Overview

- Motivation and definitions
- Representation: Properties
- Algorithms

Motivation

- Multi-party games: large number of players.
- Traditional representation: matrix or normal form
 - every player "plays" with all others.
 - payoff matrix for each player grows exponentially with number of players!
- New representation: Graphical games
 - exploits "game structure"
 - limited interaction: each player only "plays" with a "small" subset of all other players.
 - More compact representation

[See accompanying PowerPoint presentation]
Some "Strategic Properties" of Graphical Games

- Problem still non-trivial: the eq. strategy of a player "affects" that of every other player (if G fully connected)
- Let X, Y subset of player. If X, Y disconnected in G, X, Y form independent games
- For every player i, if we "set" (the strategies for) the neighbors of i in G, we get 2 independent subgames:
 1. i by himself; 2. all non-neighbors of i.

The (Conditional) eq. of each subgame are also independent.

- More generally, let
 \[S = \text{set of players that "separates" the remaining set of players into 2 non-empty subsets} \]
 \[X, Y \]

 If we "set" the players in S, the resulting subgame (and conditional eq.) for players in X is independent of that for players in Y.

Ex: G - a tree

\[S = \{ i \} \]

(Dynamic Programming) Alg. exploits these properties.
Consider assigning a NE for root of tree

What do we need?

- "Set" $V = v$; Consider $\bar{U} = \bar{u}$, and ask
 - Is $V = v$ a best response to $\bar{U} = \bar{u}$?
 - $\forall i$, Does there exist an eq. "upstream" in which U_i plays u_i when V is "set" to v?
 $$T_{Vu_i}(v, u_i)$$

- If "yes" to all questions, \exists a NE in which $V = v$ and $\bar{U} = \bar{u}$
 Such a \bar{u} is called a witness (to v)

Otherwise, keep trying other values for v and \bar{u} until we find one!
[NE existence \Rightarrow there is at least one such setting (v, \bar{u})]

- For such (v, \bar{u}), let $V = v$ and $\bar{U} = \bar{u}$ in NE.
- Recursively, apply same "procedure" for each parent U_i

How do we get $T_{Vu_i}(v, u_i)$?
Applies dynamic programming.
[See accompanying PowerPoint presentation]
Approximation Algorithm

Basic idea:

- **Discretize mixed-strategy space**
 - (uniformly along each "dimension"
 - \(\Rightarrow \) uniform grid)

 \(\forall \varepsilon \in (0, 2, 2, 1) \)

 \(\varepsilon \)-grid \(\Rightarrow \) each player has \(\Gamma \frac{1}{2} \) mixed strategies to consider.

- Use approximate eq. condition:
 - replace "best-response" by "\(\varepsilon \)-best-response"
 - recall, \(\hat{\pi} \) is \(\varepsilon \)-NE if no player can gain more than \(\varepsilon \) by unilaterally deviating from \(\hat{\pi} \)

 \(\forall i, \max_a M_i(\hat{\pi}[i:a]) - M_i(\hat{\pi}) \leq \varepsilon \)

So,

- Table size: \(\Gamma \frac{1}{2} \)
- Computation time (per player): \(O(\Gamma \frac{1}{2} K) \)

[See accompanying PowerPoint presentation for an example]

Now, how should we set \(\varepsilon \) s.t.

if \(\hat{\pi} \) is NE, \(\hat{\pi} \) in \(\varepsilon \)-grid, closest(inL) to \(\hat{\pi} \),

then \(\hat{\pi} \) is \(\varepsilon \)-NE?
Approximation Algorithm (Analysis)

Let \bar{p}, \bar{q} be joint mixed strategies; $K = \text{max}\text{ neighborhood size}$

Lemma 1: If $\forall i, p_i - q_i < \frac{\varepsilon}{2}$, then

$$|M_i(\bar{p}) - M_i(\bar{q})| \leq \frac{((1+\varepsilon)K - 1)}{2}$$

$$\leq K\varepsilon \uparrow$$

(for $\varepsilon < \frac{2}{K}$)

Pf: [See accompanying note]

Lemma 2: If \bar{p} is NE, \bar{q} in ε-grid and closest to \bar{p}, and $\varepsilon < \frac{2}{K}$, then \bar{q} is $(2K\varepsilon)$-NE.

Pf: $\forall i, M_i(\bar{q}) \geq M_i(\bar{p}) - K\varepsilon$ (By Lemma 1)

$$= \max_a M_i(\bar{p}[i:a]) - K\varepsilon$$ (By NE defn)

$$\geq \max_a M_i(\bar{q}[i:a]) - K\varepsilon - K\varepsilon$$ (By Lemma 1)

$$= -2K\varepsilon$$

Let $\varepsilon = \frac{\varepsilon}{2K}$. So $\varepsilon < \frac{2K\varepsilon}{E} + 1$

⇒ Table size $\leq \left(\frac{2K\varepsilon}{E} + 1\right)^2$ ⇒ rep.size, poly in $\frac{1}{E}, K, n$

⇒ Computation per player $\leq \left(\frac{2K\varepsilon}{E} + 1\right)^K$ ⇒ running time poly in $\frac{1}{E}, n, 2^{\log K}$

Result:
- **ApproxTreeNash** computes an ε-NE
- Every NE has a representative ε-NE in tables.
- Table representation size, poly. in model size.
- If $K \text{ s.t. } K\log K = O(\log n)$, computation time also poly. in model size.

[What about multi-action games with $m > 2$?]
Exact Algorithm: Tree case, 2-actions [All equilibria]

Basic idea:

- Easy to compute/represent exactly the tables sent by leaves:
 - union of "axis-parallel" "line segments"
- Use (represented) exact tables received from parents to recursively compute/represent exact tables sent to child.
 - Invariance: exact tables are finite union of "axis-parallel" "line segments"

Tables sent "down" by leaves

Consider expected payoff of leaf U_i

$$M_{U_i}(u_i,v) = u_i \left[M_{U_i}(1,v) - M_{U_i}(0,v) \right] + M_{U_i}(0,v)$$

$$\Delta_{U_i}(v)$$

$\forall v \in [0,1],$

$\Delta(v) > 0 \Rightarrow U_i = 1$ is best response to $V = v$

$\Delta(v) < 0 \Rightarrow U_i = 0$

$\Delta(v) = 0 \Rightarrow U_i = u', \forall u' \in [0,1]$

["U_i is indifferent to $V = v"]$

How can we find "indifference" value v'?

[if it exists...]
Exact Alg. (Continued)

Finding "indifference" value \(v' \)

\[
\Delta(v) = v \left[M_{u_i}(1,1) - M_{u_i}(1,0) - (M_{u_i}(0,1) - M_{u_i}(0,0)) \right] \\
+ M_{u_i}(1,0) + M_{u_i}(0,0)
\]

\(\Delta(v') = 0 \) iff either \(b = 0 = c \) or \(v' = \frac{-c}{b}, \ b \neq 0 \).

(only care about \(v \in [0,1] \) !)

Let \(u_i : [0,1] \rightarrow \mathbb{R} \) be an indicator function \(u_i(v) = I(\Delta(v) > 0) \) \(\forall (v, u_i) \in [0,1]^2 \),

\[T_{u_i}(v, u_i) = 1 \] iff

- \(v \in [0, v'] \) and \(u_i \in [u_i(v), u_i(v')] \), or
- \(v \in [v', 1] \) and \(u_i \in [0, 1] \), or
- \(v \in [v', 1] \) and \(u_i \in [u_i(v), u_i(v')] \)

\(v \)-list representation of \(T_{u_i} \)

\[
\begin{align*}
V & \quad V' = \{ v_0, v_1, v_2, v_3 \} \\
I_0 & \quad [v_0] \\
I_1 & \quad [v_1, v_2] \\
I_2 & \quad [v_2, v_3] \\
I_3 & \quad [v_3] \\
\end{align*}
\]

In general, a sequence of points in \([0,1]\]

\(a = v_0 \leq v_1 \leq \ldots \leq v_m = 1 \)

and \(\forall k = 0, \ldots, m, I_k = [v_k, v_{k+1}] \) is the union of the intervals in \([0,1]\)

\[I_1 \cup I_2 \]

[Remark: At least, \(t = 1 \)].
Consider $u_1, u_2, 0, u_k, v$.

Merge v-lists from all parents.

- Consider an individual $v \in [v_0, v_{t+1}]$.

$$\bar{u} \in I, x \times I_k, I_i \in \{I_j, j=1, \ldots, t\}$$

How do we find values for ω s.t. V is indifferent $\forall v \in [v_0, v_{t+1}]$?

Same idea: $M_v(\omega, \bar{u}) = v [M_v(1, \omega, \bar{u}) - M_v(0, \omega, \bar{u})] + M_v(0, \omega, \bar{u})$

$$\Delta_v(\omega, \bar{u}) = M_v(1, \omega, \bar{u}) - M_v(0, \omega, \bar{u})$$

$$= \omega [M_v(1, 1, \bar{u}) - M_v(1, 0, \bar{u}) - (M_v(0, 1, \bar{u}) - M_v(0, 0, \bar{u}))] + M_v(1, 0, \bar{u}) - M_v(0, 0, \bar{u})$$

So we want

$$\omega \in W = \{\omega \in [0, 1] : \exists \bar{u} \in I, x \times I_k \text{ s.t. } \Delta(\omega, \bar{u}) = 0\}$$

[See accompanying paper by Kearns et al., 2001]

- Only need to check extremal points of $I, x \times I_k$!
Exact Alg.
Summary:

- Can show size of tables grow exponentially with number of players [See Kearns et al., 2001]

- Exact alg. computes a representation of all exact NE in a tree graphical game in time exponential in model size.

- Possible to generate NE from the resulting tables.
Exact Algorithm: Tree case, 2-action, single NE

- [See accompanying paper by Littman et al. 2002]

- Alg. computes single exact NE in 2-action, tree graphical games in time poly in model size.

- **Basic idea:**
 - Pick only one "path" in table $T(w,r)$ s.t.
 \[\forall w, \exists r \text{ s.t. } T(w,r) = 1. \]
 [ignore others]
 - Which "path" should select?
 The one with minimum number of "turns"