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Setting - informal

Imagine a group of people want to use an existing network and will
buy the right to use certain communication channels (edges).

To simplify, each wants to connect to a specific target destination
from a specific source.

Players who use the same channel (edge) will share its cost.
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Setting

Formally:

I A graph (directed or undirected) G = (V ,E );

I Each edge e has an associated cost ce

I n players 1, . . . n; player i wants to buy a path from a node si
to a node ti , both in V .

I For player i the set of available strategies is the set of paths
Pi from si to ti . Each player chooses a path Pi ∈ Pi .

I Players who use edge e divide the cost of e according to some
mechanism. A player i pays∑

e∈Pi

fi (e),

where fi (e) is i ’s share of the cost of edge e.
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Egalitarian cost sharing

If ne players use edge e ∈ E , each of them pays an equal share:
ce/ne .

Figure: Cost sharing example

1 pays 1 + 1.5. + 2 = 4.5;
2 pays 1 + 1.5 + 1 = 3.5.
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Optimal central solution

Let player i use path Pi to connect si to ti . The total cost of a
solution S is:

c(S) =
∑

i

∑
e∈Pi

ce/ne =
∑

e∈
S

Pi

ne∑
j=1

ce/ne =
∑

e∈
S

Pi

ce .

The optimal solution is the smallest subgraph T of G s.t. ∀i there
exists a path from si to ti in T .

For undirected graphs: the Steiner tree on X =
⋃

si ∪
⋃

ti .
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Definition

Recall:
Cost of worst Nash equilibrium

Cost of social optimum
.

How bad will the cost of the network be if there is no central
authority?
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Price of anarchy for network formation is Ω(n)

All n
players take the edge with
cost n (each player pays 1).

No player
will move alone to the
light edge and pay 1 + ε.

Cost of the
equilibrium is n. Optimum
solution has cost 1 + ε.

The price of anarchy
is arbitrarily close to n.
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Definition and motivation

Does a bad price of anarchy mean that the situation is hopeless?

One way to surmount the problem: suppose we have a central
authority with limited power. Specifically the power to set up the
initial network.

Then players are free to change their paths. The game will
stabilize at the local Nash equilibrium.

We are interested in the ratio

Cost of best Nash equilibrium

Cost of optimal solution
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Lower bound [ADK+04]

We start with an example of Ω(log n) price of stability.
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Figure 1. An instance in which the price of stability converges to H(k) = Θ(log k) as ε→ 0.

common path of cost 1+ε for some small ε > 0 (see
Figure 1). The optimal solution would connect all
agents through the common path for a total cost of
1 + ε. However, if this solution were offered to the
users, they would defect from it one by one to their
alternate paths. The unique Nash equilibrium has
a cost of

∑k
i=1

1
i = H(k).

While the price of stability in this instance grows
with k, it only does so logarithmically. It is thus
natural to ask how bad the price of stability can
be for this network design problem. If we think
about the example in Figure 1 further, it is also
interesting to note that a good Nash equilibrium
is reached by iterated greedy updating of players’
solutions (in other words, best-response dynamics)
starting from an optimal solution; it is natural to
ask to what extent this holds in general.

Our Results. Our first main result is that in ev-
ery instance of the network design problem with
Shapley cost-sharing, there always exists a Nash
equilibrium of total cost at most H(k) times opti-
mal. In other words, the simple example in Figure 1
is in fact the worst possible case.

We prove this result using a potential function
method due to Monderer and Shapley [19] and
Rosenthal [22] (see also [3]): one defines a poten-
tial function Φ on possible solutions and shows that
any improving move by one of the users (i.e. to
lower its own cost) reduces the value of Φ. Since
the set of possible solutions is finite, it follows that
any sequence of improving moves leads to a Nash
equilibrium. The goal of Monderer and Shapley’s
and Rosenthal’s work was to prove existence state-
ments of this sort; for our purposes, we make further
use of the potential function to prove a bound on

the price of stability. Specifically, we give bounds
relating the value of the potential for a given solu-
tion to the overall cost of that solution; if we then
iterate best-response dynamics starting from an op-
timal solution, the potential does not increase, and
hence we can bound the cost of any solution that
we reach. Thus, for this network design game, best-
response dynamics starting from the optimum does
in fact always lead to a good Nash equilibrium.

We can extend our basic result to a number of
more general settings. To begin with, the H(k)
bound on the price of stability extends directly to
the case in which users are selecting arbitrary sub-
sets of a ground set (with elements’ costs shared
according to the Shapley value), rather than paths
in a graph; it also extends to the case in which the
cost of each edge is a non-decreasing concave func-
tion of the number of users on it. In addition, our
results also hold if we introduce capacities into our
model; each edge e may be used by at most ue play-
ers, where ue is the capacity of e.

We arrive at a more technically involved set of ex-
tensions if we wish to add latencies to the network
design problem. Here each edge has a concave con-
struction cost ce(x) when there are x users on the
edge, and a latency cost de(x); the cost experienced
by a user is the full latency plus a fair share of the
construction cost, de(x) + ce(x)/x. We give general
conditions on the latency functions that allow us to
bound the price of stability in this case at d · H(k),
where d depends on the delay functions used. More-
over, we obtain stronger bounds in the case where
users experience only delays, not construction costs;
this includes a result that relates the cost at the
best Nash equilibrium to that of an optimum with
twice as many players, and a result that improves

Figure: Ω(log n) price of stability
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Lower bound, contd.

In the unique Nash equilibrium each player uses the direct edge to
t:

I Each player can use either its direct edge or the path through
v ;

I Assume k players use the path through v :
I at least one of them will default to using its direct edge of cost

1/k rather than the v path with share (1 + ε)/k;
I by induction, all will default.

The optimal solution has cost 1 + ε. The Nash equilibrium has
cost H(n) = 1 + 1/2 + . . . + 1/n. The price of stability is Ω(log n).
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Upper bound on price of stability

Our goal is to show that the Ω(log n) bound is tight: there is a
matching O(log n) upper bound on price of stability.
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Exact potential function

A function Φ s.t. if player i improves her cost by m, Φ′ = Φ−m.
For the network formation game, for a solution S :

Φ(S) =
∑

e∈
S

Pi

H(ne)ce

Easy to check that if only a single player changes her strategy the
change in Φ matches the change in her cost.
Consequences:

I the game has a pure Nash equilibrium;

I the best response dynamics converge.
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Properties of Φ

Intuition: Φ is directly related to both the cost c(S) and to the
Nash equilibrium. It can be the bridge between the cost of an
optimal solution and the cost of a Nash equilibrium.

Φ has the following properties:
I

∀e ∈
⋃

Pi : H(ne) ≥ 1

⇒ Φ(S) =
∑

e∈
S

Pi

H(ne)ce ≥
∑

e∈
S

Pi

ce = c(S).

I

∀e : H(ne) ≤ H(n)

⇒ Φ(S) =
∑

e∈
S

Pi

H(ne)ce ≤
∑

e∈
S

Pi

H(n)ce = H(n)c(S)
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Price of stability upper bound [ADK+04]

We will now show an O(log n) price of stability for the network
formation game.

Let S∗ be an optimal solution and S be a Nash equilibrium we can
reach from S∗.

I A Nash equilibrium is a local minimum for Φ or otherwise a
player can improve her strategy;

I c(S) ≤ Φ(S) ≤ Φ(S∗) ≤ H(n)c(S∗) = O(log n)c(S∗).
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An open problem: undirected graphs

The upper bound is tight for directed graphs, but our lower bound
does not extend to undirected graphs.

For two players and a single source the price of stability is 4/3,
while H(2) = 3/2. [ADK+04]

With a single source and players in all vertexes the price of stability
is O(log log n) [FKLO06].

Problem:
Find a tight bound on the price of stability for general undirected
networks.

Aleksandar Nikolov Network Formation Games



Outline
Problem statement

Costs of equilbria

Price of anarchy
Price of stability
Reachable equilibria

Price of anarchy, revisited

We showed that an equilibrium which can be reached from the
optimal solution is not too bad. But:

I we need to trust a third party to set up the network;

I The optimal solution can be NP-Hard to compute.

What if we just restrict the rules of the game?

Consider an alternative scenario [CCLE+06]:

I First phase: We let players join in one by one in an arbitrary
order; each chooses the best path available so far. We start
from an empty network (no players just the infrastructure).

I Second phase: We let players change their path until
reaching an equilibrium.
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Formal problem statement

I Undirected graph G = (V ,E ).

I A single source s ∈ V and n terminal nodes t1, . . . , tn ∈ V
(not necessarily distinct).

I First phase: Players 1, . . . , n arrive in an arbitrary order.
Upon arriving, player i chooses the cheapest path from ti to s.

I Second phase:
I A scheduler picks an arbitrary player i ;
I i picks the current cheapest path from ti to s;
I Continue until no player wants to change his path (Nash

equilibrium).
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How this helps

Observe: the O(n) price of anarchy equilibrium cannot be reached
in this situation: no player will choose the heavy edge in the first
phase or switch to it later.
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Upper bound

We will show:

I O(log2 n) compatitive ratio for the first phase;

I O(log3 n) bound on price of anarchy (for reachable equilibria)
for the second phase.
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Proof sketch

I We will model the first phase of the game as a linear program:

I any outcome of the first phase should give a feasible solution
to the LP;

I the cost of the outcome of the game should be the same as
the cost of the corresponding LP solution;

I We will construct a relaxation of the LP which is easier to
analyze; an upper bound for the relaxation is an upper bound
for the original LP;

I We will construct the dual of the relaxation; the cost of any
feasible solution to the dual is an upper bound on the
maximum cost of the primal;

I We will show that for a certain relaxation there is a feasible
solution to its dual with cost O(log2 n) · OPT , where OPT is
the cost of the optimal Steiner tree.
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Upper bound for the first phase

We claim that every outcome of the first phase is a feasible
solution to the linear program:

max
n∑

i=1

b(i)s.t. (1)

s(j)− s(i) + b(i)/2 ≤ d(i , j) : ∀1 ≤ i < j ≤ n (2)∑
i

s(i)−
∑

i

b(i)H(n) ≤ 0 (3)

s(0) = b(0) = 0 (4)

s(i), b(i) ≥ 0 : ∀1 ≤ i ≤ n (5)

d(i , j) is the distance between i and j in G .
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LP, contd.

We will construct a feasible solution for the LP from the outcome
of the first phase of the game.

I si is the cost of Pi upon arrival of player i .

I bi is the cost of the edges used for the first time by Pi .

Note that c(S) =
∑

e∈
S

Pi
ce =

∑
i bi - equivalence of c(S) and

(1).
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LP, contd.

One option for player j > i is to connect to ti and follow Pi . Then

sj ≤ d(i , j) + c(Pi ) when shared with j

≤ d(i , j) + (s(i)− b(i)) + b(i)/2,

as at least the edges used for the first time by i will be shared by j .
This is conditions (2).
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LP, contd.

Consider the sum of all si :

I For each edge e, the first player who useses it sees cost ce ,
the second: 1

2ce , . . ., the ne-th: 1
ne

ce .

∑
i

s(i) =
∑

e∈
S

Pi

(ce +
ce

2
+ . . . +

ce

ne
)

=
∑

e∈
S

Pi

ceH(ne)

≤
∑

e∈
S

Pi

ceH(n)

=
∑

i

b(i)H(n).

This is condition (3).
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The dual

Consider a relaxation of the LP.

Let T be a tree on W = {s, t1, . . . , tn}, s.t. for any j , the parent
of j arrived before j .
LPT is the relaxation of the LP s.t. constraints (2) need to hold
only for i = p(j).

For any T a solution to the dual of LPT is an upper bound on the
maximum solution of the LP. We can construct a T ′ s.t. there
exists a solution to DLPT ′ with cost O(log2 n)OPT .
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Bound on the second phase

Let the outcome of the first phase be S . Follow the best response
dynamics to a Nash equilibrium S ′. Then

c(S ′) ≤ Φ(S ′) ≤ Φ(S) ≤ O(log n)c(S) = O(log3 n)OPT
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Further questions

I What if some players are allowed to update their paths before
all players have arrived?

I We know that for the multisource case the price of anarchy is
Ω(
√

n). Can we get a polylog upper bound under some
restriction weaker than a single source?

I The Ω(
√

n) example has the number of players n = O(|V |2).
What if n = O(|V |)?

I Same as single source bound when all sources are equidistant
from each other.

I Can we explore yet another solution concept? (E.g. price of
total anarchy).
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