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Abstract� In their seminal work which initiated random graph theory Erd�os and
R�enyi discovered that many graph properties have sharp thresholds as the number
of vertices tends to in�nity� We prove a conjecture of Linial that every monotone
graph property has a sharp threshold� This follows from the following theorem�

Let Vn�p� � f	� 
gn denote the Hamming space endowed with the probability
measure �p de�ned by �p���� ��� � � � � �n� � pk ��
�p�n�k where k � ������� � ���n�
Let A be a monotone subset of Vn� We say that A is symmetric if there is a transitive
permutation group � on f
� 
� � � �� ng such that A is invariant under ��
Theorem� For every symmetric monotone A� if �p�A� � � then �q�A� � 
� �

for q � p� c� log�
�
��� logn� �c� is an absolute constant��

�� Graph properties

A graph property is a property of graphs which depends only on their isomorphism
class� Let P be a monotone graph property� that is� if a graph G satis�es P then
every graph H on the same set of vertices� which contains G as a subgraph satis�es
P as well� Examples of such properties are� G is connected� G is Hamiltonian� G
contains a clique ��complete subgraph	 of size t� G is not planar� the clique number
of G is larger than that of its complement� the diameter of G is at most s� etc�
For a property P of graphs with a �xed set of n vertices we will denote by �p�P 	

the probability that a random graph on n vertices with edge probability p satis�es
P � The theory of random graphs was founded by Erd
os and R�enyi �
� ��� and one of
their signi�cant discoveries was the existence of sharp thresholds for various graph
properties� that is� the transition from a property being very unlikely to it being
very likely is very swift� Many results on various aspects of this phenomenon have
appeared since then� In what follows c�� c�� etc� are universal constants�

Theorem ���� Let P be any monotone property of graphs on n vertices� If �p�P 	 � �
then �q�P 	 � �� � for q � p � c� log�����	� log n�
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This result veri�es a conjecture of Nati Linial ���� and complements a theorem of
Bollob�as and Thomason ��� who proved that �q�P 	 � � � � for q � c��	 � p�
Let P be the property �G contains a clique with k�n	 vertices� and let k�n	 � log n�

The threshold interval �namely� the interval of edge�probabilities p where � � �p �
� � �� 	 in this case is of size proportional to �� log� n� Perhaps some words of
explanation are in order� Consider G � G�n� p	� that is� G is a random graph with
n vertices and edge probability p� The length of the interval of probabilities p for
which the clique number �� size of maximal clique	 of G is almost surely k �where
k � log n	 is of order log�� n� The transition between clique numbers k � � and k
occurs along an interval of length � log�� n and this is precisely the threshold interval
of interest to us� At the beginning of this transition period the probability of having
a clique of size k is �� This probability rises to � � � at the end of this interval� but
the probability of having a �k � �	�clique is still small �� �� log n	� The value of p
must increase by c log�� n before the probability for having a �k � �	�clique reaches
� and another transition interval begins�

Conjecture ���� Let P be any monotone property of graphs on n vertices� If �p�P 	 �
� then �q�P 	 � �� � for q � p � c log�����	� log� n�

�� Symmetric properties

Consider the Hamming space Vn�p	 � f�� �gn endowed with the probability mea�
sure �p de�ned by �p���� ��� � � � � �n	 � pk � ��� p	n�k where k � ��� ��� � � �� �n� Put
f�� �gp � V��p	� Let A be a monotone subset of f�� �gn� that is� if ���� ��� � � � �n	 � A
and 	i � �i for every i� � � i � n then �	�� 	�� � � � � 	n	 � A� We say that A is
symmetric if there is a transitive permutation group � on �n� � f�� �� � � � � ng such
that A is invariant under ��

Theorem ���� For every symmetric monotone A� if �p�A	 � � then �q�A	 � � � �
for q � p � c� log�����	� log n�

To deduce Theorem ��� from Theorem ��� �with c� � �c��	 note that the family
of edge�sets of graphs on n vertices which satisfy a monotone graph property P
is invariant under the action of Sn �the group of permutations of the vertices	 on
the edges� Note that Theorem ��� remains true for monotone properties of random
subgraphs of arbitrary �nite edge�transitive graphs� In particular� the theorem applies
to random subgraphs of the discrete cube and of Ck

n� the product of k copies of an
n�cycle �grids on the k�dimensional torus	�
Note that the symmetry assumption is needed� If A� � f���� ��� � � � � �n	 � f�� �gn �

�� � �g then �p�A	 � p� Bollob�as and Thomason ��� proved� using the Kruskal�
Katona theorem� that for every monotone A �symmetric or not	 if �p�A	 � � then
�q�A	 � �� � for q � c��	p�
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In the rest of the section we will deduce Theorem ��� via a Lemma of Margulis
���� and Russo ����� �see also ���� Ch� �	 from a result of Bourgain� Kahn� Kalai�
Katznelson and Linial �brie�y� BKKKL	 ���� In the next section we will indicate a
few extensions of the BKKKL Theorem which imply several extensions of Theorem
���� In Section � we will give examples showing that our results are tight� In Section
� we will discuss the connection of the threshold interval to the symmetry group �
and in Section � we will discuss some connections to results by Margulis�Talagrand�
Russo and Kruskal�Katona�
For v � A let h�v	 � jfw �� A � dist�v�w	 � �gj� De�ne 
p�A	 �

P
v�A �p�v	h�v	�

Lemma ��� �Margulis� Russo��

d��p�A		

dp
� 
p�A	�p�

Next� we need the notion of in�uence� Let X be a probability space and let
f � Xn � f�� �g be a measurable map� De�ne the in�uence of the k�th variable

on f � denoted by If�k	� as follows� For u � �u�� u�� ���� un��	 � Xn�� set lk�u	 �
f�u�� u�� ���� uk��� t� uk� ���� un��	 � t � Xg� and de�ne

If�k	 � Pr�u � Xn�� � f is not constant on lk�u		�

Given a monotone set A 	 Vn�p	 denote by �A the characteristic function of A� We
will write IA�k	 for I��A��k	� Let �p�A	 be the sum of the in�uences of the variables
on �A� Note that �p�A	 � 
p�A	�p�

Theorem ��� �Bourgain� Kahn� Kalai� Katznelson and Linial�� For every func�

tion f � Xn � f�� �g� with Pr�f����		 � t� there is a variable k so that

If�k	 � c�t
� log n

n
�

where t� � min�t� �� t	�

Proof of Theorem ���	 Since A is symmetric the in�uence of each variable is
the same and therefore by Theorem ��� the sum of the in�uences for A in Vn�r	 is at
least c� � t� log n� where t� � min��r�A	� ���r�A		� So by Lemma ��� for every r such
that �r�A	 � ���� we have d�r�A	�dr � c��r�A	 log n� Therefore� d�log �r�A		�dr �
c� log n� Now we claim that if �p�A	 � � then �q�A	 � ��� for q � p � �

c�
� log������

logn
�

Indeed� log��q�A		 � log��p�A		�
R q
p c� log ndr � log��	�log�����	 � log����	� So by

increasing p by at most log�����	�c� log n we reached q with �q�A	 � ��� and by the
same token another increase of at most log�����	�c� log n will give us �q�A	 � � � �
as required� �
The case X � f�� �g��� of the BKKKL theorem was proved by Kahn� Kalai

and Linial ���� in response to a conjecture of Ben�Or and Linial ���� Some words
on the proof of this theorem are in place� The proof uses harmonic analysis on
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Zn
� � For a boolean function f on f�� �gn consider the Walsh�Fourier expansion

f �
P

S��n�
�f�S	uS� where� uS�T 	 � ���	jS�T j� �Here we identify vectors in f�� �gn

with subsets of �n� in the standard way�	 It can be shown that the sum of in�uences�

�����A	� is equal to�
P

S��n�
�f��S	jSj� In order to show that �����A	 is large one has

to show that a large portion of the Walsh�Fourier transform of f is concentrated in
�high� frequencies� This is shown if all in�uences are not too large� by applying a
certain hypercontractive estimate of Beckner ���� �In the next section we will show
that if all in�uences are smaller than 
 then �p�A	 is at least c log���
	�	
The proof of the BKKKL theorem ��� is similar and is based on a Fourier�Walsh

interpretation for in�uences in arbitrary product spaces� Talagrand ���� �see remark
in Section �	 found another proof for the special case X � f�� �gp� He replaced the
Walsh functions uS by an appropriate orthonormal basis for Vn�p	� All these proofs
give constants which are quite realistic�

�� Some extensions

Consider now the situation when p itself is a function of n� We will describe now
sharp forms of the above theorems which shows that if �p�A	 � � and �q�A	 � �� �

then q � p���o��		 always hold when log p
logn � �� If p � n�c for some c � � we cannot

expect� in general� that q � p���o�p		� and it is an interesting problem to understand
for which A�s this relation holds� We need an improvement of the BKKKL Theorem
for the special case of X � Vn�p	�

Theorem ���� For every function f � Vn�p	 � f�� �g� with Pr�f����		 � t � �
� �

there is a variable k so that

If�k	 � c	
t � log n

n � �p log���p		 �

This gives �as above	 a sharp �up to constants	 form of Theorem ����

Theorem ���� For every symmetric monotone propertyA� if �p�A	 � � then �q�A	 �
� � � for q � p� c
 log����	p log���p	� log n�

Corollary ���� Let P be any monotone property of graphs� Then if �p�P 	 � � then

�q�P 	 � � � � for q � p� c� log����	p log���p	� log n�

Proof of Theorem ���	 We rely on the proof from ���� Note that the proof of
Lemma � in ��� gives for a monotone ��� function on f�� �gp� that w�f	 � cp log���p	�
To see this note that for X � f�� �gp we have the additional inequalities If�j	 � �p
for every j� in addition to the inequalities If�j	 � ���m�j� which always hold� SoPm

j�� If�j	 � �p log���p	 � p� Substituting the improved upper bound for w�f	

in relation ���	 of ��� we get that kWkk�� � c � p log���p	 � If�k	� and we reach a
contradiction in the same way as in the original proof by assuming that If�k	 �

c�
t�logn

p�log���p��n
� for c� su�ciently small� �
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The proof of the BKKKL Theorem can be modi�ed to give the following�

Theorem ��
� For every function f � Xn � f�� �g� with Pr�f����		 � t � �
� � If

If �k	 � 
 for every k then

nX
k��

If�k	 � c
t log���
	�

Proof	 Again we rely heavily on the proof of BKKKL Theorem� �and recycle the
constants c�� � � � � c
	� Let 
k � If �k	� Then� as in the original proof we have that
more than half of the weight of kfk�� is concentrated where

jS�j� jS�j� � � �� jSnj � c�t
���

nX
k��


k	�

Substituting relation ��
	 �from ���	 in relation ���	 we can replace the right hand
side of relation ���	 by c��

Pn
k���
k	

���	� It follows that more than half the weight of
kfk�� is concentrated where

�jS�j� � � � � jSnj	 � ��jS�j��jS�j������jSnj � c�t
��

nX
k��

�
k	
����

This implies that
nX

k��


k � c�t log�t�
nX

k��

�
k	
���	��	�

Now assume that 
k � 
 for every k and that
Pn

k�� 
k � c	t log���
	� Using
the convexity of the function x��� we get that the maximum value of

Pn
k���
k	

���

is attained when 
k � 
 for k � �� �� � � � � r and 
k � � for k � r � � where r �
c	t log���
	�
� Therefore� log�t�

Pn
k���
k	

���	��	 � c
 log���
	� �

Corollary ���� Let A be a monotone subset of f�� �gn such that IA�k	 � 
 for every

p� Then if �p�A	 � � then �q�A	 � �� � for q � p � c� log����	� log���
	�

It follows from Theorem ��� that if we have a monotone subset A which is invariant
under a permutation group � with the property that every transitivity class of � has
at least a elements then the assertion of Theorem ��� holds with �� log n replaced
by �� log a� Therefore� the assertion of Theorem ��� holds �with a di erent absolute
constant	 for symmetric properties of random subgraphs of arbitrary vertex�transitive
graphs �in particular� Cayley graphs	 on n vertices�
The proof of Theorem ��� extends without change to�

Theorem ���� For every function f � X�
X�
���
Xn � f�� �g� with Pr�f����		 �
t � �

�
� if If�k	 � 
 for every k then

nX
k��

If�k	 � c
t log���
	�



� EHUD FRIEDGUT AND GIL KALAI

Assume now that Xk � f�� �gpk and put X �
Qn

i��Xi� Note that for a monotone
subset A of X� ���A	��pk � IA�k	� ���A	 is a linear function of pk with slope
IA�k	� this is perhaps the shortest derivation of the Margulis�Russo Lemma�	 It
follows by a similar argument to the proof of Theorem ��� that for every subset A
of Vn and every n�tuple of probabilities �p�� p�� � � � � pn	� if �p��p�����pn�A	 � �� then the
following statement holds� There is a vector of probabilities �q�� q�� � � � � qn	 such that
�q��q������qn�A	 � �� � and for every 
�

jfi � qi � pi � c�� log����	� log���
	gj � �



�

�� Tightness of the results

Ben�Or and Linial ��� constructed a �tribes� example to show that the O�log n�n	
lower bound on in�uences is sharp� see also ����� The following more general examples
show that up to multiplicative constants� Theorem ��� is sharp when p does not
depend on n� and Theorems ��� and ��� are sharp even when p does depend on n�
Let n � m � r� Partition �n� into sets T�� T�� � � � � Tr of size m and let A be the set of
subsets of �n� which contain Ti for some i� For a given probability q take

m �
log n� log log n� log log���q	

log���q	
�

Then �q�A	 is close to � � ��e� For p � q�� � o��		� let �p�A	 � t and then

d�p�A	

dp
� �� � t	 � log����� � t		 � log n��p log�p��		�

Therefore the interval �q� p� where �p�A	 � ���� is of length� log����	q log���q	� log n�
There are many other examples for which Theorem ��� is sharp� For example�

consider the property of subsets S of �n� � �S contains an interval of length k � k�n	
of consecutive integers modulo n�� Other examples are the properties of subgraphs
H of the graph of the n�dimensional cube � �H contains the graph of a k�dimensional
face� and� as mentioned below� �H is connected��

Graph properties� Let P be the property �G contains a clique with k�n	 vertices��
For �xed n and k let Xn�p be the number of k�cliques in G�n� p	� The expected value
of Xn�p is

� � ��n� k� p	 �

�
n

k

�
p�

k

�
	�

Consider now an arbitrary function k�n	 � O�log n	 and let q � q�n	 be such that
��n� k�n	� q�n		 � �� Note that log���q	� log�n	� � i k ��� In this case Corollary
��� asserts that the length of the threshold interval is o�q	� For p � q�� � o��		�
Xn�p can be approximated by a Poisson random variable with mean ��n� k� p	� and
Prob�Xn�p � �	 � ���e���n�k�p�	���o��		� �This can be justi�ed along the lines of ����
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pp� ��������	 This shows that the actual threshold interval is of length proportional

to q�n	� log�q�n�
���

logn 	� rather than q�n	 log�q�n�
���

logn �

Bounded depth circuits� There is an interesting connection between the com�
plexity of Boolean functions and their threshold behavior� It follows� e�g�� from the
Hastad Switching Lemma� see ���� ��� that Boolean functions f that can be ex�
pressed by bounded�depth� polynomial size circuits have large threshold intervals�
Put a�p	 � �p�f����		� If f is expressed by a depth�two circuit of size N then

lim
s��

�a�p	� a�p�� � s� logN			 � ��

In other words� the length of the threshold interval is at least c � p�� logN where
a�p�	 � ���� This result is tight� Most of the examples described in this section and
in the next section can be expressed by depth�two circuits of small size� For circuits
of depth d� the term logN should be replaced by logd��N � �This connection was
pointed out to us by Noga Alon and by Joel Spencer�	

�� The dependence of the threshold interval on the permutation

group

The content of this section is the fruit of collaboration with Aner Shalev�

Problem ���� For � a permutation group on �n�� how large can the threshold interval

be for monotone families A which are invariant under ��

Here by the threshold interval we mean the length of the interval �p� q� where
�p�A	 � � and �q�A	 � � � �� for a �xed �� � � � � ���� Given a permutation
group � 	 Sn consider the following class of examples� For every s �nd a set S�
jSj � s� such that the orbit of S under � is minimal� Consider the family AS to be
those subsets of �n� which contain a set in the orbit of S� We conjecture that �up
to multiplicative constants	 such an example will give the largest threshold intervals
among monotone families invariant under ��
If � � Sn then the length of the threshold interval is proportional to ��

p
n� For a set

X let
�
X
r

�
be the set of r�subsets of X� As we already mentioned� for graph properties

�i�e�� when � � Sm acting on
�
�m�
�

�
�	 the threshold interval can be as large as c� log� n�

�n �
�
m
�

�
�	 and we conjecture that it cannot be larger� For symmetric properties of r�

uniform hypergraphs �i�e�� when � � Sm acting on
�
�m�
r

�
�	 the threshold intervals can

be as large as log�
r

r�� n� �n �
�
m
r

�
�	 and again we conjecture that it cannot be larger�

Another example of interest is the group � � PSL�d� q	 acting as a permutation
group on d�dimensional projective space over a �eld of q elements� If q is �xed
�say q � �	 then considering the monotone families of all sets containing a subspace
of dimension t � log d � log log d�� log log n � log log log n	� we get an example
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with threshold interval of length �
logn log logn

and we conjecture that no monotone

��symmetric property with larger threshold interval exists�
By forming wreath products one can construct groups with intermediate threshold

behavior �between log�� n and n����	� However� we conjecture that for primitive

permutation groups � there are some gaps in the possible behavior of the largest
threshold intervals for properties which are invariant under ��

� The length of this interval is proportional to n���� for Sn and An but at least
log�� n for any other primitive permutation group�

� The length T of the largest threshold interval satis�es c� log
�� n � T �

c� log
�� n for � � f�� ��

�
� ��

�
� ��

	
� ��



� � � �g or for � which tends to one as

a function of n in an arbitrary way�
� If � does not involve �as factors	 large alternating groups then the length of
the largest threshold interval is proportional to ���log n �w�n		 where w�n	 �
log log n�

This description follows from the following� We conjecture that the value of the
largest threshold interval for ��invariant properties where � is a primitive permutation
subgroup of Sn other than An or Sn is proportional to ��
��	� where


��	 � minfjT j � j��T 	j � �jT jg�
The family AT for a set T which realize the minimum in the de�nition of 
��	� seems
to have threshold interval of length proportional to ��jT j and this can be proved
when j�j � nlog logn using the detailed knowledge of such permutation groups ����
As for upper bounds it seems that the issue is to show that if a Boolean function f

has Fourier�Walsh coe�cients which are �smeared� then the sum of in�uences must
be large� The following �or similar	 inequality is needed�
Conjecture	 For every Boolean function f � f�� �gn � f�� �gX

�f��S	 log���j �f �S	j	 � c�
X

�f��S	jSj�
�� Some connections to earlier work

Connectivity and the Margulis
Talagrand isoperimetric formula� Perhaps
the most extensively studied problems �in random graph theory as well as in per�
colation theory	 on critical probabilities and threshold behavior are on connectivity�
Erd
os and R�enyi found the critical probability p � p�n	 � log n�n for a random
graph in G�n� p	 to be connected and proved that the threshold interval is of length
o�p	� For connectivity of random subgraphs of the graph of the n�dimensional cube�
Burtin found the critical probability p � ��� and results of Erd
os� Spencer and
Bollob�as show that the threshold interval is of length O���n	� See ���� pp� ��������
Margulis ���� �see also ��� pp� ��������	 proved a sharp threshold property for

connectivity of random subgraphs of k�connected graphs� as k ��� and Talagrand
���� proved sharper forms of Margulis� result� Neither the results of this paper nor
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the Margulis�Talagrand theorem include the Erd
os�R�enyi result as a special case�
For random subgraphs of the the graph of the n�dimensional cube� the Margulis�
Talagrand theorem gives that the length of the threshold interval is O�n����	� and
Theorem ��� gives O�n��	 which is sharp�
The main tool used by Margulis and sharpened by Talagrand is the following� Let

�v�A	 � fv � A � h�v	 � �g be the vertex�boundary of A� Margulis ���� proved that

�p��v�A		 � �p�A	 � g�p� �p�A		�

for some positive function g�p� �p�A		 in ��� �	�� It would be interesting to understand
the connection between the in�uences of the variables and the quantity �p��v�A		 �
�p�A	�

Russo�s approximate �
� law� Corollary ��� is a sharp version of a theorem of
Russo ����� A weaker version of Theorem ��� can be derived also fromRusso�s theorem
itself� The derivation is not immediate since in order to apply Russo�s theorem it is
necessary to show that If�k	 � o��	 for every k and every p which is not very close
to � or �� This follows from

Lemma ���� Let p� � � p � � be �xed� Let B be the Hamming ball in f�� �gn con�

taining all the sets S such that jSj � np� Then for every monotone A�
Pn

k�� IA�k	 �Pn
k�� IB�k	�

Proof	 Write S 
 R for R 	 S and jSj � jRj� ��

X
IA�k	 �

X
S�R

pjXj��qn�jXj��A�S	� �A�R		 �
nX

k��

X
S�jSj�k

pk��qn�k���A�S	�k � np	�

To maximize this sum A should include precisely those sets S with jSj � np� �It can
be proved by a similar argument that if B is any Hamming ball �around ��� �� � � � � �		
and A is any monotone set such that �p�A	 � �p�B	 then

P
IA�k	 � P IB�k	�	

It follows from Lemma ��� that
P
IA�k	 � c�q n

p���p�
and therefore ifA is symmetric

and p is not close to � or to � then all in�uences are o��	�
Remark	 After this paper was submitted we learned about Talagrand�s paper

���� which has some overlaps with the present paper as well as with ���� Talagrand�s
main result is a sharp form of BKKKL�s theorem for the special case of Vn�p	� He
also related this result via the Margulis�Russo lemma to threshold phenomena and
to Russo�s approximate ��� law� His results include Theorem ��� and the special case
of Vn�p	 of Theorem ����
Talagrand shows that for the in�uences of a Boolean function f �with prob�f �

�	 � ���� say	 X�If�k	��log If �k		 � C�

for some universal constant C� This is remarkable because for some other universal
constant D� if

P�ai��log�ai		 � D then there exists a Boolean function f � with
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prob�f � �	 � ��� such that If�k	 � ai for every i� � � i � n� To construct f
consider a �tribes� example with tribes of di erent sizes�

Kruskal
Katona formulation� A simplicial complexK is a collection of subsets of
�n� such that S � K and R 	 S implies that R � K� Let fk�K	 denotes the number
of sets inK of cardinality k��� Switching from the model where each vertex is chosen
with probability p to the model where each set of cardinality �pn� is chosen with equal
probability we obtain the following strong form of the Kruskal�Katona theorem for
simplicial complexes with transitive group action on the vertices� A similar extension
of Macaulay�s theorem on complexes of monomials �multisets	 also follows�

Theorem ���� LetK be a simplicial complex with n vertices which is invariant under

a transitive permutation group on its vertices� If fk�K	 � ��� �	
�

n
k��

�
then fr�K	 �

�
�

n
r��

�
� for r � k � c log n�n�

Acknowledgement� We would like to thank Nati Linial for suggesting the problem
and for many other useful suggestions� Noga Alon� Je Kahn and Aner Shalev for
fruitful discussions and Itai Benyamini for pointing out the paper by Talagrand �����

References


� N� Alon and J� Spencer� The Probabilistic Method� Wiley� New�York� 
��
�

� W� Beckner� Inequalities in Fourier analysis� Ann� Math� 
	
 �
����� 
���
�
�
�� M� Ben�Or and N� Linial� Collective coin �ipping� in Randomness and Computation �S� Micali�

ed��� Academic Press� New York� 
��	� pp� �
�

�� Earlier version� Collective coin �ipping�
robust voting games� and minima of Banzhaf value� Proc� 
�th IEEE Symp� on the Foundation
of Computer Science� 
���� pp� �	���
��

�� B� Bollob�as� Random Graphs� Academic Press� London� 
���� Press� Cambridge� 
����
�� B� Bollob�as and A� Thomason� Threshold functions� Combinatorica � �
���� �����
�� J� Bourgain� J� Kahn� G� Kalai� Y� Katznelson and N� Linial� The in�uence of variables in

product spaces� Israel J� Math� ���
��
�� ������
�� P� Cameron� Finite permutation groups and �nite simple groups� Bull� London Math� Soc�


��
��
�� 
�

�
�� P� Erd�os and A� R�enyi� On the evolution of random graphs� Publ� Math� Inst� Hungar� Acad�

Sci� � �
��	�� 
���
�
�� G� Grimmet� Percolation� Springer�Verlag� New York� 
����

	� J� Kahn� G� Kalai� and N� Linial� The in�uence of variables on Boolean functions� Proc� 
��th

Ann� Symp� on Foundations of Comp� Sci�� ����	� Computer Society Press� 
����


� J� Hastad �
����� Almost optimal lower bounds for small depth circuits� in S� Micali� ed��

Advances in Computer Research� Vol� � �Randomness and Computation� 
���
�	� JAI Press�
Greenwich� CT� 
����



� N� Linial� private communication�

�� G� Margulis� Probabilistic characteristics of graphs with large connectivity� Prob� Peredachi

Inform� 
	�
����� 
	
�
	��

�� L� Russo� On the critical percolation probabilities� Z� Wahrsch� werw� Gebiete� ���
����� ������

�� L� Russo� An approximate zero�one law� Z� Wahrsch� werw� Gebiete� �
 �
��
�� 

��
���



SHARP THRESHOLDS FOR GRAPH PROPERTIES 




�� M� Talagrand� Isoperimetry� logarithmic Sobolev inequalities on the discrete cube and Margulis�
graph connectivity theorem� Geometric and Func� Anal� ��
����� 
����
��


�� M� Talagrand� On Russo�s approximate zero�one law� Ann� of Probab� 

�
����� 
����
����

Institute of Mathematics� The Hebrew University of Jerusalem� Givat Ram� Jerusalem�

Israel�

E�mail address� ehudf�math�huji�ac�il

Institute of Mathematics� The Hebrew University of Jerusalem� Givat Ram� Jerusalem�

Israel and Institute for Advanced Studies� Princeton� NJ ������

E�mail address� kalai�math�huji�ac�il


