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Abstract

We introduce Game networks (G nets), a
novel representation for multi-agent decision
problems. Compared to other game-theoretic
representations, such as strategic or extensive
forms, G nets are more structured and more
compact; more fundamentally, G nets consti-
tute a computationally advantageous frame-
work for strategic inference, as both prob-
ability and utility independencies are cap-
tured in the structure of the network and can
be exploited in order to simplify the infer-
ence process. An important aspect of multi-
agent reasoning is the identification of some
or all of the strategic equilibria in a game;
we present original convergence methods for
strategic equilibrium which can take advan-
tage of strategic separabilities in the G net
structure in order to simplify the computa-
tions. Specifically, we describe a method
which identifies a unique equilibrium as a
function of the game payoffs, and one which
identifies all equilibria.

1 Introduction

The formal analysis of multi-agent systems is a topic
of interest to both economic theory and artificial intel-
ligence. While game-theoretic notions and method-
ologies have already populated the economic main-
stream, only recently they started to attract interest in
the context of artificial intelligence, where their inte-
gration with existing methods constitutes a promising
area of new research.

In this paper we introduce a new class of graphical rep-
resentations for multi-agent decision problems, Game
networks (G nets). Compared to standard game-
theoretic representations, such as strategic and exten-
sive forms, G nets are more structured and more com-

pact, as both probabilities and utilities enjoy a mod-
ular representation. More fundamentally, G nets pro-
vide a computationally advantageous framework for
strategic inference, as one can exploit conditional prob-
ability and utility independencies to reduce the com-
plexity of the inference process.

An important aspect of multi-agent reasoning is the
identification of some or all of the strategic equilibria
in a game. For all but the simplest classes of games
this a computationally demanding task, which can in
principle be alleviated by making more efficient use of
the information contained in the game structure (see
[MM96] for a survey on the recent state of the art
on the computation of strategic equilibria). We de-
rive original convergence methods for strategic equi-
librium which can exploit strategic separabilities in
the G net representation in order to simplify computa-
tions. Specifically, we describe a path-tracking method
which identifies a unique equilibrium as a function of
the game payoffs, and one which identifies all equilib-
ria.

G nets are closely related to a novel representation
for single-agent decision problems, Expected Utility
networks (EU nets), introduced in [LMS99]. EU nets
generalize Markovian networks from the AI literature
[Pea88], and provide a modular and compact frame-
work for strategic inference.

EU nets exploit a novel notion of utility independence,
closely related to its probabilistic counterpart. To-
gether, conditional probability and utility indepen-
dence imply conditional expected utility (or strate-
gic) independence. What is important about strate-
gically independent decisions is that they can be effec-
tively decentralized: a single, complicated agent can
be replaced by simpler, conditionally independent sub-
agents, who can do just as well. This property is of
interest not only to artificial intelligence, since it can
be exploited to reduce the complexity of planning, but
also to economic theory, as it suggests a principled way
for the identification of optimal task allocations within



economic organizations.

Yet, EU nets are somewhat limited for the purpose
of modeling, as they do not capture causal relation-
ships among events. Obviating to such limitation is a
primary motivation for the introduction of G nets.

Game networks stand in roughly the same relation-
ship to Bayesian networks [Pea88] as Expected Utility
networks to Markovian networks. Bayesian networks
encompass a probabilistic notion of causality, whereas
the causal “parents” of each variable in the network are
assumed to determine its conditional probability, but
not its truth value. While the resulting implicit rep-
resentation of the state space affords significant com-
putational advantages, it still captures all the relevant
information for the purpose of Bayesian inference, and
provides an intuitive and compact modeling frame-
work. Moreover, the probabilistic independencies cap-
tured by the network structure can be exploited to
simplify the inference process, either directly or by first
passing to a Markovian representation.

G nets encompass a decision-theoretic notion of causal-
ity, Bayesian rationality, whereas the agents’ prefer-
ences constrain the conditional probabilities of the pos-
sible actions, but not their truth values. We argue that
Bayesian rationality captures all the relevant informa-
tion for the purpose of strategic inference, while at the
same time avoiding some difficulties faced by other no-
tions of causality. As in the case of Bayesian networks,
one can either perform strategic inference directly on
a G net, or switch to a (multi-agent) EU net represen-
tation first.

The rest of the paper is organized as follows. In section
2 we briefly present the decision-theoretic background
of G nets. In section 3 we give a formal definition of
G nets, and discuss how they can be used to model
multi-agent decision problems in the context of a sim-
ple example. Finally, in section 4 we give existence
and convergence results for strategic equilibrium in G
nets.

2 Decision-theoretic preliminaries

In this section we present the decision-theoretic back-
ground of G nets; we first give a brief summary of
the framework developed in [LMS98], and then discuss
how to incorporate an appropriate notion of causality
within the framework.

Let A be a Boolean algebra of events (or propositions),
and % a preference ordering on the nonempty events
A−{∅} .Without loss of generality, we extend % to the
entire algebra A by assuming E � ∅ for all nonempty
E ∈ A.

We now define what it means for a preference ordering
% to admit an expected utility representation.

Definition 1 An expected utility representation of %
on A is a pair (P,U), where P : A → [0, 1] is a prob-
ability function and U : A → R+ is a non-negative
utility function such that:

1. U(E) ≥ U(F ) if and only if E % F

2. U(E)P (E) =
∑

k U(Ek)P (Ek) for any finite,
measurable partition {Ek} of E.

Without loss of generality, we assume that the utility
of the empty set is zero.

Example 1 Let ∆ be the set of all probability mea-
sures defined on a finite algebra A, and let % be a pref-
erence ordering on ∆ which admits a von Neumann-
Morgenstern expected utility representation. Let P ∈
∆ be a given, strictly positive probability measure
representing the agent’s prior beliefs, and for all
nonempty E ∈ A let PE be the conditional measure
defined by PE(F ) = P (E ∩ F )/P (E), F ∈ A. Pref-
erences over posterior probabilities {PE} can be iden-
tified with preferences over nonempty events in A by
imposing E % F if and only if PE % PF . Then the
resulting preference ordering on A admits an expected
utility representation in our sense.

We say that a family {pE}E∈A−{∅} is a conditional
probability system if it assigns to every non-empty con-
ditioning event E ∈ A a conditional probability mea-
sure over A∩E, such that the pE agree with Bayesian
conditioning whenever possible; specifically, for any
nonempty E,F,G ∈ A such that G ⊂ F ⊂ E, one
has that pE(G) = pE(F )pF (G).

Definition 2 A conditional expected utility repre-
sentation of % on A is a pair (p, u), where p :=
{pE}E∈A−{∅} is a conditional probability system and
u : A → R+ is a non-negative utility function such
that:

• u(E) ≥ u(F ) if and only if E % F

• u(E) =
∑

u(Ek)pE(Ek) for any finite, measur-
able partition {Ek} of E.

Let I be a finite set of agents. Agent i ∈ I is assumed
to have preferences not only about the basic events
in a finite algebra A0 and its own preferences, but on
other agents’ preferences as well.

Let W be a set of possible worlds, and %iw a function
which associates to each pair (i, w) a preference order-
ing on 2W . For any E,F ∈ A0, let [E �i F ] denote the



proposition
{

w ∈W | E �iw F
}

(”i (strictly) prefersE

to F”), and by [E ∼i F ] the set
{

w ∈W | E ∼iw F
}

(”i is indifferent between E and F”). Furthermore, let
Bi0 denote the set of all finite intersections of proposi-
tions [E �i F ] and [E ∼i F ].

We recursively define n-th order (n > 0) algebras and
preferences:

• An = An−1∪ (∪i∈IB
i
n−1) is the algebra generated

by events in An−1 and Bin−1, i ∈ I

• Bin (i ∈ I) is the set of all finite intersections of
propositions [E �i F ], [E ∼i F ], where E,F ∈
An

• A = ∪nAn is the algebra generated by events
E ∈ An (n ≥ 0), and Bi is the set of all finite
intersections of propositions [E �i F ], [E ∼i F ],
where E,F ∈ A.

Notice that Bi ⊂ A, and hence A = A ∪ (∪i∈IBi).
Therefore, further iteration is superfluous: all the pref-
erences on events in A are already included in A.

Under regularity conditions described in [LMS98]
there exists an expected utility representation of agent
i’s preferences on events in An, for all finite n and for
all i ∈ I , which satisfies

U i(E)P i(E) =
∑

U i(Ek)P
i(Ek)

for any finite, An-measurable partition {Ek} of E. Ob-
serve that, since here probabilities and utilities emerge
purely as expressions of preferences, statements about
(unobservable, but strategically relevant) probabilities
and utilities can be made sense of as statements about
preferences (observable, at least in principle). Also,
statements about higher-order probabilities and utili-
ties (such as “I believe that you consider E more likely
than F”, or “I would like you to believe F”, etc.,
also useful when carrying out explicit strategic reason-
ing) can be similarly interpreted as statements about
higher-order preferences.

Furthermore, under additional regularity conditions,
for all i ∈ I there exists a conditional expected utility
representation of % on A which satisfies

ui(E ∩ F ) =
∑

ui(Ek ∩ F )p
i
E(Ek)

for all (E,F ) ∈ A×Bi, and for any finite, measurable
partition {Ek} of E.1

1For a precise statement of the result and for proofs see
[LM99].

So far the representation does not involve any notion
of causality: in other words, nothing links the agents’
preferences on events with the actual occurrence of
those events. To bring causality into the picture we
first assume that the set of basic events A0 is the
Boolean algebra generated by the available moves in
an extensive form game. For each information set H
in the extensive form, let {EH} be the partition gen-
erated by the available moves at H. We shall refer to
the EH as optional events, or actions.

We could now assume that, for any information set H
associated to agent i, and for any EH and FH which
are available actions at H , EH �i FH implies FH = ∅;
in other words, we could regard any action which is not
the most preferred by the agent at the corresponding
information set as impossible. One problem with this
approach is that all dominated actions, being impossi-
ble, must be indifferent to each other. In other words,
for no three actions EH , FH , GH can it be the case that
EH �i FH �i GH . This naive treatment of causality
leads to significant difficulties when reasoning about
weakly dominated strategies, as the latter cannot be
regarded as disbelieved yet possible events.

We avoid this problem by adopting a probabilistic no-
tion of causality. In this view, all optional events are
possible; the notion of possibility logically precedes
the agents’ decisions, and is part of the description
of the game. In particular, this will allow us to regard
a prisoner’s dilemma, where cooperation is indeed an
available action, as logically distinct from a degenerate
game in which the two players have no choice at all.

The following property links preferences to actions;
for any two actions EH , FH available to agent i at
H, EH �i FH implies pH(FH) = 0. The interpre-
tation of this assumption, which we shall refer to as
Bayesian rationality, is that agents do not directly as-
sign the truth values of optional events; rather, their
preferences constrain the conditional probabilities of
the possible actions in such a way that the probabil-
ity of any dominated action is equal to zero. Intu-
itively, we are assuming that the agents’ decisions may
be prone to occasional mistakes, but the likelihood of
any such mistake is infinitesimal.

3 Game Networks

There are two standard representations for mathemat-
ical games: the normal (or strategic) form, and the
extensive form. The extensive form is more structured
than the normal form: not only it describes the iden-
tities of the players, the strategies available to each
player, and the payoff functions, as the normal form
does; but also the information held by the agents at
any possible state of the system, and the causal struc-



ture of events in the game. The extensive form is at
least as general as the normal form: any game in nor-
mal form can be interpreted as a game with simulta-
neous moves, and represented in the extensive form.
The reverse operation (from the extensive to the nor-
mal form) is also possible, but some of the structural
information is lost in the process, and hence the result-
ing normal-form representation is often impractically
large.

Even though extensive-form representations are more
compact than normal-form ones, they may still be
quite redundant: often, in concrete examples, differ-
ent end nodes may have identical payoffs, and the
same actions may be available at different informa-
tion sets, but the recognition of those symmetries does
not lead to a more parsimonious representation. Fur-
thermore, changing a few details in the setup usually
entails rewriting the whole game; in other words, the
extensive-form representation is not particularly mod-
ular. As we shall see, compared to extensive forms G
nets are at least as general, but more structured and
more compact.

In order to formally define G nets we need some
more notation, which we borrow from [LMS99]. Let
{Xk}k∈N be a set of variables, and for anyM ⊂ N let
XM := ×k∈MXk. Let u : XN → R+ be a strictly posi-
tive utility function, and let {A,B,C} be a partition of
N ; also, define −A := B∪C. Finally, let w(xA|x−A) =
u(xA, x−A)/u(x

0
A, x−A), where x

0 ∈ XN is an arbi-
trary reference point; w(xA|x−A) is called the utility
potential at XA, and captures how the utility changes
when the variables in A shift away from the reference
point, while the values of the remaning variables are
held fixed at x−A. If, for all (xA, x−A) , the value of
w(xA|x−A) only depends on xC , and not on xB , we say
that XA is u-independent of XB given XC , and define
new quantities w(xA|xC) := w(xA|x0B , xC). If XA and
XB are both probabilistically and u-independent given
XC then we say that they are strategically independent
given XC . Strategic independence is a useful notion:
if XA is strategically independent of XB given XC
then the conditional expected utility of XA given XC
does not depend on the values of XB , and vice versa
(see [LMS99]). Hence, decisions regardingXA and XB
given XC can be effectively decentralized: more gener-
ally, in the presence of strategic separabilities a single,
complicated decision-maker can be replaced by a hier-
archy of simpler, conditionally independent sub-agents
who can do just as well.

3.1 A formal definition

G nets are comprised of a finite, ordered set of nodes
XN (where N = {1, ..., n}), corresponding to a set of
strategically relevant variables which we also assume to

be finitely-valued, a partition I of N which determines
the identity of the agent responsible for the decision at
each node2 (including Nature), and two types of arc,
representing causal and preferential (teleological) de-
pendencies. Causal dependencies are represented by
directed (probability) arcs, with no cycles, and prefer-
ential dependencies by undirected (utility) arcs.

A node Xk (k ∈ N) is associated with two quantities,
w(xk |xUN(k)) and p(xk |xPP (k)), where UN(k) are the
nodes directly connected to Xk via utility arcs (the
utility neighbors of Xk), and PP (k) is the set of prob-
ability parents 3 of Xk. While the p(xk|xPP (k)) iden-
tify a conditional probability system, the same for all
players, w is a vector of functions

(

wi
)

i∈I
, one for each

player. In turn, the wi(xk|xUN(k)) are interpreted as
the utility potentials coming from some strictly posi-
tive utility finction ui.

The incoming probability arcs represent those events
which the agent who controls Xk can observe at the
moment of decision. A decision-maker (including Na-
ture) may choose any random rule, as long as it de-
pends on the truth values of the XPP (k) only. An
element of the partition generated by the XPP (k) is
called an information set at k, and represents all the
information available to the agent at the moment of
decision.

We say that payoffs are normal if the utilities of all
states are positive, and are expressed as multiples
of ui(x0) (where x0 is the arbitrary reference point).
Clearly, any game can be transformed in one with nor-
mal payoffs via a suitable positive affine rescaling of
the original payoffs. Hence, without loss of generality,
we shall concentrate on games with normal payoffs.

A G net in which only the probabilities of Nature’s ac-
tions (and not those of the other agents’) are specified
is a G frame. A G frame can be regarded as the set
of all G nets which respect the implied independence
structure, and agree in the utility assignments and in
the probabilities of Nature’s actions.

Theorem 1 Any finite game in extensive form has a
G frame representation.

Proof. It is well known that any finite game in ex-
tensive form has a normal form representation [FT91,
p. 85]. But any normal-form game can be represented

2For simplicity, we assume that all the actions available
at node k pertain to the same player i(k), although this
assumption can be relaxed. In fact, our treatment carries
over without changes if we assume that different agents are
active at different information sets of the same node.

3The probability parents of a node Xk are those nodes
which are immediate predecessors of Xk in the partial or-
dering induced by the (directed) probability arcs.



as a simultaneous G frame, where each node is identi-
fied with the strategy set of some player, which in turn
implies the result.

Let Ai(H) be the set of actions available to player i
at an information set H. Ai(H) can be regarded as a
partition of H into possible actions EH .

Definition 3 A Game network is said to satisfy
Bayesian rationality if, for all k ∈ N, for all informa-
tion sets H = xPP (k), and for any EH , FH ∈ Ai(k)(H),

it is the case that ui(k)(EH |H) > ui(k)(FH |H) implies
pH(FH) = 0.

Anticipating our discussion on the existence of strate-
gic equilibrium in game networks, we state the follow-
ing important corollary.

Corollary 2 For any finite G frame there exists a
corresponding G net which satisfies Bayesian rational-
ity.

3.2 An example: the beer/quiche game

As an example of G net we present the beer/quiche
game. In this game, Nature selects the type of player
1, who may be either strong (S) or weak (-S). Player 1
(who knows his type) goes to a pub, and has to decide
whether to get beer (B) or quiche (-B). His decisions
are observed by player 2, who is a bully and, as such,
enjoys fighting against weak types. After observing
what player 1 orders, player 2 decides whether to start
a fight with player 1 (F) or not (-F). If player 1 is
strong he will fight back, and hence player 2 in that
case prefers not to fight. Player 1 always prefers not
to get into a fight, but more strongly so if he is a weak
type and hence knows that he would be beaten up.
Finally, strong types of player 1 prefer beer to quiche,
while weak types have the opposite preference.

A G net (or, more precisely, a G frame) representation
of this game is depicted in figure 1, along with the cor-
responding extensive-form representation. The prob-
ability dependencies are represented by solid arrows,
while the dashed and dotted lines represent utility de-
pendencies for players 1 and 2 respectively.

In the informal description above are buried several in-
dependence assumptions. For instance, it is implicitly
assumed that Nature’s choice cannot depend on what
the two players will do later, or that player 2’s decision
contingent on the observation of player 1’s behavior is
independent of Nature’s choice. Moreover, it is im-
plicitly assumed that player 1 prefers beer or quiche
regardless of whether he will have to fight or not, or
that player 2 only cares about 1’s type if he chooses to
fight, but not otherwise.

Figure 1: The beer/quiche game.

In the G net representation, both probability and util-
ity independencies are captured in the structure of the
network. By contrast, the extensive form only cap-
tures probability independencies, while the recognition
of utility independencies (which induce symmetries in
the payoff structure) does not lead to a more compact
representation. In our example, compactness is also
reflected in the number of parameters needed to spec-
ify the game payoffs: in the extensive form one needs
16 parameters to identify the payoffs, while in the G
net representation one only needs 8.

Compactness is only one of several advantages of G
nets over extensive forms; another one is modularity.
For instance, in a G net one can easily introduce new
moves (e.g., the reaction of a third player to player 2’s
decision to fight or not), or change the informational
assumptions while at the same time retaining most of
the existing structure (in particular, payoffs do not
need to be completely reassessed if the state space is
refined).

A third advantageous feature of G nets is that the rele-
vant information about utilities can generally be intro-
duced more naturally than in extensive forms. In the
context of our example, for instance, going from the in-
formal description to a numeric assessment of the pay-
offs is relatively cumbersome; the decision maker needs
to report absolute utility values for all possible out-
comes, while the informal description only compares
a few different scenarios. By contrast, to construct a
G net one only needs information about payoff depen-
dencies and order-of-magnitude comparisons between
the relative utilities of alternative scenarios, which is



closely related to the type of information contained in
the informal description.

4 Strategic equilibrium in game

networks

An important aspect of multi-agent reasoning is the
identification of some or all of the strategic equilibria
in a game. In this section we establish convergence re-
sults for strategic equilibrium which can exploit strate-
gic separabilities in the G net representation in order
to simplify the computation of equilibria. Specifically,
we describe a path-tracking method which identifies a
unique equilibrium as a function of the game payoffs,
and one which identifies all equilibria.

Let X be a finite set of states, and let A be a Boolean
algebra of subsets of X.

We assume that the agent’s preferences on A admit
a conditional expected utility representation (p, u),
where p is a conditional probability system defined on
A, and u is a function associating to each state x a
positive real number u(x).

The expected utility and conditional expected utility
for general events are defined by

u(p)(E) :=
∑

x

u(x)p(x|E), and

u(p)(F |E) :=
u(E ∩ F )

u(E)
.

Let v(F |E) := p(F |E)u(F |E); we say that vE(F ) :=
v(F |E) is the conditional value of F given E. Notice
that {vE}E∈A−{∅} is a conditional probability system.
Moreover, for any nonempty conditioning event E and
for any F whose conditional probability is nonzero,

u(F |E) =
v(F |E)

p(F |E)
.

Hence, in such cases we can regard the conditional
expected utility as the ratio of two conditional prob-
abilities, one representing value and the other be-
lief. Note that, even when the probability of F given
E is equal to zero, the conditional expected utility
u(p)(E ∩ F )/u(p)(E) is well defined and strictly posi-
tive.

4.1 Existence of equilibrium in game
networks

Let G be a game network characterized by a finite
set X = {Xk}k∈N of decision nodes and their asso-
ciated probability (directed) and utility (undirected)

arcs, and let ui : X → R+ be the utility function for
player i (i ∈ I). For each k ∈ N, let i(k) denote the
player responsible for the choice of Xk. Let ∆ be the
set of all conditional probability systems {pH} on X
where H is an information set xPP (k) for some k ∈ N ,
and PP (k) are the probability parents of k. Then the
probability of any state x can be obtained by means of
the simple product rule p(x) = ×k∈Np(xk|xPP (k)). No-
tice that ∆ is a compact subset of Rn (where n is the
number of parameters p(xk|xPP (k)) which character-
ize p), and is also convex with respect to combinations
pλp′ defined by

pλp′(xk |xPP (k)) = λp(xk |xPP (k))+(1−λ)p
′(xk |xPP (k)),

for k ∈ N, λ ∈ [0, 1].

Next, let v : ∆ → ∆ be a function which associates
to each p ∈ ∆ a conditional probability system {vH} ,
where H = xPP (k) are the information sets, and

v(p)(xk |xPP (k)) = p(xk |xPP (k))u
i(k)(p)(xk |xPP (k)).

Then v is a continuous self-function on a convex and
compact subset of Rn, and hence it has a fixed point by
Brouwer’s theorem. A fixed point is characterized by
the set of equalities p(xk|xPP (k)) = v(p)(xk |xPP (k)),
for all k, xk and xPP (k). Let F be the set of such fixed
points.

A Nash equilibrium is defined as a conditional proba-
bility system p ∈ ∆ such that

∑

xk

p(xk|xPP (k))u
i(k)(p)(xk , xPP (k))

≥
∑

xk

q(xk|xPP (k))u
i(k)(p)(xk , xPP (k))

for all k ∈ N, xPP (k) and q ∈ ∆. The set of Nash
equilibria E is contained in F, as equilibrium probabil-
ities satisfy the fixed point conditions p(xk|xPP (k)) =
v(p)(xk |xPP (k)). This is an immediate consequence of
the following result.

Proposition 3 p is a Nash equilibrium if and only if

1. ui(k)(p)(xk |xPP (k)) ≤ 1, and

2. ui(k)(p)(xk |xPP (k)) = 1 if p(xk |xPP (k)) > 0.

Proof. Clearly, if (1) and (2) hold, there exists no
k ∈ N and q ∈ ∆ such that
∑

xk
q(xk|xPP (k))u

i(k)(p)(xk , xPP (k)) >

sumxkp(xk |xPP (k))u
i(k)(p)(xk , xPP (k)),



so we just need to prove the converse. If p is a
Nash equilibrium, then the expected utility of any
two actions taken with positive probability by player
i(k) at a any given xPP (k) must be the same, oth-
erwise player i could obtain a higher expected util-
ity by relocating probability mass from the less
profitable to the more profitable strategy. Hence,
it must be the case that ui(k)(p)(xk , xPP (k)) ≤

ui(k)(p)(xPP (k)) for any available action xk , otherwise
player i could obtain a higher expected utility by giv-
ing probability 1 to xk. Moreover, u

i(k)(p)(xPP (k)) =
∑

xk
p(xk|xPP (k))u

i(k)(p)(xk , xPP (k)) =

ui(k)(p)(xk , xPP (k))
for all xk such that pi(xk |xPP (k)) > 0, which implies

ui(k)(p)(xk |xPP (k)) = 1

How do we know that the set of Nash equilibria is
nonempty? It is easy to check that Nash equilibria
in G nets correspond to Nash equilibria in the agent-
strategic form [FT91, p.354], and hence an equilibrium
exists by Nash’s theorem. Yet, we present a simple
direct proof, which motivates the convergence method
we define later on.

Let fε : ∆→ ∆ be the function defined by f := zεv =
εz + (1 − ε)v, where z is the conditional probability
system which assigns equal probability to all the avail-
able actions at each information set. Brouwer’s theo-
rem guarantees that the set of fixed points of fε is not
empty. Fixed points of fε have an important property:

Proposition 4 If p is a fixed point of fε, then
ui(k)(p)(xk |xPP (k)) > ui(k)(p)(x′k |xPP (k)) implies
p(xk|xPP (k)) > p(x

′
k|xPP (k)).

Proof. To prove the claim, it suffices to observe that:

• p(xk|xPP (k)) = ε/S(k) + (1 − ε)v(p)(xk |xPP (k)),
where S(k) is the number of available actions at
node Xk;

• v(p)(xk |xPP (k)) > 0, and hence p(xk|xPP (k)) >
ε/S(k); and, finally, that

• 1 <
ui(k)(p)(xk|xPP (k))

ui(k)(p)(x′
k
|xPP (k))

=

p(x′k|xPP (k))(p(xk|xPP (k))−ε/S(k))
p(xk|xPP (k))(p(x′k|xPP (k))−ε/S(k))

implies

p(xk|xPP (k)) > p(x
′
k|xPP (k)).

We define a robust equilibrium as a limit point of a
sequence of fixed points of fε, as ε goes to zero. By
compactness of ∆ any such sequence has a limit point,
and hence the set of robust equilibria is nonempty.
Since a robust equilibrium always exists, the following
result ensures that the set of Nash equilibria is not
empty.

Proposition 5 Any robust equilibrium is a Nash
equilibrium.

Proof. Suppose p is a robust equilibrium. Then
v(p)(xk |xPP (k)) = p(xk|xPP (k)) for all xk and xPP (k),

and therefore ui(k)(p)(xk |xPP (k)) = 1 for all xk
which get positive probability given xPP (k). Suppose
now that x′k has zero probability in equilibrium, but
ui(k)(p)(x′k |xPP (k)) > u

i(k)(p)(xk |xPP (k)) for some xk
which is played with positive probability. Then, by
continuity, ui(k)(p)(x′k |xPP (k)) > u

i(k)(p)(xk |xPP (k))
also for the perturbed problem when ε is small, and
hence in the limit p(x′k|xPP (k)) ≥ p(xk|xPP (k)), which
contradicts our assumption that p(x′k |xPP (k)) is equal
to zero. Therefore, a robust equilibrium satisfies the
necessary and sufficient condition in Proposition 3,
which proves the claim.

In fact, a stronger result holds, as it can be shown that
robust equilibria also sequential. Robust equilibria are
similar to proper equilibria [Mye78], in that they are
limits of sequences of strictly positive measures such
that strategies with higher utilities always have higher
probabilities.

4.2 Global convergence to equilibrium in
game networks

Let
{

ui
}

i∈I
be the utility functions in a G net. We

saw that an equilibrium is a conditional probability
system p which satisfies F (p) = 0, where F (p) is the
vector of functions defined by

F (p)(xk |xPP (k)) = p(xk |xPP (k))− v(p)(xk |xPP (k)), and

v(p)(xk |xPP (k)) = p(xk |xPP (k))
ui(k)(p)(xk, xPP (k))

ui(k)(p)(xPP (k))
.

We study convergence to a zero of the vector F under
the assumption that the probability of an action in-
creases or decreases in proportion to its relative utility
with respect to the other available actions. For now we
shall ignore the fact that some fixed points may fail to
be equilibria; in fact, we show below that the method
we are presenting will converge to a Nash equilibrium
in games with generic payoffs.

Consider the perturbed problem

Fε(p)(xk |xPP (k)) = p(xk |xPP (k))− fε(p)(xk |xPP (k)).

Observe that Fε can be rewritten as εF
0(p) + (1 −

ε)F (p), where F (p) is the target system whose ze-
ros we want to find and F 0(p) is the trivial system
( p(xk |xPP (k)) − z(xk|xPP (k) )xk,xPP (k) , whose unique



solution is p = z. Then Fε defines a convex-linear ho-
motopy h(p, t) = F1−t [Mor87, p.135] with parameter
t ∈ [0, 1]. Note that h coincides with the trivial sys-
tem for t = 0, and with the target system for t = 1.
Furthermore, note that the end point of the (unique)
homotopy path starting at t = 0 is a robust equilib-
rium, as it is the limit, as ε goes to zero, of a sequence
of solutions for the perturbed problem.

In our setting h is extremely well behaved: for generic
payoffs it satisfies conditions 1,2,3 and 4b in [Mor87,
p.122] by construction, and moreover it satisfies con-
dition 5 (in Rn) because all the (smooth) paths which
originate in ∆ lead to robust equilibria and are there-
fore bounded. In turn, those conditions insure that the
homotopy paths do not exhibit pathologies, and can be
successfully tracked via standard path-following meth-
ods. To handle degenerate cases, in which the uniform
distribution is a bad choice of initial condition, it suf-
fices to introduce a slight random perturbation to the
game payoffs to guarantee convergence.

Now we can define a new solution concept (the end
point of the homotopy path), which we name first equi-
librium, and claim that:

• a generic G net has a unique first equilibrium

• the first equilibrium is uniquely determined by the
payoff structure of the game

• the first equilibrium of a generic G net can be ap-
proximated using standard path-tracking meth-
ods

• the first equilibrium is a robust equilibrium of the
game.

How does the above procedure compare with the ex-
isting game-theoretic methods for computing a sample
equilibrium? The literature on computational meth-
ods in game theory is quite technical, and we shall
not attempt an explicit comparison here; for a sur-
vey on the recent state of the art we refer to [MM96].
The main advantage of our approach with respect to
other methods is that, for given

(

xk , xPP (k)
)

, strate-
gically independent variables do not affect the values
of F (p)(xk |xPP (k)); it follows that, in the presence of
strategic independencies, convergence to the zeros of
a large system can be reduced to convergence to the
zeros of smaller, strategically independent subsystems.
The following example illustrates the point for a simple
case.

Example 2 Suppose that there is only one agent, and
let A and B be two strategically independent subsets
of variables with marginal probability functions pa and

pb respectively. Then p = pa × pb, and F (p)(a) and

can be written as pa

(

1− w(a|b0)∑
a′
w(a′|b0)pa′

)

, while a sim-

ilar expression holds for F (p)(b). Note that F (p)(a)
(resp., F (p)(b)) is a function of pa (resp., pb) only,
and hence the zeros of F (p) correspond to the zeros
of the two independent subsystems FA(pa) := F (p)(a)
and FB(pb) := F (p)(b).

4.3 Computing all the equilibria

The convergence method we presented above only
tracks a single robust equilibrium. Yet, in many cases
one wants a complete list of all the Nash equilibria. For
instance, we may want to design agents who always
coordinate on a Pareto efficient equilibrium, whenever
such efficient equilibrium is unique. How would our
agents know if that condition is met? In principle,
they will need to identify all the equilibria in order to
infer their optimal strategies.

Finding all equilibria is computationally very demand-
ing. As in the single-equilibrium case, we seek a
method which can take advantage of strategic inde-
pendencies in order to simplify computations. It turns
out that an adaptation of the procedure defined in sec-
tion 4.2 can be put to such use.

Let G(p) be the vector of functions (gj)j∈J (where

j = (xk , xPP (k))) defined by G(p)(xk |xPP (k)) =

ui(k)(p)(xPP (k))F (p)(xk |xPP (k)). Since u is strictly
positive and bounded, the zeros of G coincide with
the zeros of F.

Notice that both the numerator and the denomina-
tor of v(p)(xk |xPP (k)) are polynomial functions of the
p(xk|xPP (k)), and hence G(p) is a vector of polynomial
functions, whose zeros include all the Nash equilibria.
Also, observe that strategically independent variables
do not affect the zeros of G(p)(xk |xPP (k)); they only
play the role of multiplicative scaling factors. As in
the single-equilibrium case, in the presence of strate-
gic independencies we can replace a large system of
polynomial equations with smaller, strategically inde-
pendent subsystems, as the following example shows
for a simple case.

Example 3 As in example 2 assume that there is a
single agent, and two strategically independent subsets
of variables A and B. Then G(p)(a) can be writ-
ten as pa [

∑

a′ w(a
′|b0)pa′ − w(a|b0)] (

∑

b w(b|a0)pb) ,
while a similar expression holds for G(p)(b). Observe
that the last term in the product is strictly positive, and
hence the zeros of G(pa, pb) correspond to the zeros of
the two independent subsystems GA(pa) and GB(pb),
where GA(pa)(a) := pa [

∑

a′ w(a
′|b0)pa′ − w(a|b0)] ,

and GB(pb)(b) := pb [
∑

b′ w(b
′|a0)pb′ − w(b|a0)].



A Nash equilibrium may not have any homotopy path
converging to it in Rn. Yet, the following result ensures
that we can get at them in the complex space Cn. Let
G0 be the initial system defined by

G0j (p) = α
dj
j p
dj
j − β

dj
j ,

where j = (xk , xPP (k)), dj is the degree of
G(p)(xk |xPP (k)), and αj and βj are generic complex
constants. Then G0(p) = 0 has d = ×j∈Jdj solutions.
Let h(x, t) be the homotopy defined by

hj(p, t) = (1− t)G
0
j (p) + tGj(p).

Then the following result in [Mor87, p. 60] applies.

Theorem 6 Given G, there are sets of measure zero,
Aα and Aβ in C

n such that, if α /∈ Aα and β /∈ Aβ ,
then:

1. the solution set {(p, t) ∈ Cn × [0, 1) : h(p, t) = 0}
is a collection of d non-overlapping (smooth) paths

2. the paths move from t = 0 to t = 1 without back-
tracking in t

3. each geometrically isolated solution of G = 0 of
multiplicity m has exactly m continuation paths
converging to it

4. a continuation path can diverge to infinity only as
t→ 1

5. if G = 0 has no solutions at infinity, all the paths
remain bounded; if G = 0 has a solution at in-
finity, at least one path will diverge to infinity as
t→ 1. Each geometrically isolated solution at in-
finity of G = 0 of multiplicity m will generate
exactly m diverging continuation paths.

Theorem 6 guarantees that the homotopy paths gen-
erated by h are well-behaved, and can be tracked
with standard computational techniques. Observe
that this method will identify all the zeros of G, in-
cluding those which are not Nash equilibria; yet, the
latter are easily singled out, as they correspond to
the real solutions which lie in the region delimited by
ui(k)(p)(xk |xPP (k)) ≤ 1.
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