�

3
7777775
=

2
6666664

�(p; p0�1; a; b)
�(p; p0�1qk+1; a; b)

...
�(p; p0�r; a; b)

�(p; p0�rqk+1; a; b)

3
7777775

(6.5)

where (for example) �1+ denotes the sign assignment for q1; : : : ; qk+1 obtained by ap-
pending a 1 to �1.

An algorithm for computing the number of roots of p satisfying each possible sign
assignment for q1; : : : ; qk is now apparent. Let Z above be the k-fold Kronecker product of
the matrix A, compute the numbers �(p; p0�j; a; b) for the r = 2k products �j, and solve
(y) for the numbers ��i . Since Z is a 2k � 2k matrix, the running time of this method is
evidently exponential in k. However, by performing the calculation in an iterative fashion,
adding the polynomials qi one at a time and keeping track only of the sign assignments
that are actually satis�ed by roots of p between a and b, this can be drastically improved.
More precisely, we have the following inductive step of the algorithm:

1. Given an invertible Zk satisfying (6:4) above, let Z
00
k+1 = Zk
 A.

37

2. Solve equation (6:5) above for the numbers of roots of p between a and b satisfying
each sign assignment.

3. Eliminate the zeros of the vector of numbers ��i�, and let Z 0
k+1 be obtained from

Z 00
k+1 by eliminating the corresponding columns.

4. Let Zk+1 be a square matrix consisting of a maximal collection of linearly in-
dependent rows of Z 0

k+1. Eliminate the components of the vector of numbers
�(p; p0�r; a; b) and �(p; p0�rqk+1; a; b) that do not correspond to the rows of Zk+1.

With this modi�cation, the dimension of Zk cannot exceed the number of roots of p,
which of course is bounded by the degree of p, so for given p the running time is linear
in k.

This completes the description of the univariate component of the BKR algorithm.
They point out that, for the particular problem of determining the set of consistent
sign assignments, there is a multidimensional extension. First, observe that we have
e�ectively described an algorithm for determining the set or consistent sign assignments
for a collection p1; : : : ; pk of quadratfrei, pairwise relatively prime polynomials, since
for each pi we may apply the procedure above with pi in the role of p. Now suppose
that p1; : : : ; pk are polynomials in x1; : : : ; xm, and consider the particular problem of
determining the set of sign assignments satis�ed by the various points in Rm . We treat
each polynomial in this sequence as a univariate polynomial, in the single variable xm,
with coe�cients in the �eld of rational functions in the variables x1; : : : ; xm�1. Then
each point in Rm�1 determines a collection of univariate polynomials in xm obtained by
evaluating the coe�cients, for which some collection of sign assignments are possible,
and the sign assignments that are consistent for p1; : : : ; pk will be the ones obtained in
this way as x1; : : : ; xm�1 vary over Rm�1 .

Now observe that the Euclidean remainder sequence is de�ned for univariate polyno-
mials over any �eld of coe�cients, including the �eld of rational functions in x1; : : : ; xm�1.
The consistent sign assignments for p1; : : : ; pk will be those allowed by the sign assign-
ments of the polynomials, in the variables x1; : : : ; xm�1, that arise in the relevant Eu-
clidean remainder sequences computed with respect to xm, then specialized to xm = a =
�1 and xm = b = 1. (That is, we need only the signs of the leading coe�cients.) In
short, given a collection of polynomials in m variables, there is a method of passing to a
collection of polynomials in m� 1 variables whose consistent sign assignments determine
the consistent sign assignments of the given system.

The complexity of this calculation grows very rapidly as the number of variables
increases. An important idea in understanding why this is so is the general principle that
symbolic operations are expensive in comparison with the corresponding calculations
in which symbolic variables are replaced by numerical values as soon as possible. In
contrast with the method based on the u-resultant, the multidimensional BKR algorithm
o�ers very little opportunity for \specialization" of variables before the inductive descent
reaches the univariate case.

38

6.2.3 Numerical computation of the solutions

In view of the reduction to one dimension presented above, for the purposes of numerical
computation it is important to compute real roots of a polynomial p(x) of one variable,
which simultaneously satisfy a set of inequality constraints qi(x) � 0: In the following
discussion we will assume that the number of such roots has already been determined.
In particular, this gives a stopping rule.

There are a number of ways to approach the above problem. One is to �nd all
roots of p; and check each to see if it satis�es the constraint. To �nd all roots, we can
repeatedly apply Sturm's theorem to p until we obtain an interval containing just the
leftmost remaining root, and then apply any of a standard set of line search methods
to �nd the root of p in the interval. We can inductively apply this procedure until all
roots have been found. For each root, we must check whether it satis�es the constraints
qi(x) � 0: Since we only obtain an approximation to the root, the inequality constraints
may be di�cult to verify by function evaluation. Thus another application of BKR may
be necessary to verify that the roots found satisfy the constraints.

An alternative procedure would be to successively add sets of linear equations to �,
applying BKR to the augmented set, until we reach a point where each consistent sign
assignment of the set of polynomials is contained in a unique interval. Then a line search
algorithm can be applied to each interval containing a consistent sign assignment

There are also a number of algorithms which will �nd all roots of a system of polyno-
mials directly. See, e:g:; Ben-Or, Feig, Kozen, and Tiwari [1988], Drexler [1978], Garcia
and Zangwill [1979, 1980], and Huber and Sturmfels [1993].

6.3 Complexity of �nding game theoretic equilibria

The domain of practical applicability of the algorithms described above, and of related
algorithms, is largely determined by the rate at which the time and/or memory require-
ments of the calculation grow as the `size' of the input grows. For many of the algebraic
algorithms that deal with unquanti�ed systems the time complexity is bounded above by
functions that grow exponentially as the dimension of the problem increases. For a �xed
dimension the time requirements are bounded by polynomial functions in appropriate
measures of the size of the inputs. Re
ecting on the fact that Rm has 2m orthants, it
seems unlikely that one can do much better than this for general algebraic computations.

These considerations leave open the possibility that there might be faster algorithms
speci�cally tailored to deal with the algebraic systems arising in game theory. For large
classes of problems a lower bound on the complexity is given by the size of the desired
output. This line of reasoning gives a particular theoretical signi�cance to the already
interesting question of how many Nash equilibria a game can possess.

Relatively little is known theoretically about the number of Nash equilibria of a game.
Since the Nash equilibria are the �xed points of a continuous function, the theory of the
�xed point index allows one to assign an integer called the index to each set of Nash
equilibria that is both open and closed in the relative topology of the set of �xed points. A

39

crucial property of the index is additivity : the index of a union of two disjoint `relatively
clopen' sets is the sum of the indices of the two sets. Since the set of Nash equilibria is a
semi-algebraic set, and any semi-algebraic set is a union of �nitely many path-connected
components, the index is determined by the indices of the components. The general
theory of the index implies that the indices assigned to the elements of any partition of
the set of �xed points must sum to one. It is known that for a �nite normal form game,
generically in the space of payo�s, each equilibrium is isolated, and its index is either 1
or -1, so that the the number of Nash equilibria is odd. Gul, Pearce and Stachetti [1991]
point out that a strict pure equilibrium necessarily has index 1, so that for a generic �nite
normal form game with 2� + 1 Nash equilibria, since all equilibria are strict, at least �
are non-degenerate mixed strategy equilibria.

If we are searching for all equilibria, and have found some number of Nash equilibria,
these results may sometimes give us information that there are Nash equilibria which
have not yet been found. Thus, if we have found an even number of Nash equilibria in a
generic game, we know there must be at least one more. If we have found k pure strategy
equilibria in a generic game, then we know there must be at least k � 1 non-degenerate
mixed equilibria. However, these results are not useful in informing us when we have
found all Nash equilibria, and hence cannot be used to give us a stopping rule in any
numerical computational of Nash equilibria.

The total number of equilibria for a game is the sum over all possible supports of
the number of totally mixed equilibria for that support. So one approach to �nding the
number of equilibria would be to study the number of totally mixed equilibria on each
support. Of course, in practice, we may not be dealing with a game in general position.
So the number of equilibria for a given game could be in�nite. In the case that we are
not dealing with a generic game, a more tractable question may be to �nd the number
of regular equilibria. Regular equilibria are (roughly) Nash equilibria in which unused
strategies have strictly suboptimal payo�s, and in which the derivative of the payo�
function at the equilibrium is of full rank.

Pick an arbitrary s 2 S: Set Di = Si � fsig; and D = [i2NDi: Let � be the number
of permutations of D that do not map any element of any Di into Di; and let �i = jDij!
be the number of permutations of Di: McKelvey and McLennan [1994] prove that the
maximum number of completely mixed regular Nash equilibria is N (S) = �=

Q
i �i: They

also prove that this is a tight bound by showing it is possible to construct games that
achieve the bound. A similar computation gives an upper bound on the number of regular
Nash equilibria for any given support.

For an n-person game with n > 2; usually N (S) > 1: For example, in an n-person
game where each player has 2 pure strategies, N (S) is equal to the number of de-
rangements of the integers from one to n; where a derangement is de�ned as a per-
mutation with no �xed point. In this case N (S) is given by the recursive formula
An = (n � 1) � [An�1+ An�2]; where A1 = 0; and A2 = 1: In a �ve person game,
this is 44, and in a 10 person game, this is 1,334,961.

Let k = min jSij be the size of the smallest strategy space. For �xed n; N (S) is

40

exponential in k and for �xed k; N (S) is exponential in n: Since N (S) is the number of
totally mixed regular Nash equilibria, the number of Nash equilibria must be at least as
large as N (S): Thus, even if algorithms could be constructed whose complexity is linear
in these parameters, it follows from the above result that the worst case computational
complexity of �nding all Nash equilibria is at least exponential in n and k:

For a two-person game, N (S) = 1: A two person game will have at most one regular
equilibrium per support. Hence the maximum number of regular equilibria is no greater
than (2m1�1) � (2m2�1). On the other hand it is easy to construct games with (2m

�

�1)
regular Nash equilibria, where m� = min [m1; m2] : Assume m1 = m� and set ui(s1j; s2k)
= 0 if j 6= k; and ui(s1j; s2k) = aj > 0 if j = k: Then for any non-empty support C � S1;
pC = (pC1 ; p

C
2) is a regular Nash equilibrium if

pCij =
Y

k2C�fjg

ak=(
X
l2C

Y
k2C�flg

ak) when j 2 C;

pCij = 0 otherwise:

Thus, the maximal number of regular equilibria for a two person game is somewhere
between (2m

�

� 1) and (2m1 � 1) � (2m2 � 1). In any case, it is clear that the maximum
number of regular Nash equilibria is exponential in the minimal number of strategies.

The above complexity calculations represent worst case situations. We might hope
that an \average" game would be better behaved than the worst case game. We do not
know the answer to this.

6.3.1 Two Person Games

In the case of two person games, each of the equations and inequalities in the de�nition
of Nash equilibrium is linear. So the problem can be re-formulated as a linear comple-
mentarity problem. Further, for any support the set of equilibria with that support is
a convex set (possibly empty), and its closure is the convex hull of its extreme points.
There are a �nite number of extreme points, each of which corresponds to a set of k
equations and inequalities, whose matrix of coe�cients is of full rank, which yield a fea-
sible solution. It follows that a \brute force" method of �nding all solutions is explicit
enumeration: For each possible support, check for a feasible solution for [5]-[6]. If there
is one, either it is unique, or we can �nd it's �nite set of extreme points, whose convex
hull represents the set of Nash equilibria for that support.

No genericity assumption is required in the above algorithm. This procedure will
locate all equilibria even if there are an in�nite set of equilibria. Such a procedure was
�rst suggested by Mangasarian [1964].

Since the number of possible supports for an n-person game is
Q
i2N(2

mi � 1); it is
clear that even in a two person game, the above method has computational complexity
that is at least exponential in the maximum size of the strategy spaces. Thus we would
not expect this method to be feasible on large games. However, this procedure has been
implemented by Dikhaut and Kaplan [1991] in Mathematica, and by the �rst author

41

in C. The authors' experience indicates one can solve an 8�8 game in approximately
30 seconds on a 486/66MH machine, and games up to 12�12 are feasible. One would
expect that more sophisticated implementations, which take account of the dominance
structure of the game to eliminate whole sets of supports, would substantially improve
such algorithms, at least on average games. Koller and Megiddo [1994] give an algorithm
for �nding all equilibria of a two person extensive form game that runs in time that is
exponential in the size of the extensive form.

6.3.2 N-Person Games

For games with more than two players, even if the input data are rational, an isolated
Nash equilibrium need not be rational (see e.g. Nash [1951] p: 294 for an example).
Second, the set of equilibria with a given support need no longer be a convex, or even
connected set, as the following example illustrates. In this example, n = 3; Si = fsi1; si2g
for i 2 N: The payo� function is given in the following table:

s31 s21 s22 s32 s21 s22
s11 (9; 8; 12) (0; 0; 0) s11 (0; 0; 0) (3; 4; 6)
s12 (0; 0; 0) (9; 8; 2) s12 (3; 4; 4) (0; 0; 0)

A mixed strategy p = (p1; p2; p3) 2 � is of the form p1 = (p; 1 � p); p2 = (q; 1� q);
p3 = (r; 1 � r); for some p; q; r 2 [0; 1]: We abbreviate p by (p; q; r): Then any Nash
equilibrium to the game with full support must satisfy the equations

9qr + 3(1� q)(1� r) = 3q(1� r) + 9(1� q)r

8pr + 4(1� p)(1� r) = 4p(1� r) + 8(1� p)r

12pq + 2(1� p)(1� q) = 6p(1� q) + 4(1� p)q

Collecting terms and factoring, this becomes

(6q � 3)(4r � 1) = 0

(12r � 4)(2p� 1) = 0

(8p� 2)(3q � 1) = 0

This system of equations has exactly two solutions, one at (p; q; r) = (1
4
; 1
2
; 1
3
); and

one at (p; q; r) = (1
2
; 1
3
; 1
4
): (This game has a total of nine equilibria: four pure strategy

equilibria, three equilibria where two players mix and the other adopts a pure strategy,
and two equilibria with full support.) It should be noted that the equilibria in this
example are all regular Nash equilibria, and this is a generic example, in the sense that
any small perturbation of the payo�s in the game will yield a game which also has nine
Nash equilibria, two of which are distinct and isolated equilibria with full support.

So it is clear that the computational problem for the n-person case is substantially
more di�cult than the 2-person case.

42

7 Practical Computational Issues

In the above sections, we have considered the problem of computation of Nash equilibria
primarily from a theoretical point of view. From the point of view of practical application,
there are a number of questions that need to be addressed.

7.1 Software

Many of the algorithms we have discussed are quite complicated. Implementation of
the algorithms in computer code involves issues of numerical stability, which we have
not discussed, as well as questions of e�ciency. One impediment to the routine use of
the methods we have discussed has been the lack of generally available software that
implements the algorithms. For extensive form games, this problem is particularly acute,
since every extensive form game is di�erent. If it were necessary for a researcher to
select and implement their own version of a solution algorithm for each game that they
encounter, then one would not expect that these methods would be applied very widely.

The authors have been involved in development of a computer software package
(GAMBIT) to address the above problem. An early version of the software was de-
veloped by the �rst author.2 Both authors together with Ted Turocy are now involved
in making major revisions to GAMBIT.

7.1.1 Current version of GAMBIT

The original version of GAMBIT is a program that allows for the interactive building
and solving of extensive form games. The user sees on the computer terminal a graphics
display of the current extensive form game, and is able to navigate around the extensive
form using commands from the keyboard. A series of editing options allows the user to
alter the existing tree by adding, inserting, changing or deleting portions of the existing
extensive form. Thus, at a given node, the user may choose to insert a new node, change
the player who has control of that node, change the information set to which the node
belongs, add or delete a branch from that node, delete the node, copy that node to
another part of the tree, or attach an outcome, with payo�s to each of the players, to
that node. After any change, the program checks for consistency of the new extensive
form, and then redraws the tree if the changes are legal. In this manner, GAMBIT allows
for the entry of any valid �nite extensive form game. Games of incomplete information
can be entered by treating the type distribution as an initial chance move, and specifying
player information sets so that each player knows only his/her own type. Stochastic
games can be dealt with by having several game elements, and having one game be the
outcome of another game. In�nitely repeated games with discounting can be dealt with
in a similar manner.

2available via anonymous ftp at hss:caltech:edu in the directories pub=rdm=gambit (DOS version)
and pub=rdm=xgambit (UNIX version.)

43

For any extensive form game, GAMBIT can construct the corresponding normal form
(either the reduced, or full normal form). A number of algorithms for �nding equilibria
for the normal form game are available. The normal form equilibrium strategies that
are found are then converted back to behavioral strategies to obtain solutions to the
extensive form.

7.1.2 Revisions to GAMBIT

We are currently making extensive revisions to GAMBIT to add several features: a
command language, a modular structure, and support for additional algorithms described
in section 6 for computing all equilibria. The most signi�cant feature from the point of
general application is the GAMBIT command language (GCL).

The basic philosophy behind the changes is to provide both a programming envi-
ronment and a computer language to make it easy for both programmers and applied
researchers to manipulate and do operations on extensive and normal form games.

Programming Environment
Regarding the programming environment, a programmer who wants to implement an

algorithm for �nding a particular solution or re�nement should only have to worry about
writing the code for the algorithm, and not have to worry about writing code to build
up or manipulate the game that is to be solved. For example, prior to executing any
algorithm, in addition to building up the game, one would typically want to iteratively
eliminate either weakly or strongly dominated strategies, and only invoke the algorithm
on the reduced game.

To this end, the computer code is being completely rewritten in C++ to make it
modular and allow a standardized interface to the extensive and normal form. Most
algorithms which operate on normal form games need access to the normal form only
to evaluate the payo� at a given mixed strategy pro�le. Similarly, most algorithms
that operate on the extensive form could work either directly o� of the agent normal
form, or only need access to the extensive form to obtain evaluation of certain attributes
of the extensive form (such as the payo� or the beliefs at an information set) for a
given mixed behavioral strategy pro�le. Thus, by providing standard data structures
for mixed strategy pro�les and behavior strategy pro�les and a standard interface to
obtain the necessary function evaluations, this would enable a programmer to write such
algorithms easily. By simply linking in the relevant normal and extensive form libraries,
a programmer could write a standalone program that would have available all of the
functionality for building and manipulating the game forms without the programmer
having to know or have to deal with the internal workings of this code. Alternatively, the
same code could be linked into GAMBIT or the GCL to make it available within those
platforms.

Command Language
Similar issues arise from the point of view of an applied researcher, trying to make

use of existing code developed by others. Here the problem is that code must be avail-

44

able in a way that it can be used by individuals without any particular programming
expertise, but in a way that allows researchers to address questions that are unique to
their own particular application. To some extent a program like GAMBIT provides such
an environment, since it allows easy building and analysis of extensive form games in an
interactive setting. However, while an interactive environment is useful for some applica-
tions, it requires constant user interaction, and hence is not suitable for many potential
uses.

For many applications, it is necessary to solve a game repeatedly with di�erent values
of the parameters, to be able to do intermediate calculations on the results (perhaps
conditional on what one has found out so far), and to have a record of what has been done.
This is particularly true in econometric applications or in certain theoretical applications
such as the search for counterexamples. For such usage, an interactive environment
is unsuitable. To facilitate such usage, we are currently (with Ted Turocy) writing a
command language for GAMBIT. This is a project that is currently in progress. So the
following description is intended only to give a
avor for the intended �nal product.

The command language is a language with Mathematica style syntax. The language
contains a number of data types, some corresponding to standard numerical data types
(int, double, rational) and some corresponding to elements of games (NormalForm,
ExtensiveForm, Node, InformationSet, Player, Outcome, etc.) Variables can be assigned
to take on any of these data types, and these variables can then be operated on by an
array of functions. Each function has a number of required arguments, (assigned by the
operator \� >") as well as some possible optional arguments.

Some functions are useful for building up extensive form games. These commands
each have natural analogues to functions that can be performed (more easily if one only
has to do it once) in the interactive version of GAMBIT. For example

efg := NewEfg[];

root := RootNode[e-> efg];

AppendNode[n->root,pl->0,br->2];

AppendNode[n->root#1,pl->1,br->2];

AppendNode[n->root#2,pl->1,br->2];

AppendNode[n->root#1#2,pl->2,br->2];

AppendNode[n->root#2#2,pl->2,br->2];

MergeInfosets[n1->root#1#2,n2->root#2#2];

SetActionProbs[n->root,probs->{.5,.5}];

is a sequence of commands to create the extensive form tree for a two person simultaneous
move game of poker, illustrated in �gure 1. It de�nes the variable \root" to be the root
node of a new extensive form game, then creates a decision node for player 0 (chance) at
the root node, creates a decision node for player 2 at the �rst branch of the root node
(root#1), does the same at the second branch of the root node, and then merges the two
nodes for player 2 into one information set.
Labels and outcomes could then be attached to nodes of the tree by

45

ACE

KING

(1,1)

FOLD
 -1.000

RAISE 1.000

 2.000

(1,2)

FOLD
 -1.000

RAISE 1.000

 -2.000

 1.000

(2,1)

FOLD
 -1.000

MEET
 -2.000

 1.000

(2,1)

FOLD
 -1.000

MEET
 2.000

A simple poker game

SetActionNames[n->root,name->{``ACE'', ``KING''}];

.

.

AttachOutcome[n->root#1#1,outc->1];\\

SetOutcome[outc->1,value->{-1, 1}];

.

.

Other functions are useful for manipulation and solution of games. For example

nfg := ExtToNorm[e->efg];

AllLemke[n->nfg];

converts the extensive form game \efg" to a normal form game, as in the following table,
and then �nds all solutions that are accessible via the Lemke-Howson algorithm. (In the
normal form, the strategies are labeled by the action taken at each information set, so
\RF" means that Player 1 Raises with an Ace and Folds with a King). This game has a
unique Nash equilibrium at p1 = (0; 0; 2=3; 1=3); and p2 = (1=3; 2=3):

F M
FF (-1, 1) (-1,1)
FR (0,0) (-1.5,1.5)
RF (0,0) (.5,-.5)
RR (1,-1) (0,0)

Table 1

Normal form for poker game

The GCL allows lists of any data type, and has
ow control statements, (While, If,
For) which have similar functionality and syntax as those in Mathematica. So

46

list := {``e01.nfg'', ``e02.nfg'', ``e03.nfg''}

For[i := 1, i <= Length[l->list], i := i + 1,

nfg := ReadNfgFile{file->list[[i]];

While[ElimStrongDom[n-> nfg],DeleteDom[n <-> nfg]];

SimpDiv[n->nfg];

];

would process three �les. For each one it would �rst successively eliminate strongly
dominated strategies, and then apply the simplicial subdivision algorithm to the reduced
game.

7.2 Computational Complexity

We illustrated the functionality of GAMBIT and the GCL with a very simple exam-
ple, which can easily be solved by hand. Only slightly larger examples quickly grow in
complexity to where they are very di�cult or impossible to solve by hand. Computer
programs such as GAMBIT are a useful tool in helping to analyze and solve such games.
For example, the authors have found these programs indispensible in the design, solution
and subsequent econometric analysis of game theory experiments (El-Gamal, McKelvey
and Palfrey [1993] and McKelvey and Palfrey[1992, 1993, 1994]). While these applica-
tions illustrate that there is a domain of problems for which the algorithms discussed in
this survey are useful, they do not indicate how large the domain is. In this section, we
discuss brie
y this question.

Computational complexity considerations suggest that the worst case performance of
all of the algorithms we have discussed is at least exponential in the size of the problem,
so that the methods are inherently constrained in the scope of applicability to problems of
practical interest. However, the worst case performance may not be the correct measure
if problems that arise in practice tend to be more well behaved. An more important
question is what is the average case complexity?

Unfortunately, there does not seem to be any systematic evaluation in the literature
of the algorithms we have discussed in terms of their performance on average games.
Part of the problem is that it is not clear what an average game is.

To get a rough indication of the size of game that is soluble, we generated a set of
random normal form games. For each size game reported, we generated 100 random
games, and compared some of the algorithms on these games. In all cases, we just
searched for one equilibrium.

For two person games, the Lemke-Howson algorithm clearly outperforms the other
algorithms tested (as currently implemented in GAMBIT). We also tested a simplicial
subdivision with restart, and a function minimization algorithm. Table 2 gives informa-
tion for the Lemke-Howson algorithm, on these random games.

47

Number Total
k Pivots Time
2 2.74 .0200
3 3.84 .0156
4 4.56 .0198
6 6.46 .0271
8 7.66 .0383
12 13.16 .0842
16 19.23 .1737
24 33.87 .5772
32 78.17 2.153
48 210.4 12.22
64 426.9 43.68
96 819.2 182.1

Table 2

Performance of Lemke Howson on 100 random games3

(k = number of strategies per player)

Based on the data in Table 2, it appears that the speed of the Lemke-Howson algo-
rithm, at least in this range, is approximately polynomial in the size, k, of the strategy
space.

We have not performed similar comparisons on n-person games. Undoubtedly they
will be considerably slower, since the Lemke-Howson algorithm is no longer available.

The above timings re
ect the time required to solve a normal form of a given size.
There is at least one consideration that would ease the computational burden for a speci�c
application. Namely, there is usually some pre-processing that can substantially reduce
the size of the game before application of any solution algorithms. In the case of extensive
form games, if there are non-trivial subgames, then the subgames can be recursively
solved, and from a computational point of view, the important variable is the maximum
size of a subgame. We have seen also that solving directly on the extensive form can lead
to substantial reduction of the strategy space over the normal form. However, even if one
moves to the normal form, it is important to note that one should use the reduced normal
form, which is typically much smaller than the normal form. Finally, on both normal
and extensive form games, one can successively eliminate strongly dominated strategies
without eliminating any Nash equilibria. If one wants only to �nd a sample equilibrium,
then one can successively eliminate weakly dominated strategies, and any equilibrium
to the reduced game will be an equilibrium to the original game. In short, the e�ective
size of the strategy space for which one has to apply any solution algorithm is frequently
much smaller than the original size of the strategy space.

3Time in seconds on a SUN 4/ELC

48

8 References

Azhar, S., A. McLennan, and J. H. Reif, \Computation of equilibria in noncooperative
games," mimeo, University of Minnesota, (1992)

Banks, J. S., and J. Sobel, \Equilibrium selection in signalling games," Econometrica,
55 (1987): 647-661.

Ben-Or, M., D. Kozen, and J. Reif, \The complexity of elementary algebra and geome-
try," Journal of Computer and System Sciences, 32 (1986): 251-264.

Ben-Or, M., E. Feig, D. Kozen, and P. Tiwari, \A fast parallel algorithm for determining
all roots of a polynomial with real roots," SIAM Journal of Computation, 17 (1988):
1081-1092.

Blair, J. R. S., and D. Mutchler, \Pure strategy equilibria in the presence of imper-
fect information: NP-hard problems," University of Tennessee, Dept. Computer
Science, (December 1993).

Blume, L. and W. R. Zame, \The algebraic geometry of perfect and sequential equilib-
rium," Econometrica, 62 (1994): 783-794.

Brown, G. W., and J. von Neumann, \Solutions of Games by Di�erential Equations," in
Contributions to the Theory of Games, H. W. Kuhn and A. W. Tucker (eds.), An-
nals of Mathematical Studies Number 24, (Princeton University Press, Princeton:
1950):73-79.

Canny, J., \Some algebraic and geometric computations in PSPACE," ACM Symposium
on Theory of Computing, (1988): 460-467.

Canny, J., and I. Emeris, \An e�cient algorithm for the sparse mixed resultant," Pro-
ceedings, AAEEC, (1993): 89-104.

Cho. I., \A re�nement of sequential equilibrium," Econometrica 55 (1987): 1367-1389.

Cho. I., and D. M. Kreps, \Signalling games and stable equilibrium," Quarterly Journal
of Economics 102 (1987): 179-221.

Collins, G. E., \Quanti�er elimination for real closed �elds by cylindrical algebraic
decomposition," in Second Gl Conference on Automata Theory and Formal Lan-
guages, vol. 33 of Lecture Notes in Computer Science, (Berlin: Springer-Verlag,
1975): 134-183.

Dickhaut, J., and T. Kaplan, \A program for �nding Nash equilibria," The Mathematica
Journal, 1 (1991): 87-93.

49

Doup, T. M., \Simplicial Algorithms on the Simplotope," Lecture Notes in Economics
and Mathematical Systems, #318 (Berlin: Springer-Verlag, 1988).

Doup, T. M., and A. J. J. Talman, \A new simplicial variable dimension algorithm to
�nd equilibria on the product space of unit simplices," Mathematical Programming,
37 (1987a): 319-355.

Doup, T. M., and A. J. J. Talman, \A continuous deformation algorithm on the product
space of unit simplices," Mathematics of Operations Research, 12 (1987b): 485-521.

Drexler, F. J., \A homotopy method for the calculation of all zeros of polynomial ideals,"
in Continuation Methods, ed., H. Wacker, (New York: Academic Press, 1978).

Eaves, B. C., \The linear complementarity problem," Management Science, 17 (1971):
612-634.

Eaves, B. C., \Homotopies for computation of �xed points," Mathematical Program-
ming, 3 (1972): 1-22.

El-Gamal, M., R. D. McKelvey, and T. Palfrey, \A Bayesian sequential experimental
study of learning in games," Journal of the American Statistical Society, 42 (1993):
428-435.

van den Elzen, A. H., and A. F. F. Talman, \Finding a Nash equilibrium in noncoop-
erative n-person games by solving a sequence of linear stationary point problems,"
ZOR-methods and Models of Operations Research, 35 (1994): 27-43.

Garcia, C. B., C. E. Lemke, and H. Luethi, \Simplicial approximation of an equilibrium
point for non-cooperative n-person games," in Mathematical Programming, T. C.
Hu and S. M. Robinson, eds, (New York: Academic Press, 1973): 227-260.

Garcia, C. B., and W. I. Zangwill, \Finding all solutions to polynomial systems and
other systems of equations," Mathematical Programming, 16 (1979): 159-76.

Garcia, C. B., and W. I. Zangwill, \Global calculation methods for �nding all solu-
tions to polynomial systems of equations in n variables," in Extremal Methods and
Systems Analysis, (Heidelberg New York: Springer-Verlag, 1980).

Gul, F., D. Pearce, and E. Stacchetti, \A bound on the proportion of pure strategy
equilibria in generic games," mimeo, Stanford University (1991).

Harker, P. T., and J. Pang, \Finite-dimensional variational inequality and nonlin-
ear complementarity problems: A survey of theory, algorithms and applications,"
Mathematical Programming, 48 (1990): 161-220.

Hironaka, H., \Triangulation of algebraic sets," AMS Symposium in Pure Mathematics
29 (1975): 165-185.

50

Hirsch, M. D., C. H. Papadimitriou, and S. A. Vavasis, \Exponential lower bounds for
�nding Brouwer �xed points," Journal of Complexity, 5 (1989): 379-416.

Huber, B., and B. Sturmfels, \A polyhedral method for solving sparse polynomial sys-
tems," mimeo (1993).

Kalai, E., and D. Samet, \Persistent equilibria," International Journal of Game Theory,
13 (1984): 129-144.

Kohlberg, E., and J. F. Mertens, \On the strategic stability of equilibria," Econometrica,
54 (1986): 1003-1037.

Kohlberg, E., and P. J. Reny, \An interpretation of consistent assessments," mimeo
(1993).

Koller, D., and N. Megiddo, \The complexity of two person zero-sum games in extensive
form," Games and Economic Behavior, 4 (1992): 528-552

Koller, D., and N. Megiddo, \Finding mixed strategies with small supports in extensive
games," International Journal of Game Theory, (1994): forthcoming.

Koller, D., N. Megiddo, and B. von Stengel, \E�cient solutions of extensive two-person
games," mimeo, Computer Science Division, University of California at Berkeley
(1994).

Kreps, D. M., and R. Wilson, \Sequential equilibria," Econometrica, 50 (1982): 863-894.

Kuhn, H. W., \Extensive games and the problem of information," in Contribution to
the Theory of Games, H. W. Kuhn and A. W. Tucker, eds., Vol II (1953): 193-216.

Kuhn, H. W., and J. G. MacKinnon, \Sandwich method for �nding �xed points,"
Journal of Optimization Theory and Applications, 17 (1975): 189-204.

van der Laan, G., and A. J. J. Talman. \A restart algorithm for computing �xed points
without an extra dimension," Mathematical Programming, 17 (1979): 74-84.

van der Laan, G., and A. J. J. Talman. \On the computation of �xed points in the
product space of unit simplices and an application to noncooperative n-person
games," Mathematics of Operations Research, 7 (1982): 1-13.

van der Laan, G., and A. J. J. Talman. \Simplicial approximation of solutions to the
nonlinear complementarity problem with lower and upper bounds," Mathematical
Programming, 38 (1987): 1-15.

van der Laan, G., A. J. J. Talman, and L. Van der Heyden. \Simplicial variable dimen-
sion algorithms for solving the nonlinear complementarity problem on a product of
unit simplices using a general labelling," Mathematics of Operations Research, 12
(1987): 377-397.

51

Lemke, C. E., \Bimatrix equilibrium points and mathematical programming," Manage-
ment Science, 11 (1965): 681-689.

Lemke, C. E., and J. T. Howson, Jr., \Equilibrium Points in Bimatrix Games," SIAM
Journal on Applied Math, 12 (1964): 413-423.

Mangasarian, O. L., \Equilibrium points in bimatrix games," Journal of the Society for
Industrial and Applied Mathematics, 12 (1964): 778-780.

Mathiesen, L., \An algorithm based on a sequence of linear complementarity problems
applied to a Walrasian equilibrium model: An example," Mathematical Program-
ming, 37 (1987): 1-18.

McKelvey, R. D., \A Liapunov function for Nash equilibria," mimeo, California Institute
of Technology (1992).

McKelvey, R. D. and A. McLennan, \The maximal generic number of totally mixed
Nash equilibria," mimeo , Department of Economics, University of Minnesota
(1994).

McKelvey, R. D. and T. R. Palfrey, \An experimental analysis of the centipede game,"
Econometrica, 60 (1992): 803-836.

McKelvey, R. D. and T. R. Palfrey, \Quantal response equilibria for normal form
games," Caltech Social Science Working Paper #883, (1993), forthcoming in Games
and Economic Behavior

McKelvey, R. D. and T. R. Palfrey, \Quantal response equilibria for extensive form
games," mimeo, (1994)

McLennan, A., \Justi�able beliefs in sequential equilibrium," Econometrica, 53 (1985):
889-904.

Merrill, O. H., \Applications and extensions of an algorithm that computes �xed points
of certain upper semi-continuous point to set mappings," Ph. D. Thesis, University
of Michigan, Ann Arbor, Michigan (1972).

Mertens, J., \Stable equilibria, a reformulation," mimeo, (1988).

Myerson, R. B., \Re�nements of the Nash equilibrium concept," International Journal
of Game Theory, 7 (1978): 73-80.

Murty, K. G., \Computational complexity and linear pivot methods," Mathematical
Programming Study, 7 (1978): 61-73.

Nash, J. F., \Noncooperative games," Annals of Mathematics, 54 (1951): 289-295.

52

Rosen, J. B., \Existence and uniqueness of equilibrium points for concave N � person
games," Econometrica, 33 (1965): 520-534.

Rosenm�uller, J., \On a generalization of the Lemke-Howson algorithm to noncooperative
N-person games", SIAM Journal of Applied Mathematics, 1 (1971): 73-79.

Saigal, R., \On the convergence rate of algorithms for solving equations that are based
on methods of complementary pivoting," Mathematics of Operations Research, 2
(1977): 108-124.

Scarf, H., \The approximation of �xed points of a continuous mapping," SIAM Journal
of Applied Mathematics, 15 (1967): 1328-1343.

Scarf, H., The Computation of Economic Equilibria (New Haven: Yale University Press,
1973)

Schanuel, S. H., L. K. Simon, and W. R. Zame, \The algebraic geometry of games and
the tracing procedure," in Game Equilibrium Models, Vol II: Methods, Morals and
Markets, R. Selten, ed., (Berlin: Springer-Verlag, 1991).

Selten, R., \Reexamination of the perfectness concept for equilibrium points in extensive
games," International Journal of Game Theory, 4 (1975): 25-55.

Shapley, L., \A note on the Lemke-Howson algorithm," Mathematical Programming
Study, 1 (1974): 175-189.

Shapley, L. S., \On balanced games without sidepayments," in Mathematical Program-
ming, T. C. Hu, and S. M. Robinson, eds, (New York: Academic Press, 1973):
261-290.

Shapley, L., \On the accessibility of �xed points," in Game Theory and Mathematical
Economics , O. Moeschlin, and D Pallaschke, eds. (North Holland, 1981): 367-377.

Smale, S., \A convergent process of price adjustment and global Newton methods,"
Journal of Mathematical Economics, 3 (1976): 107-120.

von Stengel, B., \LP representation and e�cient computation of behavior strategies,"
mimeo (1994).

Talman, A. J. J., and Z. Yang, \A simplicial algorithm for computing proper equilibria
of �nite games, Center Discussion Paper 9418, Tilburg University, Tilburg (1994).

Tarski, A., A Decision Method for Elementary Algebra and Geometry, (Berkeley: Uni-
versity of California Press, 1951).

Todd, M. J., \On the computational complexity of piecewise-linear homotopy algo-
rithms," Mathematical Programming, 24 (1982): 216-224.

53

Todd, M. J., The Computation of Fixed Points and Applications, (Berlin: Springer-
Verlag, 1976).

van der Waerden, B. L., Modern Algebra, (New York: Ungar Publishing Co, 1949).

Wilson, R., \Computing equilibria of n-person games," SIAM Journal of Applied Math-
ematics, 21 (1971): 80-87.

Wilson, R., \Computing equilibria of two-person games from the extensive form," Man-
agement Science, 18 (1972): 448-460.

Wilson, R., \Computing simply stable equilibria," Econometrica, 60 (1992): 1039-1070.

Yamamoto, Y., \A path-following procedure to �nd a proper equilibrium of �nite
games," International Journal of Game Theory, 22 (1993): 49-59.

Zangwill, W. I and C. B. Garcia, Pathways to Solutions, Fixed Points, and Equilibria,
(Englewood Cli�s: Prentice-Hall, 1981).

54

Index

i-stopping simplex, 14

accessible, 12
actions, 20
adjacent, 10, 15
agents, 20
algorithms

function minimization, 18
Lemke-Howson, 5
non-linear complementarity, 17
simplicial subdivision, 13
homotopy, 16
restart, 16

SLCP, 17
almost completely labeled, 14

basic solution, 6
basis, 6, 24
behavior strategy, 21
beliefs, 22
best response correspondence, 3

complementary, 7
completely labeled, 14
computational complexity, 13, 17, 36, 37,

44
consistent, 24, 29
consistent assessments, 22
cylindrical algebraic decomposition, 29

derangements, 38

endpoint, 11
equilibria

�nding all, 27
number of, 37
regular, 38

equilibrium re�nements, 25
perfect, 25, 28
proper, 26
sequential, 20, 22, 23, 26

stable set, 26
Euclidean remainder sequence, 33
extensive form, 19
extraneous solution, 5

face, 14
facet, 14
feasible, 6
�xed point, 3

GAMBIT, 41
GCL, 41

homotopy method, 16

immediate predecessor, 20
immediately accessible, 12
index, 37
information partition, 20
initial assessment, 20
initial nodes, 20

Kronecker product, 34

labeling, 14
Lemke-Howson algorithm, 5
lex negative, 9
lex-feasible, 9
linear complementarity problem, 6
loop, 11

myopically rational, 23

Nash equilibrium, 3
nodes, 20
non-linear complementarity, 4, 17
nondegenerate, 9
noninitial nodes, 20
normal form, 2

ordered set, 14

path, 11

55

path following algorithms, 5
payo�, 22
payo� function, 2
perfect equilibrium, 25, 26, 28
pivot matrix, 7
players, 2
precedes, 20
proper equilibrium, 26
pure strategies, 2, 23

quadratfrei, 32
quadratfrei part, 32
quanti�ed propositional formulas, 28

realization equivalent, 23
realization plan, 21
regular equilibria, 38
restart method, 16
resultant, 30

sparse, 30
u-resultant, 31

sample equilibrium, 1, 5
semi-algebraic set, 4, 28
sequence form, 21
sequential equilibrium, 20, 22, 23, 26
sign assignment, 29
simplex, 14
simplicial subdivision, 13
simplotope, 14
simply stable sets, 26
SLCP, 17
sparse resultant, 30
Sperner-proper, 14
stable set, 26
stationary point problem, 4, 18
strategic nodes, 20
strategy set, 2
support, 29

terminal nodes, 20
terminal simplex, 15
totally mixed, 22
triangulation, 14

u-resultant, 31
unbound, 28

zero sum games, 12

56

